
Real-Time Simulation of Modelica-based Models

Torsten Blochwitz Thomas Beutlich
ITI GmbH

Webergasse 1, 01067 Dresden, Germany
{blochwitz,beutlich}@iti.de

Abstract

This paper shows the various steps a simulation tool
has to perform to create a real-time-capable model
from a Modelica model. Reduction techniques are of-
ten necessary for complex models to meet the real-
time requirements. For non-linear models with dis-
continuities no automatic methods of model reduction
are known. The analysis methods supporting develop-
ers in identifying critical model parts are explained by
means of an illustrating example model.

Keywords: real-time simulation; hardware-in-the-
loop; model reduction

1 Introduction

The method of physical modeling is more and more
establishing itself in the engineering departments of
OEMs and component suppliers. The engineers do
no longer formulate the model equations by hand but
compile their models using sophisticated model li-
braries. Thus, detailed models are built up in com-
paratively short time. These models simulate the dy-
namic behavior of the system in detail. E.g., the vibra-
tional behavior of drive trains or hydraulic systems is
explored.

During software development of Electronic Control
Units (ECU) offline (non real-time), system simula-
tions are performed using Model-in-the-Loop (MIL)
techniques. In this development stage the detailed sim-
ulation models from the system design can still be
used. During the test phase of the ECU, Hardware-in-
the-loop (HIL) techniques are used requiring the sim-
ulation models to run in real-time.

Costs and resources can be saved if the plant mod-
els built up during system design can be reused for
real-time simulation [1, 2]. The SimulationX R© [3]
high-level system simulation tool supports the engi-
neer in reusing and reducing the simulation models.

The prospects and limitations of such model reuse and
reduction are shown.

2 Real-Time Requirements

In the general case physical models can be represented
by a DAE (differential algebraic equation) system of
the form

0 = f (x, ẋ,z,u, p, t) (1)

y = g(x, ẋ,z,u, p, t) (2)

with
x . . . Continuous states variables
z . . . Discrete states variables
u . . . Inputs
y . . . Outputs
p . . . Parameters
t . . . Time.

Appropriate implicit DAE solvers can directly solve
the DAE system in offline simulation.

The explicit ODE (ordinary differential equation) form

ẋ = f (x,z,u, p, t) (3)

is numerically easier to solve than the DAE form.

Real-time capable models need to be solved within a
predictable execution time per time step. The model
execution time has to be less than the step size.

Implicit solvers needed for DAE calculations work
by iterative methods. The execution time depends
on the number of executed iterations. A common
workaround is to limit the number of iterations. How-
ever, this limitation might lead to numerical inaccu-
racies. Additionally the Jacobian matrix needs to be
updated from time to time. Hence the execution time

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 386 DOI: 10.3384/ecp09430119



of iterative methods is not predictable making them in-
applicable for HIL simulation.

Explicit solvers do meet this requirement but can only
be used for solving ODE systems. Therefore the
physical model needs to be translated to the explicit
ODE (3) form.

Efficient offline solvers are characterized by step size
adaptations. E.g. the step size is decreased for a robust
calculation of high-frequency oscillations. However,
real-time capable solvers require a constant step size.

Variable step size solvers are also used to precisely
detect the discontinuities and events. This cannot be
guaranteed under real-time conditions; hence a robust
formulation of discontinuities and events is required to
prevent improper model behavior after an event.

The maximal model step size for stable calculation
of a differential equation using a given solver inte-
gration algorithm depends on the natural frequencies,
time constants and non-linearities. In other words if
real-time is required the dynamics and non-linearities
need to be limited, too.

Finally the model complexity is limited by the com-
puting power of the target hardware. The model exe-
cution time must not exceed the available calculation
time.

Summing up, the real-time requirements are

• Explicit ODE form of the system,

• Limited dynamics and non-linearities,

• Robust treatment of discontinuities,

• Limited model complexity.

3 Model Generation for HIL Simula-
tion

The steps shown in Fig. 1 are necessary to get from a
physical model to a HIL model.

In the first step the user defines the interfaces of the
HIL model, i.e. the model inputs, outputs and param-
eters. The SimulationX Modelica compiler translates
the model to explicit ODE form. The translated model
is then written as C code to file.

