
An Application of Sol on

Variable-Structure Systems with Higher Index

Dirk Zimmer

Department of Computer Science, ETH Zurich

CH-8092 Zurich, Switzerland

dzimmer@inf.ethz.ch

Abstract

This case study presents the model of an ideal trebuchet.

Following the object-oriented modeling paradigm of

Modelica, the trebuchet is composed out of ideal elements

that belong to a planar mechanical library. The corre-

sponding system of DAEs has index 3. During simulation,

the model undergoes also various structural changes that

manipulate the number of continuous-time state variables.

Furthermore, elastic and inelastic collisions need to be

modeled by force impulses. The model is provided in Sol,

a derivative language of Modelica, specially designed for

research in variables structure systems. Keywords: Vari-

able-Structure Systems; Index Reduction; Multi-Body Dy-

namics.

1 The Trebuchet

The Trebuchet is an old catapult weapon developed

in the Middle Ages. It is known for its long range

and its high precision. Figure 1 depicts a trebuchet

and thereby presents its functionality. Technically, it

is a double pendulum propelling a projectile in a

sling. The rope of the sling is released on a prede-

termined angle γ when the projectile is about to over-

take the lever arm.

Let us state a few assumptions for the model:

• All mechanics are planar. The positional states

of any object are therefore restricted to x, y and

the orientation angle φ.

• All elements are rigid.

• The sling’s rope is ideal and weightless. It exhib-

its an inelastic impulse when being stretched to

maximum length

• The revolute joint of the counterweight is limited

to a certain angle β (in order to prevent too

heavy back-swinging after the projectile’s re-

lease). It also exhibits an inelastic impulse when

reaching its limit.

• Air resistance or friction is neglected.

Whereas these idealizations simplify the parameteri-

zation of the model to a great extent, they pose seri-

ous difficulties for a general simulation environment.

Such models, although being fairly simple, can nei-

ther be modeled nor simulated with Modelica yet. At

least not in a truly object-oriented manner. Hence the

trebuchet represents a suitable example for the

framework of Sol that aims to enable the future han-

dling of variable-structure systems within an object-

oriented modeling paradigm.

 source: wikimedia commons, modified by author

Figure 1: Functionality and specification of a trebuchet

Mass of projectile: 30kg β:200°

Mass at lever arm: 100kg γ: 150°

Counterweight: 10t

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 225 DOI: 10.3384/ecp09430026

2 Object-oriented Composition

Sol has been introduced at the Modelica Conference

2008 [9, 10]. It is a derivative language of Modelica,

specially designed for research purposes in the field

of variable-structure systems. Thus, Sol enables the

creation and removal of equations or even complete

objects anytime during the simulation. To this end,

the modeler describes the system in a constructive

way, where the structural changes are expressed by

conditionalized declarations. These conditional parts

can than get activated and deactivated of during run-

time. The incentive for this project is to gain knowl-

edge in language design and processing techniques

that we think will be essential for Modelica’s future

development.

A simple planar mechanical library has been devel-

oped in Sol. It has been extended by equations for

mechanical impulses in order to make discrete veloc-

ity changes possible. From this library we need the

following components:

- 1x fixation - 3x fixed translation

- 1x revolute joint - 1x limited revolute joint

- 2x bodies with mass - 1x ideal rope with mass

These components are connected as depicted in fig-

ure 2. Although the model diagram follows the ico-

nographic of the MultiBody library [4], it serves il-

lustration purposes only, since the modeling in Sol is

still purely textual.

m=100

rodMass

m=10e3

w eight

a b

r={-10,0}

rod1
a b

r={2,5,0}

rod2

fi
x

e
d

r=
{0

,8
}

a
b

re
v
o

lu
te

a
b

r=
{0

,-3
}

ro
d
3

m=30

tornBody

a b

limitedRev

Figure 2: Model diagram of the trebuchet

The total model contains from 246 to 256 variables,

depending on the current state of the model. The cor-

responding systems of DAE have the perturbation

index 3. They need to be differentiated twice and

there remain linear systems of equation to be solved.

