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Abstract 

This case study presents the model of an ideal trebuchet. 

Following the object-oriented modeling paradigm of 

Modelica, the trebuchet is composed out of ideal elements 

that belong to a planar mechanical library. The corre-

sponding system of DAEs has index 3. During simulation, 

the model undergoes also various structural changes that 

manipulate the number of continuous-time state variables. 

Furthermore, elastic and inelastic collisions need to be 

modeled by force impulses. The model is provided in Sol, 

a derivative language of Modelica, specially designed for 

research in variables structure systems. Keywords: Vari-

able-Structure Systems; Index Reduction; Multi-Body Dy-

namics. 

1 The Trebuchet 

The Trebuchet is an old catapult weapon developed 

in the Middle Ages. It is known for its long range 

and its high precision. Figure 1 depicts a trebuchet 

and thereby presents its functionality. Technically, it 

is a double pendulum propelling a projectile in a 

sling. The rope of the sling is released on a prede-

termined angle γ when the projectile is about to over-

take the lever arm.  

Let us state a few assumptions for the model: 

• All mechanics are planar. The positional states 

of any object are therefore restricted to x, y and 

the orientation angle φ. 

• All elements are rigid. 

• The sling’s rope is ideal and weightless. It exhib-

its an inelastic impulse when being stretched to 

maximum length 

• The revolute joint of the counterweight is limited 

to a certain angle β (in order to prevent too 

heavy back-swinging after the projectile’s re-

lease). It also exhibits an inelastic impulse when 

reaching its limit. 

• Air resistance or friction is neglected. 

 

Whereas these idealizations simplify the parameteri-

zation of the model to a great extent, they pose seri-

ous difficulties for a general simulation environment. 

Such models, although being fairly simple, can nei-

ther be modeled nor simulated with Modelica yet. At 

least not in a truly object-oriented manner. Hence the 

trebuchet represents a suitable example for the 

framework of Sol that aims to enable the future han-

dling of variable-structure systems within an object-

oriented modeling paradigm. 

 
 source: wikimedia commons, modified by author 

Figure 1: Functionality and specification of a trebuchet 

Mass of projectile:  30kg β:200° 

Mass at lever arm: 100kg γ: 150° 

Counterweight: 10t  
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2 Object-oriented Composition 

Sol has been introduced at the Modelica Conference 

2008 [9, 10]. It is a derivative language of Modelica, 

specially designed for research purposes in the field 

of variable-structure systems. Thus, Sol enables the 

creation and removal of equations or even complete 

objects anytime during the simulation. To this end, 

the modeler describes the system in a constructive 

way, where the structural changes are expressed by 

conditionalized declarations. These conditional parts 

can than get activated and deactivated of during run-

time. The incentive for this project is to gain knowl-

edge in language design and processing techniques 

that we think will be essential for Modelica’s future 

development. 

A simple planar mechanical library has been devel-

oped in Sol. It has been extended by equations for 

mechanical impulses in order to make discrete veloc-

ity changes possible. From this library we need the 

following components: 

- 1x fixation - 3x fixed translation 

- 1x revolute joint - 1x limited revolute joint 

- 2x bodies with mass - 1x ideal rope with mass 
 

These components are connected as depicted in fig-

ure 2. Although the model diagram follows the ico-

nographic of the MultiBody library [4], it serves il-

lustration purposes only, since the modeling in Sol is 

still purely textual. 
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Figure 2: Model diagram of the trebuchet 

The total model contains from 246 to 256 variables, 

depending on the current state of the model. The cor-

responding systems of DAE have the perturbation 

index 3. They need to be differentiated twice and 

there remain linear systems of equation to be solved.  

The resulting object-oriented decomposition resem-

bles typical examples from the Modelica domain but 

it is significantly more demanding since a structural 

change in any component may affect the total sys-

tem. 

