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Abstract

An approximate model to compute resulting wrench
of the dry friction tangent forces in frame of the Hertz
contact problem is built up. An approach under con-
sideration develops in a natural way the contact model
constructed earlier. Generally an analytic computa-
tion of the integrals in the Contensou—Erismann model
leads to the cumbersome calculation, decades of terms,
including rational functions depending in turn on com-
plete elliptic integrals. To implement the elastic bodies
contact interaction computer model fast enough one
builds up an approximate model in the way initially
proposed by Contensou.

To verify the model built results obtained by several
authors were applied. First the Tippe-Top dynamic
model is used as an example under testing. It turned
out the top revolution process is identical to one simu-
lated with use of the set-valued functions approach.

In addition, the ball bearing dynamic model was also
used to verify different approaches to the tangent
forces computational implementation in details. A
model objects corresponding to contacts between balls
and raceways were replaced by ones of a new class de-
veloped here. Then the friction model of the approxi-
mate Contensou type embedded into the whole bearing
dynamic model was thoroughly tested.

Keywords: Hertz contact model; Contensou simplified
model; Contensou—Erismann model; Vil’ke model;
Tippe-Top, ball bearing model

1 Introduction

To make a contact model for the multibody dynamics
more accurate and simultaneosly more efficient using
the Hertz contact problem as a frame one has to de-
velop an approach taking into account nature of the
tangent forces acting along a contact spot area. The
simplest case one could encounter in this way is one
of the dry friction forces distributed over the elliptic
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area arising in the Hertz model. It is known as the
Contensou—Erismann friction model [1, 2].

The model assumes the resulting wrench of the dry
friction tangent forces. The wrench consists of the to-
tal friction force and the drilling friction torque. An
approach under consideration continues in a natural
way the contact model development started earlier [3].
The normal contact force distribution is determined by
the Hertz model while the tangent forces on an ele-
mental level satisfy the Amontons—Coulomb law for
dry friction.

The dry friction force and torque are integrated over
the contact elliptic spot thus composing the resulting
wrench. Generally an analytic computation of the in-
tegrals mentioned leads to the cumbersome calcula-
tion including decades of terms depending on rational
functions depending in turn on complete elliptic inte-
grals.

To keep an accuracy and to make the model fast
enough an approach proposed initially by Contensou
[1] is built up. The model under construction is one
derived from the Contensou simplified model in the
following directions: (a) the model is anisotropic: total
friction forces along the contact ellipse axes are differ-
ent; (b) for the translatory and almost translatory rela-
tive motions one uses the Amontons—Coulomb friction
law regularization [4]; (c) the approximate model for
the drilling torque also is under construction.

2 Problem Formulation

The Hertz problem solution [5] to a normal pressure
distributed over the contact area of elliptic shape is de-
fined [6] by the formula

3N x? _ e

G('x?y) = 21'Cab ﬁ?

a2

where N is the total force of normal pressure, @ and b
are the contact spot ellipse semi-major and semi-minor
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axes respectively, see Figure 1, Pxyz is the contact lo-
cal coordinate frame oriented such that the x-axis is
directed along the ellipse semi-major axis. All three
values: N, a, and b supposed already computed by the
Hertz algorithm [3].

y

Yagp

Figure 1: The contact spot area

The body A supposed “below/behind” the picture of
Figure 1 plane while the body B supposed “above/in
front of” it. In addition, all the forces under computa-
tion here supposed to act to the body B from the body
A. Consider a method to compute a wrench consist-
ing of the tangent force F = F;i+ F)j and the resulting
torque T = T3k arising due to couple of dry friction
forces distributed over the contact area. This latter one
usually called a drilling friction torque.