The resulting object-oriented decomposition resem-

bles typical examples from the Modelica domain but

it is significantly more demanding since a structural

change in any component may affect the total sys-

tem.

model LimitedRevolute

 extends Interfaces.TwoFrames;

interface:

 parameter Real phi_start;

 parameter Real w_start;

 parameter Real l;

implementation:

 static Boolean contact;

 static Boolean fixated;

 static Boolean toFixate;

 static Boolean toRelease;

 static Real phi_a;

 static Real phi;

 static Real Wm;

 static Real We;

 if initial then

 fixated << false;

 toFixate << false;

 toRelease << false;

 phi_a << phi_start;

 We << w_start;

 end;

 when toFixate then

 toRelease << false;

 fixated << true;

 else when toRelease then

 toFixate << false;

 fixated << false;

 end;

 if fixated then

 phi = l;

 Wm = 0;

 contact << false;

 when fb.t < 0 then

 toRelease << true;

 phi_a << l;

 end;

 else then

 contact << (phi > l);

 static Real w;

 static Real Wa;

 w = der(x=phi, start << phi_a);

 when contact then

 w = 0;

 Wm = 0.5*Wa;

 We << w;

 toFixate << true;

 else then

 when fa.contactIn or fb.contactIn then

 w = 2*Wm - Wa;

 We << w;

 else then

 static Real z;

 z = der(x=w, start << We);

 Wa << w;

 end;

 fb.M = 0;

 end;

 fb.t = 0;

 end;

 fa.phi + phi = fb.phi;

 fa.t + fb.t = 0;

 fa.Wm + Wm = fb.Wm;

 fa.M + fb.M = 0;

 fa.x = fb.x; fa.y = fb.y;

 fa.fx + fb.fx = 0; fa.fy + fb.fy = 0;

 fa.Vmx = fb.Vmx; fa.Vmy = fb.Vmy;

 fa.Px + fb.Px = 0; fa.Py + fb.Py = 0;

 fa.contactOut << contact or fb.contactIn;

 fb.contactOut << contact or fa.contactIn;

end LimitedRevolute;

Figure 3: The model of a limited revolute joint.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 226

3 Example component

Whereas the top-model can be neatly decomposed

into general applicable components, the modeling of

these components requires a skilled modeler. To at-

tain a better understanding, let us take a look at the

modeling code of one of the components that triggers

a structural change: The limited revolute joint. The

corresponding code is presented in figure 3.

Since Sol is very similar to Modelica the code shall

be roughly understandable without further introduc-

tion. Let us go into the details.

An elbow is one possible representation of a limited

revolute joint. The model has two major modes: free

or fixated. The mode free is equivalent to a normal

revolute joint whereas the model equals a fixed ori-

entation in the fixated mode. Since the transition be-

tween these two states causes a discrete change in

velocity, it involves an inelastic impulse on the rig-

idly connected components. Furthermore impulses

from other components (as for instance the ideal

rope) need to be handled as well in this component.

 The different modes and their transitions are pre-

sented in the graph of figure 4, where the continu-

ous-time modes are depicted as round boxes and the

rectangular boxes denote discrete intermediate

modes. The transitions are represented by arrows and

their labels denote the event that triggers the transi-

tion. Those without a label are triggered immedi-

ately.

angle

exceeds

limit

external

impulse
fixatedfree

inelastic

impulse

torque becomes

negatve

contact signal

triggers

Figure 4: Mode-transition graph of the limited revolute

In the modeling code, the two continuous modes are

expressed by the Boolean variable fixated and are

modeled by an if-statement. We recognize that the

first branch represents the fixated mode and does not

contain any derivatives whereas the second branch

(for the free mode) usually defines two derivatives.

Hence, the free mode defines two potential state-

variables: the position phi and the corresponding

velocity w. A switch between the two modes is there-

fore expected to change the number of total state-

variables.

The number of continuous-time state variables is

also affected by the mechanical impulses. These im-

pulse events are modeled by when-branches that re-

act to a contact signal that may be emitted by other

components. In order to understand how the model

interacts with other components let us take a look at

variables of the connecting interface:

Continuous potential variables:

 x y phi: the positional states:

Continuous flow variables:

 fx fy t: forces and torque

Discrete potential variables:

 Vmx Vmy Wm: mean velocities during impulse.

Discrete flow variables

 Px Py M: force impulses and angular momentum.

Control signals:

 contactIn: ingoing contact signal

 contactOut: outgoing contact signal

This connector design is very similar to the one that

has already been applied in the Modelica MultiBon-

dLib [11]. It owns a separate set of variables for the

continuous and discrete domain. The Boolean con-

trol signals are used to trigger and synchronize the

events.

Any component model will have to relate these inter-

face variables. For the limited revolute, the equations

that relate the variables of the translational domain

are trivial and are placed at the end of the model’s

main section.