 

model LimitedRevolute  

  extends Interfaces.TwoFrames; 

interface: 

  parameter Real phi_start; 

  parameter Real w_start; 

  parameter Real l; 

implementation: 

  static Boolean contact; 

  static Boolean fixated; 

  static Boolean toFixate; 

  static Boolean toRelease; 

  static Real phi_a; 

  static Real phi; 

  static Real Wm;     

  static Real We; 
 

  if initial then 

    fixated << false; 

    toFixate << false; 

    toRelease << false; 

    phi_a << phi_start; 

    We << w_start; 

  end; 
 

  when toFixate then 

    toRelease << false; 

    fixated << true; 

  else when toRelease then 

    toFixate << false; 

    fixated << false; 

  end; 
 

  if fixated then 

     phi = l; 

     Wm = 0; 

     contact << false; 

     when fb.t < 0 then 

        toRelease << true; 

        phi_a << l; 

     end; 

  else then 

    contact << (phi > l); 

    static Real w; 

    static Real Wa; 

    w = der(x=phi, start << phi_a); 

    when contact then 

      w = 0; 

      Wm = 0.5*Wa; 

      We << w; 

      toFixate << true; 

    else then 

       when fa.contactIn or fb.contactIn then 

         w  = 2*Wm - Wa; 

         We << w; 

       else then 

         static Real z; 

         z  = der(x=w, start << We); 

         Wa << w; 

       end; 

       fb.M = 0; 

    end; 

    fb.t = 0; 

  end; 
 

  fa.phi + phi = fb.phi; 

  fa.t + fb.t = 0; 

  fa.Wm + Wm = fb.Wm; 

  fa.M + fb.M = 0; 
 

  fa.x = fb.x;        fa.y = fb.y; 

  fa.fx + fb.fx = 0;  fa.fy + fb.fy = 0; 

  fa.Vmx = fb.Vmx;    fa.Vmy = fb.Vmy; 

  fa.Px + fb.Px = 0;  fa.Py + fb.Py = 0; 
 

  fa.contactOut << contact or fb.contactIn; 

  fb.contactOut << contact or fa.contactIn; 

end LimitedRevolute; 

Figure 3: The model of a limited revolute joint. 
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3 Example component 

Whereas the top-model can be neatly decomposed 

into general applicable components, the modeling of 

these components requires a skilled modeler. To at-

tain a better understanding, let us take a look at the 

modeling code of one of the components that triggers 

a structural change: The limited revolute joint. The 

corresponding code is presented in figure 3.  

Since Sol is very similar to Modelica the code shall 

be roughly understandable without further introduc-

tion. Let us go into the details. 

An elbow is one possible representation of a limited 

revolute joint. The model has two major modes: free 

or fixated. The mode free is equivalent to a normal 

revolute joint whereas the model equals a fixed ori-

entation in the fixated mode. Since the transition be-

tween these two states causes a discrete change in 

velocity, it involves an inelastic impulse on the rig-

idly connected components. Furthermore impulses 

from other components (as for instance the ideal 

rope) need to be handled as well in this component. 

 The different modes and their transitions are pre-

sented in the graph of figure 4, where the continu-

ous-time modes are depicted as round boxes and the 

rectangular boxes denote discrete intermediate 

modes. The transitions are represented by arrows and 

their labels denote the event that triggers the transi-

tion. Those without a label are triggered immedi-

ately. 
 

angle 

exceeds 

limit

external 

impulse
fixatedfree

inelastic 

impulse

torque becomes 

negatve

contact signal 

triggers

 
Figure 4: Mode-transition graph of the limited revolute 

In the modeling code, the two continuous modes are 

expressed by the Boolean variable fixated and are 

modeled by an if-statement. We recognize that the 

first branch represents the fixated mode and does not 

contain any derivatives whereas the second branch 

(for the free mode) usually defines two derivatives. 

Hence, the free mode defines two potential state-

variables: the position phi and the corresponding 

velocity w. A switch between the two modes is there-

fore expected to change the number of total state-

variables.  

The number of continuous-time state variables is 

also affected by the mechanical impulses. These im-

pulse events are modeled by when-branches that re-

act to a contact signal that may be emitted by other 

components. In order to understand how the model 

interacts with other components let us take a look at 

variables of the connecting interface: 

Continuous potential variables: 

 x y phi: the positional states: 

Continuous flow variables: 

 fx fy t:  forces and torque 

Discrete potential variables: 

 Vmx Vmy Wm: mean velocities during impulse. 

Discrete flow variables 

 Px Py M: force impulses and angular momentum.  

Control signals: 

 contactIn: ingoing contact signal 

 contactOut: outgoing contact signal 

This connector design is very similar to the one that 

has already been applied in the Modelica MultiBon-

dLib [11]. It owns a separate set of variables for the 

continuous and discrete domain. The Boolean con-

trol signals are used to trigger and synchronize the 

events. 

