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Abstract 

For modeling continuous and hybrid Petri Nets 
with dynamic edge weightings, the already 
existing Petri Net Libraries were further 
developed. The new library was implemented 
in OpenModelica using the SimForge GUI, 
however it works also with Dymola. With the 
extensions it is possible to model complex 
biological as well as production or traffic 
systems. 

 

1. Introduction 

The Petri Nets formalism was first introduced 
by Carl Adam Petri in 1962 [1]. Today Petri 
Nets can be found in many different areas. 
Modeling traffic light crossings, production 
processes or metabolisms of bacteria are only a 
few examples. In the last years, they were 
more and more extended for using them for 
different kinds of problems. 
The first Petri Net Library in Modelica was 
developed by Mosterman et al. and has been 
further improved by Otter et al. [2; 3]. 
Herewith the modeling of “normal” Petri Nets 
or so-called statecharts is possible. “Normal” 
Petri Nets are bounded and the Places have the 
capacity one. No time is associated with their 
behavior. An external signal can enable or 
disable the Transitions. 
This Petri Net Library was further developed 
by Fabricius [4]. The extensions are: 
• Places can contain an integer number of 

Tokens. 
• The Transitions can be timed. They can 

have either deterministic or stochastic 
delays. 

The Petri Net Library of the present paper 
bases on the previous ones. The improvements 
are: 

• Continuous Petri Nets with real numbers 
of Tokens and continuous firing. 

• Continuous and discrete Petri Net 
elements can be connected to model 
hybrid Petri Nets. 

• The edges can have integer weightings in 
the discrete case and real ones in the 
continuous case. 

• The edge weightings can be functions. 
• The Places can contain a maximum and a 

minimum amount of Tokens. 
• Each edge can have an upper and a lower 

boundary. The number of Tokens of the 
respective Place must be between these 
values so that the connected Transition 
can fire. 

• In the discrete case: If a Place does not 
contain enough Tokens to fire in all 
possible Transitions, a random variable 
decides in which Transitions the Place 
fires. It is the same if a Place cannot gain 
Tokens from all possible Transitions 
because of its maximum value. 

 
Firstly, the new Petri Net Library was 
developed to model biological systems. 
Metabolites, enzymes and genes are modeled 
with Places and Transitions represent the 
reactions between them [5].  
Biochemical reactions, which convert one 
substance to another, proceed continuously. In 
order to model these, continuous Petri Net 
elements were implemented. 
Furthermore, the speed of these reactions 
depends mostly on the current concentration of 
specific substances which can be now 
displayed by dynamic edge weightings [6]. 
Additionally, it should be possible to model 
gene regulation which contains discrete 
processes as well as continuous ones. Hybrid 
Petri Nets, which comprise both discrete and 
continuous Petri Net elements, are now able to 
model this [7]. 
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The edges can also have upper and lower 
boundaries. This is necessary for modeling 
substances which only react when a specific 
concentration is reached. 
 
In the further development of this library, it 
became clear that these extensions are not only 
specific for biological systems. They are also 
useful in other areas. The present paper 
illustrates this with an example of the steel 
production process. 

 

2. Petri Nets 

A Petri net is a graphical construction to 
describe and analyze concurrent processes and 
non-deterministic procedures. It is a graph with 
two different kinds of nodes: Places and 
Transitions, whereas only a Place can be 
connected with a Transition or a Transition 
with a Place. A Place is symbolized with a 
circle and a Transition with a rectangle (see 
Figure 1).  
 

Figure 1: A Petri Net 

Every Place contains an integer number of 
Tokens. In Figure 1, they are shown as black 
dots. The edges of a Petri Net are provided 
with weightings and the Transitions with 
delays. In Figure 1, these are the black numbers 
at the edges and the grey numbers over the 
Transitions, respectively. A delay represents 
the time units that a certain process takes. 
A Transition T is ready to fire when every 
Place in its previous area has at least as much 
Tokens as the edge weighting from the certain 
Place to T. In Figure 1, Transition T1 is ready to 
fire because P1 has three Tokens and must 
have at least two Tokens, whereas P2 must 
contain at least one Token which it actually 
has. T2 and T3 are not ready to fire. 
A Transition T, that is ready to fire, fires by 
removing so many Tokens dependent on the 
respective edge weighting from all of the 
Places in its previous area. In addition, a 
specific number of Tokens is laid down in 
relation to the edge weighting to all of the 

Places in its past area. After firing T1 in Figure 
1 P1 has one Token, P2 zero, P3 five, P4 one 
and P5 zero (see Figure 2). 
 