The SimulationX Code Export Wizard guides the user
step by step through the workflow. The model inde-
pendent code parts (i.e. the solver code and the target

Figure 1: Workflow of HIL model generation

specific code) are generated for selected real-time tar-
gets. For other HIL environments based on Simulink R©

and the MATLAB R© Real-Time Workshop R© these
code parts are generated afterwards during the Real-
Time Workshop code generation.

4 SimulationX Guidance

During the HIL model generation the simulation tool
can influence the compliance with the real-time re-
quirements. If such supporting measures are not suffi-
cient model reduction techniques need to be taken into
account. As before SimulationX supports the user in
model reduction, too.

4.1 Symbolic Preprocessing

Using a modeling description language like Mod-
elica requires symbolic preprocessing of the algo-
rithms/equations of the entire dynamic system result-
ing in a simplified system of equations prepared for
numerical integration.

The SimulationX Modelica compiler can either create
the DAE or explicit ODE form of the system of equa-
tions. The translated model can be calculated within
the simulation tool or be exported as C code (explicit
ODE form only).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 387



At the time of the symbolic preprocessing all model
equations are known and can be optimized (even for
offline simulation). The general optimization tech-
niques involve

• Simplification of complex expressions,

• Constants are only assigned once,

• Elimination of dead branches of conditional alter-
natives,

• One-time calculation of repeatedly used expres-
sions,

• Expansion of vectors and matrices,

• Loop unrolling.

For real-time simulation the optimization can even be
continued. Since the user defines the necessary inputs,
outputs and parameters of the model all other model
parts that do not contribute to the calculation of the
outputs can be cancelled. E.g. for the mechanical
spring-damper in Fig. 2 the change of potential energy
and the power loss are dispensable results as displayed
in Fig. 3.

Figure 2: SimulationX Spring-Damper library element

Figure 3: Required and dispensable results of the me-
chanical spring-damper

If the physical model contains implicit relationships
(algebraic loops) the symbolic preprocessing tries to
solve them when translating the model to explicit ODE
form. Non-solvable relationships are transformed to
local blocks of equations that additionally need to be
solved along with the calculation of the RHS (right
hand side) of the explicit ODE. Linear and non-linear
systems are detected and separately solved. The non-
linear implicit systems are solved by iterative meth-
ods that actually are inconsistent with the real-time re-
quirements. However, a fast calculation is guaranteed

• by a small dimension (2 . . .10) of the non-linear
implicit blocks,

• as a symbolic Jacobian matrix is provided that re-
sults in superlinear convergence,

• as well-chosen start values for the iteration are
given. (Assuming a low rate of change of the
unknown variables the results from the previous
time step can be used as start values for the cur-
rent iteration.)

If performance problems are still an issue the user is
informed of the blocks of implicit equations and the
unknown variables. This information finally allows
specific model changes.

Additional steps (such as index reduction and mini-
mum dynamic state selection) might be necessary for
higher index DAE systems.

4.2 Solver

In complex systems the execution time of the model
mainly depends on the calculation of the model. By
the introduction of a modified stability region it was
shown that the well-established Euler Forward solver
is the most efficient solver for complex models and
most suitable for HIL applications [4]. Additionally
the Euler Forward solver has the lowest numerical er-
ror on discontinuities.

Complex numerical solvers require multiple calcula-
tions of the model per time step. The stability region
increases with multiple calculations of the model, i.e.
the model step size can be increased as well. However,
the increased model step size does not compensate the
increased calculation time due multiple calculations of
the model. A stabilized fixed step size solver was de-
veloped that performs better for special model classes.
The distinction between the model sample rate and the
integration step size allows oversampling leading to
excellent results as proven by experience from numer-
ous applications.

4.3 C Code Generation

The result of the code generation is target independent
C code with defined interfaces [5].

If there are loops within auxiliary functions (e.g. char-
acteristic curves with non-equidistant nodes, delay
buffers with variable dead time) efficient search algo-
rithms are applied. It is also ensured that no dynamic

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 388



memory is allocated or freed during the model run-
time.