According to the dry friction definition the tangent
stress T(x,y) at the contact spot any point M(x,y) is
computed by the formula

VM (x Y )
var(x,p)l’
where f is the dry friction coefficient, v(x,y) is the
relative slip velocity of the body B with respect to
(w. r. t.) body 4 at the geometric point M. The right
hand side of Eqn. (1) isn’t regular. Because of that the
set-valued functions calculus is applied frequently to
the problems including dry friction [7]. Let us try to
build up a computational procedures for the dry fric-
tion problems staying in frame of classical calculus
and using the known results [8, 9] on asymptotic close-
ness for an exact and an approximate problems.
Assuming the bodies 4 and B to be rigid from the kine-
matic viewpoint the body B relative motion, along the
contact spot plane, is an instant planar (the relative ve-
locity normal component supposed to participate only
in the normal force computation), and subsequently

T(xay) - —fG(x,y) (1)
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where v,//p(x,y) = [0,1(x,y)], and r(x,y) = xi+yj is
the current point M(x,y) radius vector within the con-
tact spot, see Figure 1. The ellipse central point rela-
tive slip velocity vp is represented as follows

o

B
0

Vp=v =vw, o=cosy, B=siny,

where v is a relative slip velocity value at the point P,
and v is the angle between the axis Px and vector vp.
According to the Contensou—Erismann model [1, 2] to
compute the dry friction total force and torque vectors
one has to evaluate integrals over the contact elliptic
area in the following way

F= / / T(x,y)dxdy, T = / / [r(x,y), T(x, )] dxdy.
3)
For the further use it is suitable to introduce the dimen-
sionless velocity # = v/awm, of relative slipping at the
point P instead of a dimensioned one.

3 Theoretical Background

It turned out the friction total force and drilling friction
torque components are regular functions of the relative
sliding (dimensionless) velocity u, relative angular ve-
locity supposed fixed parameter here, at a center of the
ellipse such that for the exact force F and torque T we
have

Fu)=F;+0(u?), Tu)=Tyu'+0 (u?)
4)
as u — oo, and
F(u) =Flu+0(u?), Tu)=T)+0*) (5)
as u — 0. Here Fy, T7, F, T} are constant vectors
defining the approximate model. The vectors F?, Tg
depend on complete elliptic integrals of the first and
the second kind depending in turn on the contact el-
lipse eccentricity in the following way

—odu, F,=—PBBu, Tj).=—-C

with the constants

field of velocities over the spot is defined by the known 4 = 3 K(e) —E(e)
2 e? ’
Euler formula 3 E(e)— K(¢)
Vpx — 0y B = 5 K(e) + 22 s
vu(x,y) =ve+vyp(x,y) = | veytox |, (2) 3
0 C = 3 (e)v
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where K(e), E(e) are complete elliptic integrals of the
first and second kind respectively. Remark that really
the values 4, B, C are a variable functions of time be-
cause the contact ellipse eccentricity e can vary while
the simulation process.
Note here the dry friction total wrench simplified
model doesn’t require any noticeable computational
resources because complete elliptic integrals men-
tioned are already calculated while computing the total
normal force according to the Hertz model.
As Contensou [1] remarked the main effect in the
Contensou—Erismann dry friction model if the con-
tact area is non-zero besides the drilling friction torque
arises is that the total friction force decreases mono-
tonically to zero as a function of u.
On the other hand one can easily note from (5) that a
steepness of the total friction force change, as a func-
tion of v, grows as am, — 0. In this case either con-
tact spot area decreases to zero or the drilling angu-
lar velocity vanishes. Finally, for the value aw, small
enough and 4,B > aw,/d, where § is a regulariza-
tion parameter for the case of dry friction, we have
the almost point contact case already implemented ear-
lier [4] as a dry friction model regularization. Thus in
the current simplified Contensou model resulting com-
puter model always uses the “regular” case of the fric-
tion force decreasing, though sometimes steep, to zero.
Taking into account that according to (4) for u large
enough the simplified friction force differs from its
Coulomb’s value by the magnitude of the second order
of smallness and following the Contensou proposal [1]
let us simplify our model such that the friction force
supposed to be of the Amontons—Coulomb type for
u € [u},,°0) and linear one for u € [0,u} ). Note,
the friction force has an anisotropy here: constants u}
and u;, along axes Px and Py respectively are in gen-
eral different. Evidently, we can find these values from
equations

Aul =1,

X

Bu)’j: 1.