 
Figure 2: The Petri Net of Figure 1 after firing T1 

Assumed a Place has only one Token, like in 
Figure 3, this Token can be either fired in 
Transition T1 or in Transition T2. Therefore, a 
decision is necessary which Transition is 
chosen. One possible solution is that a uniform 
distributed random variable decides whether 
T1 or T2 gets the Token. It is also thinkable 
that the edges are weighted. In the example 
shown in Figure 3, Transition T1 is chosen 
with a probability of 80% and T2 with 20%, 
respectively. 
 

 
Figure 3: Example for output weightings 

One possible extension are Petri Nets with 
capacities: each Place can only contain a 
maximum amount of Tokens and must always 
have a minimum amount of Tokens. 
Furthermore, the edges can have threshold and 
inhibition values. In Figure 4 these are the red 
numbers in brackets. The first value is the 
threshold and the second is the inhibition. A 
Transition is only ready to fire if the connected 
Places have more or as much Tokens as the 
threshold value and less or as much as the 
inhibition value. In Figure 4 is the Transition 
T1 ready to fire because this Tansition is only 
connected with P1 and P1 contains three 
Token. This is more than two and less than 
five. The Transition T2 is not ready to fire 
because the threshold value of the connecting 
edge between P1 and T2 is not achieved. 
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Figure 4: Example for threshold and inhibition 

values 

An additional extension are self modifying 
Petri Nets which were firstly introduced by 
Valk [8]. The edge weightings are now 
functions, which can depend on the current 
number of Tokens of the respective Places (see 
Figure 5). 
 

 
Figure 5: A self modifying Petri Net 

 
2.1. Stochastic Petri Nets 

The only difference between Petri Nets 
described above and stochastic Petri Nets is 
that the delay is a random variable instead of a 
fixed value. This random variable can be for 
example exponential or normal distributed. In 
the latter case it has to be avoided that the 
random variable is negative. 
 
2.2. Continuous Petri Nets 

A continuous Petri Net is a graphical 
representation of a differential equation system 
with the properties of a Petri Net. 
 

 
Figure 6: A continuous Petri Net 

The number of Tokens in each Place can be 
real and changes continuously. The edge 

weightings represent the firing speed for the 
different branches. The sum of the incoming 
and outcoming speeds is proportional to the 
change of Tokens.  
The continuous Petri Net in Figure 6 is the 
graphical representation of the following 
differential equation system: 
dP1 1 P1
dt 2

dP2 1 P2
dt 4

dP3 5 1 1 3
dt

dP4 2 P3
dt

dP5 3 P3.
dt

= − ⋅

= − ⋅

= − − =

= ⋅

= ⋅

 

The difference between the continuous Petri 
Net and the differential equation system is that 
if one of the Places in the previous area of the 
Transition is empty, the Places in the past area 
will not gain Tokens anymore. If for example 
P1 in Figure 6 is empty, then P3 will not gain 
any Tokens. 
 
2.3. Hybrid Petri Nets 

Hybrid Petri Nets contain discrete and 
continuous elements. A discrete Transition can 
be connected with a continuous Place or a 
continuous Place with a discrete Transition. 
Connections between discrete Places and 
continuous Transitions are forbidden. 
If a continuous Place is connected with a 
discrete Transition, the Transition fires by 
decreasing Tokens continuously in the time of 
the delay. The slope of the graph is calculated 
by dividing the edge weighting by the delay. If 
a discrete Transition is connected with a 
continuous Place, the Transition fires by 
adding Tokens continuously in the time of the 
delay. 
 

 
Figure 7: A Hybrid Petri Net 

Figure 7 is an example of a hybrid Petri Net. 
P1 and T1 are discrete and P2 is continuous. 
After Transition T1 is ready to fire, P1 waits 
two time units before firing one Token. In 
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these two time units, P2 receives three Tokens 
continuously. Figure 8 shows these Token 
progressions. 
 