Any component model will have to relate these inter-

face variables. For the limited revolute, the equations 

that relate the variables of the translational domain 

are trivial and are placed at the end of the model’s 

main section. 

Nevertheless, the equations for the impulse event 

require further explanation. A force impulse P, or 

angular momentum M respectively, causes a dis-

crete change in the corresponding velocity. This 

change is best described by the mean velocity during 

the impulse.  Let Wa be the angular velocity before 

the impulse and We the velocity after the impulse, 

then Wm is defined as the mean (Wa+We)/2. Please 

note that the product of the corresponding interface 

variables (e.g. M*Wm) represents the amount of work 

that is transmitted during the impulse. 

Using these variables, the impulse behavior can be 

properly described: For any mass element, the equa-

tion 

M = 2*I*(Wm-Wa) 

holds. An inelastic impulse can be modeled by stat-

ing: 

Wm = 0.5*Wa 

Mostly and also in this example, these and other im-

pulse equations form a linear system of equations 

that is distributed over several components. Hence 
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they need to be activated synchronously. To this end, 

the Boolean contact signals are required to synchro-

nize the impulse events in different components. 

This is illustrated by the event for an external im-

pulse (see figure 5). Before the event the velocity is 

stored by the auxiliary variable Wa. At the event, the 

differential equation is removed since the velocity is 

now determined by the impulse equation w = 2*Wm 

- Wa. This new velocity is also stored in the auxil-

iary variable We that is needed after the event when 

the differential equation gets reestablished and We is 

suggested as (re-)start value for the time integration.  
 

       when fa.contactIn or fb.contactIn then 

         w  = 2*Wm - Wa; 

         We << w;
 1
 

       else then 

         static Real z; 

         z  = der(x=w, start << We); 

         Wa << w; 

       end; 

Figure 5: Excerpt from figure 3. 

In the example of the trebuchet, this event is syn-

chronously triggered with corresponding events from 

all body components and the other revolute joint. 

During the contact event, the number of continuous-

time states is reduced. 

The transition from the free mode to the fixated 

mode by the inelastic impulse is modeled in a similar 

manner. The trigger for this transition is a contact 

signal that becomes true when the angle phi ex-

ceeds the parameterized limit l. The contact signal is 

transmitted to the connected components in order to 

synchronize the following event. At this event, the 

continuous-time equations are replaced by the equa-

tions for an inelastic impulse and the variable 

toFixate is set to true. This causes a subsequent 

event that changes the continuous-time mode. 

The reverse transition is modeled in accordance, but 

here a force impulse is not required. The established 

fixation is released when the torque acts in the oppo-

site direction: t < 0.  

4 Further components 

Let us put aside the model of the limited revolute. 

From the remaining 8 components of the trebuchet 

model, there are two more components that exhibit 

                                                      
1
 The symbol << represents a casual transmission - a 

statement that is similar to an assignment. Once applied, 

the variable on the left-hand side retains its value and re-

mains determined until it gets re-determined by another 

causal transmission. 

structural changes. These are the standard revolute 

joint and the torn body.  

The standard revolute joint is significantly simpler 

than its limited counterpart. It does not own multiple 

modes for the continuous-time simulation. Just an 

intermediate mode is required for the impulse han-

dling. This influences the number of continuous-time 

state variables during the impulse. Typically the an-

gular velocity of the revolute joint represents a state 

variable but during the impulse it is discretely deter-

mined. 

The component for the torn body is more interesting. 

It owns 3 continuous-time modes with different con-

tinuous-time state variables: 

1. The body is at rest as long as the rope has not 

been stretched.  

State-Variables: { } 

2. The body represents a pendulum as long as the 

release angle γ has not been reached. 

State-Variables: { φ, ω } 

3. The body is free.  

State-Variables: {x, y, φ, vx, vy, ω} 

Furthermore, the transition between mode 1 and 2 

has to be modeled by an inelastic impulse acting in 

rope direction. Another intermediate mode is re-

quired for the handling of external impulses. Figure 

6 represents the corresponding transition diagram. 

 
Figure 6: Mode-transitions graph of the torn body 

In this way, the modeling of structural changes has 

been distributed on 3 of the 9 components. The ob-

ject-oriented paradigm favors such a distribution. 