Now we can represent the Contensou approximate
model for the (dimensionless) functions Fy(u), F;,(u),
T.(u) as follows

B Au for ue[0,uf),
Xelu) = - { 1 for ueuf,e),
_ Bu for ue [O,u;) ,
Ye(u) = _B{ 1 for ue [u;,w) ,
| —=C for ue [O,Mj) ,
Te(u) = { Tou™' for ue |uf,e),

where u} is a sewing point for the horizontal “shelf” of
height C and a branch of the hyperbola decreasing at
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Figure 2: x-components of the force vector for ex-
act and approximate models (similar picture for y-
components)

infinity and being defined by the function 7;°(u). An
equation specifying the value #} has the form
I

e
u;

C=

Comparison of graphs for the Contensou—Erismann
model functions is represented in Figures 2 and 3.
Functions of the exact model correspond to solid lines,
and ones of the approximate model correspond to the
dotted lines.

Figure 3: The drilling friction torque for exact and ap-
proximate models

If while the simulation process all the values uy, uy,
u; found become less than §/aw, then we arrive at
the regularized Coulomb model implemented earlier.
Thus the approximate Contensou model implemented
here really is a simplest generalization of the regu-
larized Coulomb one mentioned regularizing it even
more by introducing the parameters uy, u};, u; enhanc-
ing initial use of the parameter 8. Such an improve-
ment simply is a consequence of the contact spot ex-

istence in the exact model. Thus as a result, with the
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exception of the cases of a = 0 and ®, = 0, we can
avoid use the set-valued functions being able to apply
the procedures of classical calculus.

The approximate model under construction here has
several differences from a piece-wise linear approxi-
mation built up in the paper [1]:

(a) the model is anisotropic and is suitable for the
elliptic contact area of any eccentricity;

(b) for the cases of instant translatory and almost in-
stant translatory bodies in the contact relative mo-
tion with the conditions

utam, < 9, uyam; < O, ulam,<d

fulfilled simultaneously we apply the dry friction
regularization proposed in [8] and [11];

(c) the approximate model used also for the drilling
friction torque.

Computations show the force/torque expressions rep-
resented here give an approximation of the Contensou-
—Erismann model more accurate in compare with the
linear-fractional approximation satisfying boundary
conditions at zero and infinity. If we use the Pade ap-
proximations with the polynomials of the second and
third degrees [12] then the resulting accuracy is im-
proved but computations become more significant.

It is known [13] the V. G. Vil’ke formula gives an ap-
proximation for the contact interaction normal elastic
force decent enough in a wide range of eccentricities.
Computer implementation of such a model runs no-
ticeably faster than the implementation of the exact
Hertz model. The main reason for that is a necessity in
the latter case to resolve the transcendental equation

1 K(¢)
2K'(c)

—(1—c)=g (0<c<1,0<g<1) (6)

w. I. t. ¢ = ¢*> which is the contact spot eccentricity
squared. Here we use the elliptic integral modulus
squared c as an argument of complete elliptic integral
of the first kind, as it has been done in [14].

The V. G. Vil’ke algorithm to compute the normal con-
tact force doesn’t require to know the current value
of ¢ but the Contensou—Erismann anisotropic friction
model does. To keep the gain has been gotten while the
normal force calculation and don’t waste the computer
time to resolve the equation (6) this time to compute
the tangent friction force it turned out to be possible
that the solution mentioned can be reduced to the ex-
plicit linear formula once applied.
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After the value ¢ = ¢, needed has been computed then
to find the values 4, B, C mentioned above we should
calculate complete elliptic integrals of the first and sec-
ond kind using theta-functions [ 14]. First of all for any
¢« €]0,1) one can use the expansion

with fast conversion such that complete elliptic inte-
gral of the first kind can be computed by the formula

where nome ¢ is calculated with a very high accuracy
using equations [14, 15]

! 1—(1—c¢)'/*
2 I (1—c)¥

g=e+2¢& +15¢° +150e"® +1707¢'7 + ...,

and the terms enumerated above are sufficient for the
accuracy level of order not less than one for the value
1/221,

It is convenient for complete elliptic integral of the
second kind to use the formula [16]

2—c |1 > g
= KOt | =2y T
(c) K(c) [12 n:1(1—q2”)2

If the value of ¢ is small then to regularize the expres-

sion
dE

T de
one can use hypergeometric expansions converging
well enough in this case [17].