Own implementations are provided for suboptimally
implemented functions in the runtime libraries. The
SimulationX Code Export Wizard can interface the
following HIL environments

• Targets based on Simulink and the Real-Time
Workshop are addressed by Simulink C coded S-
Functions [6].

• DS1006 Processor Board [7] from dSPACE,

• SCALE-RT [8] from CosateQ,

• NI VeriStand [9] from National Instruments.

The architecture of the target specific code is different
for each of the targets. In case of the dSPACE target
the complete application code consisting of the model
code, the solver code and the simulation engine code
needs to be generated. The I/O function calls for se-
lected dSPACE I/O boards are realized by external C
function calls used within custom library elements as
demonstrated in Fig. 4.

Figure 4: Custom CAN library elements for the
DS1006 Processor Board target

SCALE-RT provides a simulation framework that is
addressed by the SimulationX model. Using distinct
custom I/O library elements the handling of the I/O
function calls is similar to the dSPACE target.

The NI VeriStand target provides an extended model
simulation framework. Aside from the model code
only the solver code with a matching interface has to
be generated. No custom I/O library elements need to
be modeled as all I/O hardware access is handled out-
side the physical model. The NI VeriStand System Ex-
plorer accomplishes the mapping between the physical
I/O channels and the model inputs and outputs after the
code compilation.

5 Model Reduction

Whereas automatic model reduction techniques are
neither available nor known a formal model reduc-
tion approach is described in [10]. The reduction steps

closely depend on the user know-how. The following
features and analysis methods of SimulationX support
the user by the demanding model reduction task.

5.1 Switchable Complexity

Most complex library elements feature switchable
complexity. E.g. the gear drive in Fig. 5 has to be
elastically modeled for Noise - Vibration - Harshness
(NVH) analyses.

Figure 5: SimulationX Gear library element

Fig. 6 shows the complex parameterization of the stiff-
ness and the damping of the toothing.

Figure 6: Elastic gear modeling with non-linear stiff-
ness, damping and backlash

On the other hand the gear toothing is considered as
rigid for HIL applications. Due to its complexity and
high dynamics the vibration behavior is no longer part
of the real-time simulation. If the gear parameter rigid
is selected the gear works as ideal rigid transmission
with reduced dynamics, dimension and complexity as
displayed in Fig. 7.

All deactivated parameters are disabled and there val-
ues are saved.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 389



Figure 7: Rigid gear modeling without backlash

5.2 Model Analysis

Certain components need to be alternatively modeled
in order to reduce the eigenvalue spectrum. E.g. me-
chanical elastic components need to be regarded as
rigid components or hydraulic throttles must be ne-
glected. It always is a non-trivial task to identify those
model components.

A simple automotive drive train (Fig. 8) is used as il-
lustrating example.

5.2.1 Analysis of Natural Frequencies and Mode
Shapes

The analysis of the natural frequencies and mode
shapes calculates the eigenvalues and eigenvectors at
the current working point. The eigenvectors provide
information on the influence of the state variables on
the respective mode shape. Fig. 9 displays the eigen-
vectors corresponding to the highest three natural fre-
quencies of a drive train. Thus the critical state vari-
ables can easily be identified.

Figure 9: Eigenvectors of a drive train

5.2.2 Distribution of Energy

Especially for mechanical systems the energy analysis
as shown in Fig. 10 graphically displays the compo-
nent effects on the respective mode shape.

Figure 10: Energy distribution for a selected mode

Thus the components with the highest influence on the
critical eigenvalues can be identified.

Figure 8: SimulationX model of a simple drive train

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 390



5.2.3 Performance Analysis

Both the analysis of the natural frequencies and the
energy analysis operate at the current working point
of the linearized system. Often a conclusion over the
complete simulation period is required. The Perfor-
mance analysis of Fig. 11 records an error criterion
for each state variable during the offline simulation by
summing up all local error estimates. Therefore it can
be applied to identify critical model parts, e.g. stiff
components or strong non-linearities.

Figure 11: Performance Analyzer

6 Modelica 3.1 Language Extensions

The new Modelica language 3.1 specification [11] in-
troduces language extensions that ease the mapping of
models to execution environments. These language
extensions are useful for the generation of HIL mod-
els, too.