The modeling on the local level is not only easier to 

achieve than a complete description of the system, 

but also the resulting components represents mean-

ingful entities by themselves and become usable in a 

generic fashion. 

The modes of the total system, the trebuchet, result 

from the combination of its component’s local mod-

es during the simulation of the system. To get a bet-

ter understanding, let us look at the simulation of the 

trebuchet. 
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Figure 7: Trajectory of the projectile. 

5 Simulation 

Figure 7 presents the result of the simulation for the 

first 1.5 seconds. The model was simulated with Sol-

sim, a console application that represents an inter-

preter of the Sol language. The main processing loop 

of the interpreter contains 3 stages: 

• Instantiation and flattening 

• Dynamic causalization 

• Evaluation  

In a classic Modelica translator these stages are exe-

cuted once in sequential order. In Solsim, they form 

a loop (see also figure 9) and hence all these three 

stages can be repeated several times. Thus, the inter-

preter is able to handle almost arbitrary structural 

changes. All these stages are thereby programmed in 

way that they try to preserve the existing structure 

and prevent unnecessary perturbations. Further ex-

planations can be found in [9] and in section 6. 

In contrast to the elaborate processing techniques, 

the numerical algorithms that are included in Solsim 

are still on a very rudimentary level.  Thus, an ex-

plicit Euler integration has been applied with a fixed 

step size of 1ms. In spite of this tiny step size and 

consequently the high number of iterations, Solsim 

was still able to parse, to setup and to simulate the 

whole system roughly within one second on common 

personal computer. 

Let us take a look at the various structural changes 

that occur during the first two seconds of the simula-

tion. Figure 8 presents an overview for the continu-

ous-time modes and their corresponding state vari-

ables. The diagram presents the continuous-time 

modes for the torn body and the limited revolute 

with their corresponding state variables.  

The transition between these modes may involve 

force impulses that require an intermediate mode. 

Such intermediate modes are depicted by a vertical 

line in the diagram. 

The combination of modes of the components forms 

the modes of the complete system. In total there oc-

cur 5 modes where only 2 of them are equivalent. 

Furthermore, there are 2 intermediate modes for the 

inelastic impulses. 
 

 
Figure 8: Timetable of the structural changes 

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 229



In addition to the state variables that are listed in fig-

ure 8, there are two more state variables, namely the 

angle and angular velocity of the non-limited revo-

lute joint. This holds with exception of the interme-

diate modes. Here, the velocities are disabled as state 

variables. Hence the number of continuous-time state 

variables in total varies from 2 to 10.  

We recognize that the handling of these structural 

changes is a demanding problem. It contains a num-

ber of sub-tasks that need to be implemented by the 

simulation environment. Let us therefore review the 

principal processing steps and how they are affected 

by the variability in structure. We then continue with 

the integration of these tasks in the dynamic frame-

work of Sol. 

5.1 Event handling 

Structural changes represent discrete events. The 

modeling of mechanical impulses requires that such 

events can be synchronized. On the other hand, the 

simulation environment must enable that several dis-

crete events can be scheduled in a sequential order 

without any time advancement.  

For this purpose, Solsim has implemented an event 

heap that is independent from the time integration. 

Time can only advance if the event heap is empty for 

the current time-frame. Preceding valuable contribu-

tion in this area are [2] and [5]. 

5.2 Sate Selection 

The selection of feasible state variables is crucial for 

the time-integration of mechanical systems. Like 

Modelica, Sol also offers an option to prioritize po-

tential state variables. The modeler can indicate pre-

ferred states and thereby support the simulation envi-

ronment in its selection. 

With respect to variable-structure systems, such a 

mechanism is especially important since a complete 

a priori analysis of the system might not be available 

or affordable in a dynamic framework. 

5.3 Index reduction 

In order to reduce the differential index of the DAE-

system, symbolic differentiation has to be applied. 

Which parts that have to be differentiated depends on 

the current structure of the system. For instance, 

some equations of the torn body require differentia-

tion while being in mode 2. After the transition to 

mode 3, no differentiations for this component are 

required anymore. Thus, Solsim keeps track of the 

required derivatives during the simulation. 