Nevertheless, the equations for the impulse event

require further explanation. A force impulse P, or

angular momentum M respectively, causes a dis-

crete change in the corresponding velocity. This

change is best described by the mean velocity during

the impulse. Let Wa be the angular velocity before

the impulse and We the velocity after the impulse,

then Wm is defined as the mean (Wa+We)/2. Please

note that the product of the corresponding interface

variables (e.g. M*Wm) represents the amount of work

that is transmitted during the impulse.

Using these variables, the impulse behavior can be

properly described: For any mass element, the equa-

tion

M = 2*I*(Wm-Wa)

holds. An inelastic impulse can be modeled by stat-

ing:

Wm = 0.5*Wa

Mostly and also in this example, these and other im-

pulse equations form a linear system of equations

that is distributed over several components. Hence

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 227

they need to be activated synchronously. To this end,

the Boolean contact signals are required to synchro-

nize the impulse events in different components.

This is illustrated by the event for an external im-

pulse (see figure 5). Before the event the velocity is

stored by the auxiliary variable Wa. At the event, the

differential equation is removed since the velocity is

now determined by the impulse equation w = 2*Wm

- Wa. This new velocity is also stored in the auxil-

iary variable We that is needed after the event when

the differential equation gets reestablished and We is

suggested as (re-)start value for the time integration.

 when fa.contactIn or fb.contactIn then

 w = 2*Wm - Wa;

 We << w;
 1

 else then

 static Real z;

 z = der(x=w, start << We);

 Wa << w;

 end;

Figure 5: Excerpt from figure 3.

In the example of the trebuchet, this event is syn-

chronously triggered with corresponding events from

all body components and the other revolute joint.

During the contact event, the number of continuous-

time states is reduced.

The transition from the free mode to the fixated

mode by the inelastic impulse is modeled in a similar

manner. The trigger for this transition is a contact

signal that becomes true when the angle phi ex-

ceeds the parameterized limit l. The contact signal is

transmitted to the connected components in order to

synchronize the following event. At this event, the

continuous-time equations are replaced by the equa-

tions for an inelastic impulse and the variable

toFixate is set to true. This causes a subsequent

event that changes the continuous-time mode.

The reverse transition is modeled in accordance, but

here a force impulse is not required. The established

fixation is released when the torque acts in the oppo-

site direction: t < 0.

4 Further components

Let us put aside the model of the limited revolute.

From the remaining 8 components of the trebuchet

model, there are two more components that exhibit

1
 The symbol << represents a casual transmission - a

statement that is similar to an assignment. Once applied,

the variable on the left-hand side retains its value and re-

mains determined until it gets re-determined by another

causal transmission.

structural changes. These are the standard revolute

joint and the torn body.

The standard revolute joint is significantly simpler

than its limited counterpart. It does not own multiple

modes for the continuous-time simulation. Just an

intermediate mode is required for the impulse han-

dling. This influences the number of continuous-time

state variables during the impulse. Typically the an-

gular velocity of the revolute joint represents a state

variable but during the impulse it is discretely deter-

mined.

The component for the torn body is more interesting.

It owns 3 continuous-time modes with different con-

tinuous-time state variables:

1. The body is at rest as long as the rope has not

been stretched.

State-Variables: { }

2. The body represents a pendulum as long as the

release angle γ has not been reached.

State-Variables: { φ, ω }

3. The body is free.

State-Variables: {x, y, φ, vx, vy, ω}

Furthermore, the transition between mode 1 and 2

has to be modeled by an inelastic impulse acting in

rope direction. Another intermediate mode is re-

quired for the handling of external impulses. Figure

6 represents the corresponding transition diagram.

Figure 6: Mode-transitions graph of the torn body

In this way, the modeling of structural changes has

been distributed on 3 of the 9 components. The ob-

ject-oriented paradigm favors such a distribution.

The modeling on the local level is not only easier to

achieve than a complete description of the system,

but also the resulting components represents mean-

ingful entities by themselves and become usable in a

generic fashion.

The modes of the total system, the trebuchet, result

from the combination of its component’s local mod-

es during the simulation of the system. To get a bet-

ter understanding, let us look at the simulation of the

trebuchet.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 228

0 0.5 1 1.5
-15

-10

-5

0

5

10

15

20

25

t[s]

x
[m

]

0 0.5 1 1.5
-10

0

10

20

30

40

t[s]
y
[m

]
-10 0 10 20

0

5

10

15

20

25

30

35

40

x[m]

y
[m

]

Figure 7: Trajectory of the projectile.