 
Figure 8: Token progressions of the hybrid Petri 

Net in Figure 7 

 

3. Petri Net Library 

The Petri Net Library is structured in four sub-
libraries: Discrete, Continuous, Stochastic and 
Reactions (see Figure 9). The Reactions 
Library is discussed in detail in [9]. 
 

 
Figure 9: Structure of the Petri Net Library 

Figure 10 shows the icons for the discrete, 
stochastic and continuous elements of the Petri 
Net Library. A discrete Place is represented by 
a turquoise circle and a discrete Transition by a 
turquoise rectangle. A stochastic Transition is 
yellow with a turquoise margin and the 
continuous elements have thick blue margins. 
 

 
 
 

Figure 10: Icons of the Petri Net Library 

Every sub-library has general models for 
Places and Transitions (package partialModels 
in Figure 11) which are extended to models 
with fix numbers of input and output 
connectors. TD21 is for example the 
denotation for a discrete Transition with two 
input connectors and one output connector (see 
Figure 11). 
 

 
Figure 11: Structure of the discrete Petri Net 

Library 

 
3.1. Place 

In the property-dialog of the discrete and 
contiuous Place the user can insert the number 
of Tokens at the beginning of the simulation 
and the minimum and maximum amount of 
Tokens that the Place is able to contain (see 
Figure 12). 
 

 

Figure 12: Property-dialog of a discrete Place with 
two inputs and two outputs 

discrete  
Place 

discrete  
Transition 

stochastic  
Transition 

continuous 
Place 

continuous 
Transition
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In the discrete Place, it is also possible to 
determine input and output weightings. If a 
Place is not able to fire in all activated 
Transitions due to its lack of Tokens, the edges 
can be weighted. By means of a uniform 
distributed random variable, it is decided 
which Transitions receive Tokens. The same 
principle is applied if a Place is not able to gain 
Tokens from all ready to fire Transitions due to 
its maximum value (cf. section 2). 
 
The current number of Tokens is determined in 
the Place. To do that, two sums are calculated 
at first. One is the sum of all Tokens that leave 
the Place and the other one of all Tokens that 
come inside the Place. In the discrete case, the 
new number of Tokens is calculated as 
follows: 
 
tokeninout = sumIn > 0 or sumOut > 0; 
when tokeninout then 
   t = pre(t) + sumIn - sumOut; 
end when; 
 
In the continuous case, the new number of 
Tokens is calculated by a differential equation. 
Of course, additional conditions are 
considered, i.e. the right hand side of the 
differential equation may not be negative if the 
Tokens are equal to the minimum. 
After this computation, it is checked whether 
the Place is empty or full. The current state is 
reported to the connected input and output 
Transitions (see Figure 13). 
The inState of a continuous Place is only true 
if the Place is full and the outState is only false 
if the Place is empty. 
The inState of a discrete Place is only true if 
the Place is full or the Place has just gained 
Tokens or both. The outState is only false if 
the Place is empty or the Place has just gained 
Tokens or both. 
 

 

Figure 13: The states of a Place 

The inState is the state that is reported to the 
input Transitions and the outState is the state 
that is reported to the output Transitions (see 
Figure 13). 
 
3.2. Transition 

In the property-dialog of the discrete 
Transition, a delay can be entered (see Figure 
14). If the corresponding Transition is 
activated, it will take as much time units as 
keyed in until the Transition fires. In the 
stochastic case, these are the characteristic 
values of the corresponding distribution. For 
example the expectation value lambda of an 
exponential distribution or the expectation 
value m and the standard deviation s of a 
normal distribution. Therefore, the random 
numbers are calculated by an external C-
function. 
 

 
Figure 14: Property-dialog of a discrete Transition 

with two inputs 

There is also the possibility to determine a 
condition which has to be true so that the 
Transition is ready to fire. This condition can 
be entered in ‘Modifiers’. For example: 
con = time>5. In the discrete case a delay can 
be determine additionally. 
 
