
A Petri Net Library for Modeling Hybrid Systems in OpenModelica

Sabrina Proß Bernhard Bachmann

University of Applied Sciences Bielefeld
Am Stadtholz 24

33609 Bielefeld, Germany

sabrina.pross@fh-bielefeld.de bernhard.bachmann@fh-bielefeld.de

Abstract

For modeling continuous and hybrid Petri Nets
with dynamic edge weightings, the already
existing Petri Net Libraries were further
developed. The new library was implemented
in OpenModelica using the SimForge GUI,
however it works also with Dymola. With the
extensions it is possible to model complex
biological as well as production or traffic
systems.

1. Introduction

The Petri Nets formalism was first introduced
by Carl Adam Petri in 1962 [1]. Today Petri
Nets can be found in many different areas.
Modeling traffic light crossings, production
processes or metabolisms of bacteria are only a
few examples. In the last years, they were
more and more extended for using them for
different kinds of problems.
The first Petri Net Library in Modelica was
developed by Mosterman et al. and has been
further improved by Otter et al. [2; 3].
Herewith the modeling of “normal” Petri Nets
or so-called statecharts is possible. “Normal”
Petri Nets are bounded and the Places have the
capacity one. No time is associated with their
behavior. An external signal can enable or
disable the Transitions.
This Petri Net Library was further developed
by Fabricius [4]. The extensions are:
• Places can contain an integer number of

Tokens.
• The Transitions can be timed. They can

have either deterministic or stochastic
delays.

The Petri Net Library of the present paper
bases on the previous ones. The improvements
are:

• Continuous Petri Nets with real numbers
of Tokens and continuous firing.

• Continuous and discrete Petri Net
elements can be connected to model
hybrid Petri Nets.

• The edges can have integer weightings in
the discrete case and real ones in the
continuous case.

• The edge weightings can be functions.
• The Places can contain a maximum and a

minimum amount of Tokens.
• Each edge can have an upper and a lower

boundary. The number of Tokens of the
respective Place must be between these
values so that the connected Transition
can fire.

• In the discrete case: If a Place does not
contain enough Tokens to fire in all
possible Transitions, a random variable
decides in which Transitions the Place
fires. It is the same if a Place cannot gain
Tokens from all possible Transitions
because of its maximum value.

Firstly, the new Petri Net Library was
developed to model biological systems.
Metabolites, enzymes and genes are modeled
with Places and Transitions represent the
reactions between them [5].
Biochemical reactions, which convert one
substance to another, proceed continuously. In
order to model these, continuous Petri Net
elements were implemented.
Furthermore, the speed of these reactions
depends mostly on the current concentration of
specific substances which can be now
displayed by dynamic edge weightings [6].
Additionally, it should be possible to model
gene regulation which contains discrete
processes as well as continuous ones. Hybrid
Petri Nets, which comprise both discrete and
continuous Petri Net elements, are now able to
model this [7].

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 454 DOI: 10.3384/ecp09430014

The edges can also have upper and lower
boundaries. This is necessary for modeling
substances which only react when a specific
concentration is reached.

In the further development of this library, it
became clear that these extensions are not only
specific for biological systems. They are also
useful in other areas. The present paper
illustrates this with an example of the steel
production process.

2. Petri Nets

A Petri net is a graphical construction to
describe and analyze concurrent processes and
non-deterministic procedures. It is a graph with
two different kinds of nodes: Places and
Transitions, whereas only a Place can be
connected with a Transition or a Transition
with a Place. A Place is symbolized with a
circle and a Transition with a rectangle (see
Figure 1).

Figure 1: A Petri Net

Every Place contains an integer number of
Tokens. In Figure 1, they are shown as black
dots. The edges of a Petri Net are provided
with weightings and the Transitions with
delays. In Figure 1, these are the black numbers
at the edges and the grey numbers over the
Transitions, respectively. A delay represents
the time units that a certain process takes.
A Transition T is ready to fire when every
Place in its previous area has at least as much
Tokens as the edge weighting from the certain
Place to T. In Figure 1, Transition T1 is ready to
fire because P1 has three Tokens and must
have at least two Tokens, whereas P2 must
contain at least one Token which it actually
has. T2 and T3 are not ready to fire.
A Transition T, that is ready to fire, fires by
removing so many Tokens dependent on the
respective edge weighting from all of the
Places in its previous area. In addition, a
specific number of Tokens is laid down in
relation to the edge weighting to all of the

Places in its past area. After firing T1 in Figure
1 P1 has one Token, P2 zero, P3 five, P4 one
and P5 zero (see Figure 2).