The SimulationX Code Export Wizard is used to create
a HIL model for a chosen HIL environment. As shown
in section 3 the HIL target is selected here and inputs,
outputs and parameters are defined (Fig. 12).

The Code Export Wizard also manages the subsequent
steps (code generation, compilation and upload to the
real-time target). This proceeding is very convenient
if the complete model is mapped to one HIL platform.
If the real-time model consists of several parts, or a
model has to be split to run on several processor cores
this approach becomes a little bit cumbersome. The
user has to break up such models, copy each part to
separate submodels and generate C code for each of
them.

Figure 12: SimulationX Code Export Wizard with in-
puts page, model tree view and some inputs selected

Using the new Modelica 3.1 language extensions

• decouple() operator,

• mapping annotation,

• the task/subtask definition

a model can be separated in place and exported at once.

These new Modelica features look very promising for
HIL targets that support the option to run models in
several parallel tasks.

7 Conclusions

A simulation tool can already provide fundamental
real-time support by

• Symbolic preprocessing,

• Efficient model code generation,

• Appropriate solvers.

For complex physical models a reduction is mostly ad-
ditionally required and supported by SimulationX by

• Switchable model complexity,

• Analysis of natural frequencies and mode shapes,

• Distribution of energy,

• Performance analysis for state variables.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 391



The consideration of the potential real-time capabil-
ity of physical models already during the modeling
stage results in better performance since similar mod-
els for offline and real-time simulation can shorten the
model reduction steps. An appropriate model structur-
ing (e.g. replaceable types) can also ease the model
reduction and lead to higher process reliability.

ITI systematically deals with the real-time challenge.
E.g. the TEMO project [12] is a joint research project
by TLK Thermo GmbH, Braunschweig University of
Technology, Visteon Deutschland GmbH, Daimler AG
and ITI GmbH for preparation of real-time capable
model components in heat conduction and thermal-
fluid applications.

References

[1] Kurz, S., Wittler, G.: Hardware-in-the-Loop-
Simulation: Eine Technologie im Wandel der
Zeit. In: Proceedings of the 7th Haus-der-
Technik-Tagung “HIL Simulation”, München,
Germany, 27-28 February 2007.

[2] Blochwitz, T., Uhlig, A.: Modellgenerierung für
HIL-Simulationen auf der Basis physikalischer
Ansätze. In: Proceedings of the 8th Haus-der-
Technik-Tagung “HIL Simulation”, Kassel, Ger-
many, 16-17 September 2008.

[3] SimulationX: http://www.simulationx.com

[4] Richter, S.: Untersuchung zur Echtzeitsimula-
tion von Modellen aus ITI SimulationX. Dres-
den, Germany: Master thesis, Dresden Univer-

sity of Technology, Faculty of Electrical Engi-
neering and Information Technology, Institute of
Automation, 2006.

[5] Blochwitz, T., Kurzbach, G., Neidhold, T.: An
External Model Interface for Modelica. In: Pro-
ceedings of the 6th Modelica Conference 2008,
Bielefeld, Germany, Modelica Association, 3-4
March 2008.

[6] Simulink: Writing S-Functions. The Math-
Works, Inc., Natick, USA, March 2009.

[7] dSPACE DS1006 Processor Board:
http://www.dspace.de

[8] SCALE-RT: http://www.scale-rt.com

[9] NI VeriStand: http://www.ni.com/veristand

[10] Rodionow, P., Grützner, S., Schreiber, U.: Erstel-
lung, Reduktion und Validierung von Simulati-
onsmodellen am Beispiel eines kompletten Kfz-
Antriebsstranges. In: Proceedings of the 1st Sim-
PEP Kongress, Veitshöchheim, Germany, 14-15
June 2007.

[11] Modelica Association: Modelica, A Unified
Object-Oriented Language for Physical Systems
Modeling. Language Specification, Version 3.1,
27 May 2009.

[12] TEMO – Thermische Echtzeit-
fähige Modelle: http://www.pt-it.pt-
dlr.de/_media/Infoblatt_TEMO.pdf

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 392