5 Simulation

Figure 7 presents the result of the simulation for the

first 1.5 seconds. The model was simulated with Sol-

sim, a console application that represents an inter-

preter of the Sol language. The main processing loop

of the interpreter contains 3 stages:

• Instantiation and flattening

• Dynamic causalization

• Evaluation

In a classic Modelica translator these stages are exe-

cuted once in sequential order. In Solsim, they form

a loop (see also figure 9) and hence all these three

stages can be repeated several times. Thus, the inter-

preter is able to handle almost arbitrary structural

changes. All these stages are thereby programmed in

way that they try to preserve the existing structure

and prevent unnecessary perturbations. Further ex-

planations can be found in [9] and in section 6.

In contrast to the elaborate processing techniques,

the numerical algorithms that are included in Solsim

are still on a very rudimentary level. Thus, an ex-

plicit Euler integration has been applied with a fixed

step size of 1ms. In spite of this tiny step size and

consequently the high number of iterations, Solsim

was still able to parse, to setup and to simulate the

whole system roughly within one second on common

personal computer.

Let us take a look at the various structural changes

that occur during the first two seconds of the simula-

tion. Figure 8 presents an overview for the continu-

ous-time modes and their corresponding state vari-

ables. The diagram presents the continuous-time

modes for the torn body and the limited revolute

with their corresponding state variables.

The transition between these modes may involve

force impulses that require an intermediate mode.

Such intermediate modes are depicted by a vertical

line in the diagram.

The combination of modes of the components forms

the modes of the complete system. In total there oc-

cur 5 modes where only 2 of them are equivalent.

Furthermore, there are 2 intermediate modes for the

inelastic impulses.

Figure 8: Timetable of the structural changes

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 229

In addition to the state variables that are listed in fig-

ure 8, there are two more state variables, namely the

angle and angular velocity of the non-limited revo-

lute joint. This holds with exception of the interme-

diate modes. Here, the velocities are disabled as state

variables. Hence the number of continuous-time state

variables in total varies from 2 to 10.

We recognize that the handling of these structural

changes is a demanding problem. It contains a num-

ber of sub-tasks that need to be implemented by the

simulation environment. Let us therefore review the

principal processing steps and how they are affected

by the variability in structure. We then continue with

the integration of these tasks in the dynamic frame-

work of Sol.

5.1 Event handling

Structural changes represent discrete events. The

modeling of mechanical impulses requires that such

events can be synchronized. On the other hand, the

simulation environment must enable that several dis-

crete events can be scheduled in a sequential order

without any time advancement.

For this purpose, Solsim has implemented an event

heap that is independent from the time integration.

Time can only advance if the event heap is empty for

the current time-frame. Preceding valuable contribu-

tion in this area are [2] and [5].

5.2 Sate Selection

The selection of feasible state variables is crucial for

the time-integration of mechanical systems. Like

Modelica, Sol also offers an option to prioritize po-

tential state variables. The modeler can indicate pre-

ferred states and thereby support the simulation envi-

ronment in its selection.

With respect to variable-structure systems, such a

mechanism is especially important since a complete

a priori analysis of the system might not be available

or affordable in a dynamic framework.

5.3 Index reduction

In order to reduce the differential index of the DAE-

system, symbolic differentiation has to be applied.

Which parts that have to be differentiated depends on

the current structure of the system. For instance,

some equations of the torn body require differentia-

tion while being in mode 2. After the transition to

mode 3, no differentiations for this component are

required anymore. Thus, Solsim keeps track of the

required derivatives during the simulation.

The standard procedure for index reduction is known

as Pantelides [6] algorithm. This algorithm presumes

all potential state variables to be known and differen-

tiates the occurring constraint equations.

This procedure is unfortunately inadequate for vari-

able-structure systems. Therefore a different ap-

proach is implemented in Solsim: State variables are

assumed a priori as unknown and the subsequent

state selection is then integrated in the standard

causalization procedure.

5.4 Tearing

For computational reasons, a transformation of the

system into block-lower-triangular (BLT) form is

aspired. The Dulmage-Mendelson permutation [7] is

the most well known algorithm for this task, whose

central part is the strong component analysis of the

Tarjan algorithm [8]. This step identifies the blocks

of the BLT. In a subsequent step, tearing variables

may be chosen for the blocks that enable the applica-

tion of iterative solvers.

Such a multi-step algorithm is not suited for a dy-

namic framework as Sol. Hence Solsim applies the

tearing directly on the complete system and identi-

fies the resulting blocks by the corresponding residu-

als. The block decomposition is therefore not neces-

sarily optimal but mostly still adequate.