Figure 2: The Petri Net of Figure 1 after firing T1

Assumed a Place has only one Token, like in
Figure 3, this Token can be either fired in
Transition T1 or in Transition T2. Therefore, a
decision is necessary which Transition is
chosen. One possible solution is that a uniform
distributed random variable decides whether
T1 or T2 gets the Token. It is also thinkable
that the edges are weighted. In the example
shown in Figure 3, Transition T1 is chosen
with a probability of 80% and T2 with 20%,
respectively.

Figure 3: Example for output weightings

One possible extension are Petri Nets with
capacities: each Place can only contain a
maximum amount of Tokens and must always
have a minimum amount of Tokens.
Furthermore, the edges can have threshold and
inhibition values. In Figure 4 these are the red
numbers in brackets. The first value is the
threshold and the second is the inhibition. A
Transition is only ready to fire if the connected
Places have more or as much Tokens as the
threshold value and less or as much as the
inhibition value. In Figure 4 is the Transition
T1 ready to fire because this Tansition is only
connected with P1 and P1 contains three
Token. This is more than two and less than
five. The Transition T2 is not ready to fire
because the threshold value of the connecting
edge between P1 and T2 is not achieved.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 455

Figure 4: Example for threshold and inhibition

values

An additional extension are self modifying
Petri Nets which were firstly introduced by
Valk [8]. The edge weightings are now
functions, which can depend on the current
number of Tokens of the respective Places (see
Figure 5).

Figure 5: A self modifying Petri Net

2.1. Stochastic Petri Nets

The only difference between Petri Nets
described above and stochastic Petri Nets is
that the delay is a random variable instead of a
fixed value. This random variable can be for
example exponential or normal distributed. In
the latter case it has to be avoided that the
random variable is negative.

2.2. Continuous Petri Nets

A continuous Petri Net is a graphical
representation of a differential equation system
with the properties of a Petri Net.

Figure 6: A continuous Petri Net

The number of Tokens in each Place can be
real and changes continuously. The edge

weightings represent the firing speed for the
different branches. The sum of the incoming
and outcoming speeds is proportional to the
change of Tokens.
The continuous Petri Net in Figure 6 is the
graphical representation of the following
differential equation system:
dP1 1 P1
dt 2

dP2 1 P2
dt 4

dP3 5 1 1 3
dt

dP4 2 P3
dt

dP5 3 P3.
dt

= − ⋅

= − ⋅

= − − =

= ⋅

= ⋅

The difference between the continuous Petri
Net and the differential equation system is that
if one of the Places in the previous area of the
Transition is empty, the Places in the past area
will not gain Tokens anymore. If for example
P1 in Figure 6 is empty, then P3 will not gain
any Tokens.

2.3. Hybrid Petri Nets

Hybrid Petri Nets contain discrete and
continuous elements. A discrete Transition can
be connected with a continuous Place or a
continuous Place with a discrete Transition.
Connections between discrete Places and
continuous Transitions are forbidden.
If a continuous Place is connected with a
discrete Transition, the Transition fires by
decreasing Tokens continuously in the time of
the delay. The slope of the graph is calculated
by dividing the edge weighting by the delay. If
a discrete Transition is connected with a
continuous Place, the Transition fires by
adding Tokens continuously in the time of the
delay.

Figure 7: A Hybrid Petri Net

Figure 7 is an example of a hybrid Petri Net.
P1 and T1 are discrete and P2 is continuous.
After Transition T1 is ready to fire, P1 waits
two time units before firing one Token. In

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 456

these two time units, P2 receives three Tokens
continuously. Figure 8 shows these Token
progressions.

Figure 8: Token progressions of the hybrid Petri

Net in Figure 7

3. Petri Net Library

The Petri Net Library is structured in four sub-
libraries: Discrete, Continuous, Stochastic and
Reactions (see Figure 9). The Reactions
Library is discussed in detail in [9].