E(c) —K(c)

4 Implementation Specifics

According to experience while developing the models
for elastic contacting of rigid bodies interactions in the
multibody dynamics a flexibility provided by Model-
ica can be used to utilize a wide variety of different
properties concerning a contact of solids. The proper-
ties are mainly of the following categories:

(a) geometric properties for surfaces in vicinity of
the contact spot (gradients of the functions defin-
ing surfaces, their Hesse matrices);

(b) a model to compute the contact area dimensions
and normal elastic force;
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Figure 4: The model of mechanical contact by stages of inheritance.

(c) model for the normal viscous force of resistance;

(d) model for the tangent forces along the plane of
the contact area.

A submodel of the geometry properties is to describe
analytically algebraic surfaces of the structure com-
plex enough. To implement the normal force computa-
tion one can choose from at least two approaches: the
Hertz model and its volumetric modification. Force
of viscous resistance also can be modeled in several
different ways: linear, non-linear, etc. In the mod-
els for tangent forces one can adopt either “simplest”
approaches based on the Amontons—Coulomb friction
or more complex ones represented by the Contensou—

Erismann, and other models.

While developing a mechanical contact model archi-
tecture we used the base class Constraint described
earlier [18] as a starting point to construct its inher-
itor ContactConstraintTemplate being simulta-
neously a base class of new family of models to sim-
ulate mechanical contacts. Really this class is a base
template represented as a container having four “sock-
ets” to instantiate there the specific parameter classes
of four types enumerated above, see its visual model
in Figure 4 at a top left corner, and its Modelica code
can be outlined as follows

partial model ContactConstraintTemplate
extends Constraint;

© The Modelica Association, 2009

replaceable
NormalElasticForce
normalElasticForce;
replaceable
NormalViscousForce
normalViscousForce;
replaceable
TangentForce
tangentForce;
replaceable
SurfacesOfConstraintDifferential
geometry;

end ContactConstraintTemplate;

To develop complete model one can move along differ-
ent ways. Class parametrization implemented in Mod-
elica is the facility in line to apply to the problem under
description. In our case we have four class parameters
corresponding to the submodel categories enumerated
above. An example to construct specific contact inter-
action model see in Figure 4. The example includes
two stages of inheritance:

1. to derive a template with the forces models,
namely: the Hertz model for normal force, non-
linear viscous force, the Contensou—Erismann
model for the dry friction forces (to “fill in” three
sockets in the middle of the base template visual
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model, see the derived template visual model at a
central position of the Figure 4);

2. to complete the whole construct one should de-
fine a specific geometry submodel for the sur-
faces in contact (to “seal” the socket for geom-
etry properties, see the complete visual model at
a bottom right corner of the Figure 4).

The Modelica code for the intermediate derived tem-
plate can be represented in the following way

partial model
ContactConstraintTemplate. ..
extends ContactConstraintTemplate (
redeclare
NormalElacticForceHertzDiff
normalElasticForce,
redeclare
NormalViscousForceNonLinear
normalViscousForce,
redeclare
TangentForceContensou
tangentForce) ;

end
ContactConstraintTemplate...;

On all the stages of inheritance the templates con-
sidered have an internal information interconnections
between the submodels to be instantiated. These in-
terconnections are implemented via the set of equa-
tions hidden behind the visual models and can vary
for different models requiring different variables for
the algorithms to compute normal and tangent forces
of the complete model. So the whole picture remind
us known construct of a card with the sockets and the
interconnection wiring in its internal layers as a base
template, and a chips to be instantiated in the sockets
as a models of four types from above. With one exclu-
sion: we have the derived template playing a role of
additional card with its own additional wiring servic-
ing already instantiated models “covering the card” of
the base template.