The weightings for each edge, which goes in or 
out of the respective Transition, can be entered 
in the property-dialog. This has to be done 
with the aid of ‘Modifiers’, as functions are 
also allowed in this case (cf. Section 2). The 
weightings from the edges that go into the 
Transition are denoted by sub1, sub2, … from 
the top to the bottom. The weightings for the 
edges, that go out of the Transition, are called 
add1, add2, … (see Figure 15). 
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Figure 15: The denotation of the edges weightings 

The weightings for Transition T1 in Figure 6 
are keyed in as follows: 
sub1 = ½*P1.t 
sub2 = ¼*P2.t 
add1 = 5. 
 

 
Figure 16: The entry of sub and add in ‘Modifiers’ 

If functions are entered as edge weightings, the 
name of the respective Place has to be typed in 
with the ending ‘.t’ (stands for Tokens). 
 
In the property-dialog the threshold and 
inhibition values for each edge, which goes 
into the respective Transition, can be entered, 
too (see Figure 14 and Figure 4). The 
denotation is like the edge weightings. The 
boundaries for the first input edge from the top 
are called threshold1 and inhibition1, for the 
second these are threshold2 and inhibition2 
and so on. 
 

 
Figure 17: The denotation of the inhibition and 

threshold values 

The Transition decides whether it fires or not. 
For that, all Transitions check the states of all 
connected Places. If all states of the input 
Places are true and none state of the output 
Places is true and in addition the entered 
condition is true, the Transition is activated 
(see Figure 18):  
 
activated = if Functions.allTrue(inState)  

and not Functions.anyTrue(outState) 
and con; 

 
In the continuous case the activation is 
equivalent to firing. In the discrete and 
stochastic case, the activation time is saved and 
the Transition fires when the corresponding 
delay is passed. 
 
when edge(activated) then 
     last_activation_time = time; 
end when; 
delay_passed = activated and  

time - delay >last_activation_time; 
 

 

Figure 18: The activation of a Transition 

If the Transition fires or not, is reported to the 
connected input and output Places. 
 

4. Example 

Figure 19 shows a simplified example of the 
production process of crude steel, compare 
[10]. 
At first, the iron ore is transported per ship 
from Brasilia to a stock at the port of 
Rotterdam. This trip takes generally 14 days. 
Every 24 days a ship arrives at the port of 
Rotterdam. But the exact time of arrival is 
uncertain. The trip can take a little bit longer or 
shorter because of nature or other conditions. 
This is modeled with the aid of a stochastic 
Transition (Transition ship). The time of 
arrival is a normal distributed random variable 
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Figure 19: Steel production process 

 
with the expectation value m = 24 and the 
standard deviation s = 1. A shipload contains 
360.000 t iron ore. For this reason add1 of 
Transition ship is equal to 360.000. The stock 
at the port can contain at most 720.000 t iron 
ore. Therefore, the maximal value of the Place 
stock is fixed to 720.000. The start value of 
this Place is 360.000. 
At the next level the iron ore is loaded from the 
stock to several trains. A train can contain 
5000 t iron ore and the drive to the steel 
production in Duisburg takes 8 hours. The iron 
ore is delivered “just in time” to the production 
process. Hence, no other stock is needed. The 
discrete Transition train represents the 
transport from Rotterdam to Duisburg. The 
delay is 1/3 day (= 8 hours) and sub1 = add1 = 
5000. The iron ore (Place pro) and the coke 
(Place coke) are mixed in the sintering plant. It 
accrues the intermediate product sinter (Place 
I1). For one ton employed iron ore 0.2 t coke is 
needed and 0.73 t sinter is produced. This 
production step is modeled continuously by 
means of the Transition Si. The edge 
weightings are the following: 

1 0.2 .
2 .
1 0.73 . .

sub pro t
sub pro t
add pro t

= ⋅
=
= ⋅

 

The sinter is further processed in the blast 
furnace to hot metal (Place I2). In addition, the 
by-products slag (Place slag) and blast furnace 
dust (Place dust1) are produced. For one ton 

employed sinter 0.2 t coke is needed and 0.1 t 
slag, 0.65 t hot metal and 0.01 t blast furnace 
dust are produced. The Transition Fu displays 
this. The edges weightings are: 

1 0.2 1.
2 1.
1 0.1 1.
2 0.65 1.
3 0.01 1. .