Figure 9: Structure of the Petri Net Library

Figure 10 shows the icons for the discrete,
stochastic and continuous elements of the Petri
Net Library. A discrete Place is represented by
a turquoise circle and a discrete Transition by a
turquoise rectangle. A stochastic Transition is
yellow with a turquoise margin and the
continuous elements have thick blue margins.

Figure 10: Icons of the Petri Net Library

Every sub-library has general models for
Places and Transitions (package partialModels
in Figure 11) which are extended to models
with fix numbers of input and output
connectors. TD21 is for example the
denotation for a discrete Transition with two
input connectors and one output connector (see
Figure 11).

Figure 11: Structure of the discrete Petri Net

Library

3.1. Place

In the property-dialog of the discrete and
contiuous Place the user can insert the number
of Tokens at the beginning of the simulation
and the minimum and maximum amount of
Tokens that the Place is able to contain (see
Figure 12).

Figure 12: Property-dialog of a discrete Place with
two inputs and two outputs

discrete
Place

discrete
Transition

stochastic
Transition

continuous
Place

continuous
Transition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 457

In the discrete Place, it is also possible to
determine input and output weightings. If a
Place is not able to fire in all activated
Transitions due to its lack of Tokens, the edges
can be weighted. By means of a uniform
distributed random variable, it is decided
which Transitions receive Tokens. The same
principle is applied if a Place is not able to gain
Tokens from all ready to fire Transitions due to
its maximum value (cf. section 2).

The current number of Tokens is determined in
the Place. To do that, two sums are calculated
at first. One is the sum of all Tokens that leave
the Place and the other one of all Tokens that
come inside the Place. In the discrete case, the
new number of Tokens is calculated as
follows:

tokeninout = sumIn > 0 or sumOut > 0;
when tokeninout then
 t = pre(t) + sumIn - sumOut;
end when;

In the continuous case, the new number of
Tokens is calculated by a differential equation.
Of course, additional conditions are
considered, i.e. the right hand side of the
differential equation may not be negative if the
Tokens are equal to the minimum.
After this computation, it is checked whether
the Place is empty or full. The current state is
reported to the connected input and output
Transitions (see Figure 13).
The inState of a continuous Place is only true
if the Place is full and the outState is only false
if the Place is empty.
The inState of a discrete Place is only true if
the Place is full or the Place has just gained
Tokens or both. The outState is only false if
the Place is empty or the Place has just gained
Tokens or both.

Figure 13: The states of a Place

The inState is the state that is reported to the
input Transitions and the outState is the state
that is reported to the output Transitions (see
Figure 13).

3.2. Transition

In the property-dialog of the discrete
Transition, a delay can be entered (see Figure
14). If the corresponding Transition is
activated, it will take as much time units as
keyed in until the Transition fires. In the
stochastic case, these are the characteristic
values of the corresponding distribution. For
example the expectation value lambda of an
exponential distribution or the expectation
value m and the standard deviation s of a
normal distribution. Therefore, the random
numbers are calculated by an external C-
function.

Figure 14: Property-dialog of a discrete Transition

with two inputs

There is also the possibility to determine a
condition which has to be true so that the
Transition is ready to fire. This condition can
be entered in ‘Modifiers’. For example:
con = time>5. In the discrete case a delay can
be determine additionally.

The weightings for each edge, which goes in or
out of the respective Transition, can be entered
in the property-dialog. This has to be done
with the aid of ‘Modifiers’, as functions are
also allowed in this case (cf. Section 2). The
weightings from the edges that go into the
Transition are denoted by sub1, sub2, … from
the top to the bottom. The weightings for the
edges, that go out of the Transition, are called
add1, add2, … (see Figure 15).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 458

Figure 15: The denotation of the edges weightings

The weightings for Transition T1 in Figure 6
are keyed in as follows:
sub1 = ½*P1.t
sub2 = ¼*P2.t
add1 = 5.

Figure 16: The entry of sub and add in ‘Modifiers’

If functions are entered as edge weightings, the
name of the respective Place has to be typed in
with the ending ‘.t’ (stands for Tokens).

In the property-dialog the threshold and
inhibition values for each edge, which goes
into the respective Transition, can be entered,
too (see Figure 14 and Figure 4). The
denotation is like the edge weightings. The
boundaries for the first input edge from the top
are called threshold1 and inhibition1, for the
second these are threshold2 and inhibition2
and so on.