One can remark finally an approach under presentation
allows us to create and to change fast enough different
types of an elastic contact models while developing the
multibody dynamics systems simulators.

S5 Numeric Experiments

The tangent forces model under presentation here has
been verified by two stages: (a) for the case of cir-
cular contact; (b) for the case of elliptic non-circular
contact. The known Tippe-Top dynamical model was
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Figure 5: The Tippe-Top geometric properties
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Figure 6: The top axis of symmetry evolution

investigated as an example of the first case. All the
parameters and initial conditions are exactly the same
as in the paper [19] whose authors got these data in
turn from the work [20]. The only difference is that in
our case we considered an unrestricted problem with
the contact ellipse, including depth of penetration and
normal force, being computed dynamically.

The top body, supposed geometrically rigid, com-
posed by two balls, Figure 5, one of larger radius
R =1.5-10"2m, and another, smaller, one of the radius
r=0.5-10"2m. The top mass center location sup-
posed “under” the larger ball geometric center on its
axis of symmetry at a distance of @9 = 3-10~>m and at
the distance of a; = 16- 10~>m to the smaller ball cen-
ter. The top mass is equal to m = 6-103kg. The top
body supposed dynamically symmetric, and the cen-
tral principal moments of inertia are the following: an
equatorial moment equals to 8 - 10~ kg - m?, and a po-
lar one has the value of 7- 10~ ’kg - m?. A material the
top and the horizontal floor the top rolls on are made

293



Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

0024

S .0E-5

23
S.0E-5

0.0E0

-5.0E-54

-1.0E-7 4

_ 0.0E0
o022 —ﬁ\\/\’\/\q A -5.0E-5
ll'pll Jf'[ A0E-7
0.020 i | -1 5E-7 |
¥ 1 20E-7
0.015 4 i p] 2567 |
' ﬂ| 30E-7
00164 ! | J -3.5E-7 T
|I| l| f oo
0014 llurll
J
0z ! 1
c UI, 1.2E-4
\r .
-, | 1.0E-4
J
{ |i| 8.0E-5 ]
0.005 4 hrl "

4.0E-5

0,006 | | 20E-5 -]

-1.8E-7
§

20T v | i

-2.5E-7 4

T T T
1825

0004 4 | 2oes1—

0.002 -

0.000

T T T T
1825 1.850

—_

AW

1
_—— —  —
T

1
\\f\’\/vv\

18

oo 04 ng 12

20 24

28 32 36 40

Figure 7: The contact indicators evolution. Some fragments zoomed in and rescaled.

of the wood with Young’s modulus £ =9.1-10°N/m?.
If we suppose the Poisson ratios as 0.3 then an effec-
tive Young’s modulus has to be E, = 5- 10°N/m? just
as in [19]. The dry friction coefficient supposed to be
equal to the value /= 0.3.

The top center of mass supposed resting at initial in-
stant of motion. Besides the top itself, more accurately
its larger ball, assumed without any initial penetration
with the horizontal surface. The smaller ball is located
on the upper hemisphere of the larger ball, and ini-
tially the top axis of symmetry bends w. r. t. verti-
cal by the angle 69 = 0.1rad. Initial angular velocity
o = 180s~! is the same as in [19] and directed along
axis of the top symmetry.

Note that in [19] contact problem is interpreted as
usual in so to speak “restricted” sense: the contact
area supposed constant and predefined corresponding
to the normal force of the static equilibrium. This as-
sumption concerns the contacts for both the balls with
the same contact area radius. Actually, while motion
the normal reaction force, being implemented here by
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elastic forces, changes. Then the contact spot changes
also, and so for its radius. Thus the top really under-
goes the vertical microvibrations. And, as one can see
from the above simplified model, the drilling friction
torque also changes causing in general a consequences
for the top motion.