Simple heuristics are applied for the selection of

tearing variables. Furthermore the modeler has the

option to indicate suitable choices for tearing. For

solving the corresponding equation system, Solsim

applies a simple iterative solver.

6 Dynamic DAE Processing

Figure 9 presents the main processing scheme of the

Solsim interpreter. Its centerpiece is the loop that

consists in instantiation, dynamic causalization and

evaluation. The evaluation of the system can be trig-

gered by the algorithm for time integration or by the

event handler. The evaluation of certain statements

(e.g. an if-statement), may then involve the creation

or removal of certain components and their corre-

sponding equations. These changes need then to be

dynamically handled by the processor for differen-

tial-algebraic equations.

Essentially, it is this dynamic DAE-processor (DDP)

that defines Solsim’s capabilities and enables the

proper and efficient handling of even severe struc-

tural changes. The DDP takes the changes in the set

of equations as input and generates a causality graph

as output.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 230

Figure 9: Processing scheme of Sol

The causality graph G(E,V) is a directed acyclic

graph where the vertices V correspond to the equa-

tions. The edges E are formed by those pairs of equa-

tions (s1, s2) where v is a variable of s2 and deter-

mined by s1.

Since the causality graph is an acyclic graph, it gives

rise to a partial order on its vertices and can thus be

used to schedule the set of causalized equations into

an appropriate order for evaluation. The causality

graph thereby enables the complete or partial update

of a system and brings the system in a form that is

suitable for numerical ODE solvers.

Any change in the set of equations will yield to an

update of the causality-graph. The new equations

need to be causalized and integrated into the graph.

In the worst case, the exchange of a single equation

will require the update of the whole system. Most

changes, however, only affect parts of the system. In

order to handle all these cases in an efficient manner,

the dynamic DAE processor is strongly optimistic

and tries to preserve the existing graph structure as

much as possible.

The DDP essentially represents a set of update rules

and graph-algorithms that trace each change in the

set of equations and keep track of the current causal-

ization. This has a profound impact on the handling

of the tasks that have been outlined in section 5.2 to

5.4 (state selection, tearing, and differentiation).

Furthermore, the reverse counterparts of these tasks

must be concerned too. The determination of a tear-

ing variable can become obsolete and the tearing

needs to be undone. The situation is similar for vari-

ables that have been selected as state variables. Also

the time-derivative of a variable may not be required

anymore if a change in set of equations occurs and

shall therefore be eliminated.

In the DDP, the handling of all these tasks is not pur-

sued by individual algorithms anymore. Instead, the

corresponding processes are formulated as a closely

interlinked set of update and downdate rules. This

results in a rather complicated processing mechanism

that is concerned with a good number of details. Un-

fortunately, this prevents any simple presentation of

the DDP’s functionality and hence it goes beyond the

extent of this paper. For this reason, we aspire a jour-

nal publication in multiple parts and hope to publish

it soon.

We can, however, outline the major principle of the

DDP. In the first place, the DDP retains the causality

graph as much as possible. To this end, equations

remain potentially causalized, even if they lost their

‘causal root’.

For any new equation, the DDP attempts its integra-

tion into the existing causality graph. This may lead

to premature or speculative causalizations. In conse-

quence, residuals may yield from overdetermined

equations.

Whenever a residual is generated, their correspon-

dent sources of overdetermination are examined.

Based on this analysis, an appropriate action is taken

in order to eliminate the overdetermination. This ac-

tion is distinct from case to case. It can represent the

undoing of former causalizations or state selections

but also the extraction of an algebraic loop. In this

way, the DDP enables the treatment of DAEs that

result from variable-structure systems in an efficient

manner.

7 Conclusions

The current framework of Sol represents a feasible

solution for the modeling and simulation of variable-

structure systems, although being rudimentary in

many aspects. The example of the trebuchet demon-

strates that the object-oriented modeling paradigm of

Modelica can be successfully extended to variable-

structure systems of higher index. The modeling of

certain subparts can be quite demanding but the re-

sulting components are fairly generic in their usage.

The Sol language by itself is even simpler than Mod-

elica and hence major additions to the Modelica lan-

guage would not be required (like state charts as in

[3]). The power and expressiveness of Sol originates

from the generalizations of successful Modelica con-

cepts and not from the introduction of new para-

digms.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 231

These generalizations though, require new methods

for the processing of such a model. This is a chal-

lenging task that demands new solutions for many

major stages in the classic processing scheme. The

simulator Solsim meets these requirements now to a

sufficient extent.