Figure 17: The denotation of the inhibition and

threshold values

The Transition decides whether it fires or not.
For that, all Transitions check the states of all
connected Places. If all states of the input
Places are true and none state of the output
Places is true and in addition the entered
condition is true, the Transition is activated
(see Figure 18):

activated = if Functions.allTrue(inState)

and not Functions.anyTrue(outState)
and con;

In the continuous case the activation is
equivalent to firing. In the discrete and
stochastic case, the activation time is saved and
the Transition fires when the corresponding
delay is passed.

when edge(activated) then
 last_activation_time = time;
end when;
delay_passed = activated and

time - delay >last_activation_time;

Figure 18: The activation of a Transition

If the Transition fires or not, is reported to the
connected input and output Places.

4. Example

Figure 19 shows a simplified example of the
production process of crude steel, compare
[10].
At first, the iron ore is transported per ship
from Brasilia to a stock at the port of
Rotterdam. This trip takes generally 14 days.
Every 24 days a ship arrives at the port of
Rotterdam. But the exact time of arrival is
uncertain. The trip can take a little bit longer or
shorter because of nature or other conditions.
This is modeled with the aid of a stochastic
Transition (Transition ship). The time of
arrival is a normal distributed random variable

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 459

Figure 19: Steel production process

with the expectation value m = 24 and the
standard deviation s = 1. A shipload contains
360.000 t iron ore. For this reason add1 of
Transition ship is equal to 360.000. The stock
at the port can contain at most 720.000 t iron
ore. Therefore, the maximal value of the Place
stock is fixed to 720.000. The start value of
this Place is 360.000.
At the next level the iron ore is loaded from the
stock to several trains. A train can contain
5000 t iron ore and the drive to the steel
production in Duisburg takes 8 hours. The iron
ore is delivered “just in time” to the production
process. Hence, no other stock is needed. The
discrete Transition train represents the
transport from Rotterdam to Duisburg. The
delay is 1/3 day (= 8 hours) and sub1 = add1 =
5000. The iron ore (Place pro) and the coke
(Place coke) are mixed in the sintering plant. It
accrues the intermediate product sinter (Place
I1). For one ton employed iron ore 0.2 t coke is
needed and 0.73 t sinter is produced. This
production step is modeled continuously by
means of the Transition Si. The edge
weightings are the following:

1 0.2 .
2 .
1 0.73 . .

sub pro t
sub pro t
add pro t

= ⋅
=
= ⋅

The sinter is further processed in the blast
furnace to hot metal (Place I2). In addition, the
by-products slag (Place slag) and blast furnace
dust (Place dust1) are produced. For one ton

employed sinter 0.2 t coke is needed and 0.1 t
slag, 0.65 t hot metal and 0.01 t blast furnace
dust are produced. The Transition Fu displays
this. The edges weightings are:

1 0.2 1.
2 1.
1 0.1 1.
2 0.65 1.
3 0.01 1. .

sub I t
sub I t
add I t
add I t
add I t

= ⋅
=
= ⋅
= ⋅
= ⋅

The by-product slag is sold to building
industry. When 50.000 t slag are produced the
company is informed but it is uncertain when
the company arrives to pick up the slag and
how long this procedure takes. This is modeled
with a stochastic Transition with a normal
distributed delay (m = ½ and s = 1/8) and sub1
= 50.000.
In the last production step the hot metal is
processed to crude steel (Place steel) in the
steel works. Slag (Place slag) and converter
dust (Place dust2) are the by-products here.
For one ton employed hot metal 0.13 t slag,
0.8 t crude steel and 0.05 t converter dust are
produced. The Transition SW represents the
steel works. The edge weightings are:

1 2.
1 0.13 2.
2 0.8 2.
3 0.05 2. .

sub I t
add I t
add I t
add I t

=
= ⋅
= ⋅
= ⋅

ship

stock

train Si Fu SW

steel

coke slag

se
ll

Tr

dust1
dust 2

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 460

Iron ore can be substituted by blast furnace
dust (Place dust1) and converter dust (Place
dust2). This is modeled with the Transition Tr
and the edges weightings are:

1 1.
2 2.
1 0.1 (1. 2.).

sub dust t
sub dust t
add dust t dust t

=
=
= ⋅ +

Following, some simulation results are shown.
Figure 20 displays three possible progressions
of the stock of iron ore at the port of
Rotterdam. Every progression is different
because of the stochastic modeling. The stock
is limited to 720.000 t iron ore. Hence, this
border is not exceed. The iron ore is loaded to
trains. Every 8 hours a train drives with 5000 t
iron ore to Duisburg. These are the discrete
stages in the magnification.