In the model under development here we consider an
unrestricted contact problem that is the normal force is
computed from the Hertz (or V. G. Vil’ke) model with
addition of some nonlinear viscous term. Simultane-
ously the contact area is computed too. Then all the
data have been gotten are used to calculate the tangent
force and the drilling friction torque in frames of the
simplified Contensou model.

Remarkably, a computational experiment showed the
top revolution from “feet”, the larger ball in contact, to
“head”, the smaller ball in contact, scenario obtained
in [19] using another approach to the problem, based
on the set-valued functions calculus, repeated in our
model with a high degree of accuracy. One can get
an access to the paper [19] visiting, for instance, the
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one of the authors Home Page, see [21]. Graph in
Figure 6 illustrates well the Tippe-Top revolution pro-
cess: similar to [19] it shows the 6(¢) angle evolution.
If we compare this plot with one from [19] then soon
the complete identity can be observed. The only dif-
ference is that in Figure 6 one can find additional vi-
brations of small amplitude evidently existing due to
elastic compliance in direction normal to the contact
area. Similar identity show the curves of the contact
indicators for the balls the top composed of and the
horizontal surface, see Figure 7. The indicator for the
pair (larger ball, floor) marked by the solid line while
the (smaller ball, floor) contact indicator pictured as a
dashed curve.

Really an indicators are the distances between an op-
posite points for the surfaces being tracked for contact.
The indicator is strictly positive if contact is absent.
Otherwise it is less than (if the bodies are in a state
of mutual penetration) or equal to (if the bodies touch
one another exactly at one point) zero. Let us describe
the Figure 7 in more details. Initially the top smaller
ball is out of contact, and corresponding indicator is
positive, dashed curve. But other indicator is not equal
to zero. Instead it is negative, see the vertically scaled
subfigure at the upper edge of Figure 7. Here at the
very left side we see that initially indicator set to be of
the zero value. Then the penetration develops and the
whole top sinks into the floor by very small depth un-
til the vertical quasi-equilibrium is reached. After that
we can observe the vertical micro-oscillations develop
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into the modulated pulse decreasing afterwards. One
can match the problem parameters such that the pulse
amplitude will grow and the top can start to bounce
over the floor thus distorting all the following dynami-
cal predictions of its revolution. In the upper subfigure
we can observe also the change of the balls at contact,
before the instant of time = 2 seconds. Then for the
case of the smaller ball contacting the floor we observe
the larger depth of penetration. Indeed, in this case we
have a smaller area of the contact spot.

The bottom subfigure reflects the revolution process
inself. Here the whole graph zoomed in vicinity of the
time instant of 1.825 seconds, and we see that the rev-
olution process is implemented by two attempts: two
times the solid humps alternate the dashed ones. Thus
first time the Tippe-Top “head” touches the floor then
it once more is forced to loose a contact temporarily,
and only then the head—floor contact becomes perma-
nent. The right subfigure illustrates the depth of pen-
etration for the larger and smaller balls by the vertical
rescaling over the same interval as for the bottom sub-
figure.

In addition, yet another verification procedure has
been performed, this time using the results of the pa-
per [10] (one can access the paper [10] using the Sci-
enceDirect on-line library [22]). Namely, exact for-
mulae for the friction force and for the drilling fric-
tion torque, case (a), were applied to the top dynamics
computer model implemented on Modelica language
in frame of the unrestricted, in sense mentioned above,
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Figure 9: The Tippe-Top 3D-animation

contact model. In the same dynamical frame the sim-
plified Contensou model, case (b), as well as a linear-
fractional Pade approximation for the friction force
and torque, case (c), were also implemented. The re-
sults of the inclination angle evolution are shown in
Figure 8, where the cases (a), (b), and (c¢) correspond
to the solid, dashed, and dotted curves respectively.
One can see easily the revolution scenarios are mu-
tually closest in cases (a) and (b). The 3D-animation
shot is shown in Figure 9.