sub I t
sub I t
add I t
add I t
add I t

= ⋅
=
= ⋅
= ⋅
= ⋅  

The by-product slag is sold to building 
industry. When 50.000 t slag are produced the 
company is informed but it is uncertain when 
the company arrives to pick up the slag and 
how long this procedure takes. This is modeled 
with a stochastic Transition with a normal 
distributed delay (m = ½ and s = 1/8) and sub1 
= 50.000. 
In the last production step the hot metal is 
processed to crude steel (Place steel) in the 
steel works. Slag (Place slag) and converter 
dust (Place dust2) are the by-products here. 
For one ton employed hot metal 0.13 t slag, 
0.8 t crude steel and 0.05 t converter dust are 
produced. The Transition SW represents the 
steel works. The edge weightings are: 

1 2.
1 0.13 2.
2 0.8 2.
3 0.05 2. .

sub I t
add I t
add I t
add I t

=
= ⋅
= ⋅
= ⋅

 

ship 

stock 

train Si Fu SW 

steel 

coke slag 

se
ll 

Tr 

dust1
dust 2
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Iron ore can be substituted by blast furnace 
dust (Place dust1) and converter dust (Place 
dust2). This is modeled with the Transition Tr 
and the edges weightings are: 

1 1.
2 2.
1 0.1 ( 1. 2. ).

sub dust t
sub dust t
add dust t dust t

=
=
= ⋅ +

 

 
Following, some simulation results are shown. 
Figure 20 displays three possible progressions 
of the stock of iron ore at the port of 
Rotterdam. Every progression is different 
because of the stochastic modeling. The stock 
is limited to 720.000 t iron ore. Hence, this 
border is not exceed. The iron ore is loaded to 
trains. Every 8 hours a train drives with 5000 t 
iron ore to Duisburg. These are the discrete 
stages in the magnification.  
 

  
 

 
Figure 20: Three simulation results of the iron ore 

stock at the port of Rotterdam 

The iron ore is exhausted in all simulations at 
specific time points: 
 
Simulation 1 
[days] 

Simulation 2 
[days] 

Simulation 3 
[days] 

48 – 48.5 48 – 49.5 24 – 25.25 
72.5 - 73 73.5 – 75.4 49.25 – 50.31 
  74.31 – 76.28 

 
This causes bottlenecks in the production 
process. 

The next figure shows the progression of iron 
ore, sinter and hot metal of simulation 3. The 
decrease after day 24.3, 49.6 and 74.4 is 
caused by the exhaused stocks. 
 

 
Figure 21: The progressions of iron ore (pro), sinter 

(I1) and hot metal (I2) (simulation 3) 

Figure 22 illustrates the bottleneck in the 
production process of simulation 3, too. The 
exhausted stocks are reflected in the amount of 
crude steel. The production is decreased after 
every empty stock period.  
 

 
Figure 22: Stock of iron ore (stock) and produced 

crude steel (steel) by comparison 
(simulation 3) 

Figure 23 displays the slag progression of 
simulation 3. When 50.000 t slag are achieved, 
it is sold to the building industry. The 
bottlenecks are here visible, too. 
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Figure 23: Slag (slag) progression of simulation 3 

The conclusion of these simulations is that the 
delivery period of iron ore has to be reduced. 
The new period has to be big enough that only 
small bottlenecks appear and small enough that 
no high stocks accumulate. If for example a 
period of 22.5 days is chosen, the probability 
of a bottleneck is 6.7 % and the probability that 
this bottleneck takes longer than one day is 
0.62 %. Now is the task to find the “optimal” 
solution between bottlenecks and stock costs. 
Figure 24 shows three simulation results of the 
progression of the iron ore stock if the delivery 
period is 22.5 days. 
 

 
Figure 24: Three simulation results of the iron ore 

stock with a delivery period of 22.5 

 

5. Conclusions 

This paper has shown the new extensions of 
the Petri Net Library. Now it is possible to 
model continuous and hybrid Petri Nets with 
dynamic edge weightings in OpenModelica. 
These innovations can be applied in different 
kinds of areas. The paper has demonstrated this 
with an example of the steel production 

process. But the Petri Net Library is also useful 
for the modeling of biological systems [9]. 
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