Figure 20: Three simulation results of the iron ore

stock at the port of Rotterdam

The iron ore is exhausted in all simulations at
specific time points:

Simulation 1
[days]

Simulation 2
[days]

Simulation 3
[days]

48 – 48.5 48 – 49.5 24 – 25.25
72.5 - 73 73.5 – 75.4 49.25 – 50.31
 74.31 – 76.28

This causes bottlenecks in the production
process.

The next figure shows the progression of iron
ore, sinter and hot metal of simulation 3. The
decrease after day 24.3, 49.6 and 74.4 is
caused by the exhaused stocks.

Figure 21: The progressions of iron ore (pro), sinter

(I1) and hot metal (I2) (simulation 3)

Figure 22 illustrates the bottleneck in the
production process of simulation 3, too. The
exhausted stocks are reflected in the amount of
crude steel. The production is decreased after
every empty stock period.

Figure 22: Stock of iron ore (stock) and produced

crude steel (steel) by comparison
(simulation 3)

Figure 23 displays the slag progression of
simulation 3. When 50.000 t slag are achieved,
it is sold to the building industry. The
bottlenecks are here visible, too.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 461

Figure 23: Slag (slag) progression of simulation 3

The conclusion of these simulations is that the
delivery period of iron ore has to be reduced.
The new period has to be big enough that only
small bottlenecks appear and small enough that
no high stocks accumulate. If for example a
period of 22.5 days is chosen, the probability
of a bottleneck is 6.7 % and the probability that
this bottleneck takes longer than one day is
0.62 %. Now is the task to find the “optimal”
solution between bottlenecks and stock costs.
Figure 24 shows three simulation results of the
progression of the iron ore stock if the delivery
period is 22.5 days.

Figure 24: Three simulation results of the iron ore

stock with a delivery period of 22.5

5. Conclusions

This paper has shown the new extensions of
the Petri Net Library. Now it is possible to
model continuous and hybrid Petri Nets with
dynamic edge weightings in OpenModelica.
These innovations can be applied in different
kinds of areas. The paper has demonstrated this
with an example of the steel production

process. But the Petri Net Library is also useful
for the modeling of biological systems [9].

References

[1] Petri, Carl Adam. Kommunikation mit
Automaten. Bonn: Institut für Instrumentelle
Mathematik , 1962.

[2] Mosterman, Pieter J., Otter, Martin and
Elmqvist, Hilding. Modeling Petri nets as Local
Constraint Equations for Hybrid Systems Using
Modelica. Reno, USA , 1998. Summer
Computer Simulation Conference .

[3] Otter, Martin, Arzèn, K.‐E. and Dressler, I.
SateGraph‐A Modelica Library for Hierarchical
State Machines. Hamburg , 2005. Modelica
Conference. pp. 569‐578.

[4] Fabricius, Stefan M. O. Extensions to the
Petri Net Library. 2001.

[5] Reddy, Venkatramana N., Liebman,
Michael N. and Mavrovouniotis, Michael L.
Qualitative Analysis of Biochemical Reaction
Systems. Compu. Biol. Med. 1996, pp. 9‐24.

[6] Hofestädt, R. and Thelen, S. Quantitative
Modeling of Biochemical Networks. In Silico
Biology. 1998, 1, pp. 39‐53.

[7] Doi, Atsushi, et al. Constructing biological
pathway models with hybrid functional Petri
nets. In Silico Biology. 2004.

[8] Valk, Rüdiger. Self‐Modifiying Nets: A
natural Extension of Petrinets. LNCS. 1978, 62,
pp. 464‐476.

[9] Proß, Sabrina, et al. Modeling a
Bacterium's Life: A Petri‐Net Library in
Modelica. Como, Italy , 2009. Modelica
conference.

[10] Dyckhoff, Harald and Spengler, Thomas.
Produktionswirtschaft. Berlin Heidelberg :
Springer‐Verlag, 2005.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 462