Note in addition, one can easily obtain a behavior typi-
cal to the Tippe-Top, revolution to “head”, in frame of
the “regularized” Amontons—Coulomb friction. One
has to understand regularization in a sense proposed
in the works [8, 11] and used in [4] in case of the
point contact. We only have to “bend” graph for the
friction force dependence on the relative slip velocity
in vicinity of zero replacing its discontinuity by the
linear function. The more flat slope of the graph the
sooner one can find out the Tippe-Top revolution ef-
fect. As the simplified Contensou model shows that
just this slope appears in the corresponding graph for
the friction force dependence on the velocity, this time
in frame of the exact Contensou—Erismann model.

The dynamical model of the ball bearing was consid-
ered in a way similar to the paper [3] while the verifica-
tion second stage. This time the contact area is essen-
tially elliptic one. The main goal for the numeric sim-
ulations was to compare two approaches: (a) the stan-
dard Hertz model for the normal force plus the Con-
tensou simplified model for the friction forces; (b) the
simplified model of V. G. Vil’ke for the normal elastic
force plus the Contensou simplified model for the fric-
tion forces. As it was observed in [3] for the case of
the regularized Coulomb friction force here dynamical
models of the cases (a) and (b) differ one from another
in a slightest degree too. Simultaneously, the model
(b) is faster than (a) by 20% meaning the CPU time
needed. To illustrate this in Figure 10 we compare the
cases (a) and (b) for one component of the tangent fric-
tion force at a contact between one of the bearing ball
and its inner raceway. The solid curve corresponds to
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the case (a) while the dashed one represents the case
(b). A values of the contact spot eccentricity squared
appeared to be constant equal to 0.687 in the case (a)
and 0.643 in the case (b).
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Figure 10: One of the friction force component evolu-
tion. A final stage of the simulation zoomed in.

6 Conclusions

Summarizing the results described above we can re-
mark the following.

e The Tippe-Top “on head” revolution effect is
caused completely by the dry friction force “reg-
ularization” in vicinity of zero value for the ve-
locity of relative slip. Such a regularization takes
place exactly in the Contensou—Erismann model.
Numeric experiments showed if the slope of fric-
tion force graph in vicinity of the zero velocity in
the regularized Coulomb model is steep enough
then the Tippe-Top effect either isn’t observed at
all or arising during short time after a long evolu-
tion then vanishes quickly. And only noticeable
decreasing of the slope mentioned immediately
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causes the top revolution on the “head” with the
subsequent long precession in this position.

The Contensou—Erismann model creates a prop-
erty just as one described above. Note the drilling
friction torque role is reduced to a dissipative ef-
fect with subsequent gradual “fall” of the top ap-
proaching it to the static stable configuration.

e Since complete elliptic integrals used in the Con-
tensou simplified model are already found in
frame of the Hertz algorithm while computing the
normal force then from the computational view-
point application of this model is practically “cost
free”. If, in addition, we will take into account
an effect of the regularization provided by the
Contensou—Erismann model then we arrive at a
unexpected from the first sight result: a numeric
simulation of the Hertz model for the normal
force and the Contensou—Erismann for the tan-
gent force and the drilling friction torque turned
out to be faster than the combination of the Hertz
model and the “simple” Amontons—Coulomb dry
friction. It is evident such a deceleration in lat-
ter case surely concerns the large stiffness of the
problem while the almost rolling mode.

e Though for isotropic case, one of the circu-
lar contact area, the tangent forces average val-
ues for the Amontons—Coulomb and Contensou—
Erismann models differ not so much, however in
anisotropic case the first model becomes inad-
equate while the second one continues to serve
correctly the contacting process simulation. Such
a property has an importance for instance in case
of the ball bearing simulation with the contact ar-
eas of essentially elliptic form.

Regarding the directions of a future work one can
enumerate possible development and testing for dif-
ferent kinds of the contact properties combinations:
normal-elastic-force / normal-viscous-force / tangent-
force+drilling-friction-torque to match various engi-
neering applications. It would be for instance different
types of lubrication, or any new types of the normal
elastic volumetric models etc.
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