Since Solsim is an interpreter it represents computa-

tional overkill for many specific applications and

thus cannot be applied yet for computationally very

demanding applications. Instead, it represents a truly

general framework that can be applied to a broad

range of models from various domains. We think

that this approach is more promising in the long

term, since specializations can still be implemented

when necessary.

For instance, there is a sub-class of Sol models that

is decomposable into a reasonably constrained num-

ber of modes. The trebuchet belongs to this sub-

class. For such models, code corresponding to each

mode can be compiled in advance and then be exe-

cuted. There would be no principal problem in de-

tecting members of this sub-class and alter the trans-

lation accordingly. For other cases, a just-in-time

compilation may be desired. Corresponding solutions

are meanwhile developed in the framework of Hydra

[1].

Both the language Sol and the corresponding soft-

ware Solsim need further extensions, refinement and

optimization. But most of our future effort is planned

for the completion of the whole framework. The Sol

project shall be made openly accessible in a well-

documented state. We thereby hope to establish a

promising field for future research that lets us and

other researchers elaborate new modeling and proc-

essing techniques.

Acknowledgments

I would like to thank Prof. Dr. François E. Cellier for his

helpful advice and support. This research project is spon-

sored by the Swiss National Science Foundation (SNF

Project No. 200021-117619/1).

References

[1] Giorgidze, G., H. Nilsson: Higher-Order Non-

Causal Modelling and Simulation of Structurally

Dynamic Systems. In: Proc. 7th International

Modelica Conference, Como, Italy (2009)

[2] Nikoukhah, R., S. Furic: Synchronous and asyn-

chronous events in Modelica: proposal for an im-

proved hybrid model. In: Proc. 6th International

Modelica Conference (2008) Bielefeld, Germany,

Vol.2, 677-690.

[3] Nytsch-Geusen, C., et al.: Advanced modeling

and simulation techniques in MOSILAB: A sys-

tem development case study. In: Proceedings of

the Fifth International Modelica Conference, Vi-

enna, Austria (2006) Vol. 1, 63-71.

[4] Otter, M., H. Elmqvist and S.E. Mattsson: The

New Modelica MultiBody Library. In: Proc. 3rd

International Modelica Conference, Linköping,

Sweden (2003), 311-330.

[5] Otter, M., H. Elmqvist and S.E. Mattsson: Hybrid

Modeling in Modelica Based on the Synchronous

Data Flow Principle. In: Proc. IEEE International

Symposium on Computer Aided Control System

Design, (1999) Hawaii, 151-157.

[6] Pantelides, C.: The Consistent Initialization of

Differential-Algebraic Systems. In: SIAM J. Sci.

and Stat. Comput. (1988) Vol 9, No. 2, 213-231.

[7] Pothen, A., Chin-Ju Fan: Computing the Block

Triangular Form of a Sparse Matrix. In: ACM

Transactions on Mathematical Software (1990)

Vol 16, No. 4 303-324.

[8] Tarjan, R.: Depth-first search and linear graph al-

gorithms. In: SIAM Journal on Computing.

(1972) Bd. 1, No. 2, 146-160.

[9] Zimmer, D.: Introducing Sol: A General Meth-

odology for Equation-Based Modeling of Vari-

able-Structure Systems In: Proc. 6th International

Modelica Conference, Bielefeld, Germany,

(2008) Vol.1, 47-56

[10] Zimmer, D.: Enhancing Modelica towards vari-

able structure systems. In: Proceedings of the 1st

International Workshop on Equation-Based Ob-

ject-Oriented Languages and Tools (EOOLT),

Berlin, Germany (2007) 61-70

[11] Zimmer, D. and F.E. Cellier: The Modelica

Multi-bond Graph Library, Proc. 5th Interna-

tional Modelica Conference, Vienna, Austria

(2006) Vol.2, 559-568.

Biography

Dirk Zimmer received his MS degree

in computer science from the Swiss

Federal Institute of Technology (ETH)

Zurich in 2006. He gained additional

experience in Modelica and in the field

of modeling mechanical systems during

an internship at the German Aerospace

Center DLR 2005. Dirk Zimmer is

currently pursuing a PhD degree with a

dissertation related to computer simulation and modeling

under the guidance of Profs. François E. Cellier and Wal-

ter Gander. His current research interests focus on the

simulation and modeling of physical systems with a dy-

namically changing structure.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 232