The standard procedure for index reduction is known 

as Pantelides [6] algorithm. This algorithm presumes 

all potential state variables to be known and differen-

tiates the occurring constraint equations.  

This procedure is unfortunately inadequate for vari-

able-structure systems. Therefore a different ap-

proach is implemented in Solsim: State variables are 

assumed a priori as unknown and the subsequent 

state selection is then integrated in the standard 

causalization procedure. 

5.4 Tearing 

For computational reasons, a transformation of the 

system into block-lower-triangular (BLT) form is 

aspired. The Dulmage-Mendelson permutation [7] is 

the most well known algorithm for this task, whose 

central part is the strong component analysis of the 

Tarjan algorithm [8]. This step identifies the blocks 

of the BLT. In a subsequent step, tearing variables 

may be chosen for the blocks that enable the applica-

tion of iterative solvers. 

Such a multi-step algorithm is not suited for a dy-

namic framework as Sol. Hence Solsim applies the 

tearing directly on the complete system and identi-

fies the resulting blocks by the corresponding residu-

als. The block decomposition is therefore not neces-

sarily optimal but mostly still adequate.  

Simple heuristics are applied for the selection of 

tearing variables. Furthermore the modeler has the 

option to indicate suitable choices for tearing. For 

solving the corresponding equation system, Solsim 

applies a simple iterative solver. 

6 Dynamic DAE Processing 

Figure 9 presents the main processing scheme of the 

Solsim interpreter. Its centerpiece is the loop that 

consists in instantiation, dynamic causalization and 

evaluation. The evaluation of the system can be trig-

gered by the algorithm for time integration or by the 

event handler. The evaluation of certain statements 

(e.g. an if-statement), may then involve the creation 

or removal of certain components and their corre-

sponding equations. These changes need then to be 

dynamically handled by the processor for differen-

tial-algebraic equations.  

Essentially, it is this dynamic DAE-processor (DDP) 

that defines Solsim’s capabilities and enables the 

proper and efficient handling of even severe struc-

tural changes. The DDP takes the changes in the set 

of equations as input and generates a causality graph 

as output. 
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Figure 9: Processing scheme of Sol 

The causality graph G(E,V) is a directed acyclic 

graph where the vertices V correspond to the equa-

tions. The edges E are formed by those pairs of equa-

tions (s1, s2) where v is a variable of s2 and deter-

mined by s1.  

Since the causality graph is an acyclic graph, it gives 

rise to a partial order on its vertices and can thus be 

used to schedule the set of causalized equations into 

an appropriate order for evaluation. The causality 

graph thereby enables the complete or partial update 

of a system and brings the system in a form that is 

suitable for numerical ODE solvers. 

Any change in the set of equations will yield to an 

update of the causality-graph. The new equations 

need to be causalized and integrated into the graph. 

In the worst case, the exchange of a single equation 

will require the update of the whole system. Most 

changes, however, only affect parts of the system. In 

order to handle all these cases in an efficient manner, 

the dynamic DAE processor is strongly optimistic 

and tries to preserve the existing graph structure as 

much as possible. 

The DDP essentially represents a set of update rules 

and graph-algorithms that trace each change in the 

set of equations and keep track of the current causal-

ization. This has a profound impact on the handling 

of the tasks that have been outlined in section 5.2 to 

5.4 (state selection, tearing, and differentiation).  

Furthermore, the reverse counterparts of these tasks 

must be concerned too. The determination of a tear-

ing variable can become obsolete and the tearing 

needs to be undone. The situation is similar for vari-

ables that have been selected as state variables. Also 

the time-derivative of a variable may not be required 

anymore if a change in set of equations occurs and 

shall therefore be eliminated. 

In the DDP, the handling of all these tasks is not pur-

sued by individual algorithms anymore. Instead, the 

corresponding processes are formulated as a closely 

interlinked set of update and downdate rules. This 

results in a rather complicated processing mechanism 

that is concerned with a good number of details. Un-

fortunately, this prevents any simple presentation of 

the DDP’s functionality and hence it goes beyond the 

extent of this paper. For this reason, we aspire a jour-

nal publication in multiple parts and hope to publish 

it soon. 

We can, however, outline the major principle of the 

DDP. In the first place, the DDP retains the causality 

graph as much as possible. To this end, equations 

remain potentially causalized, even if they lost their 

‘causal root’.  

For any new equation, the DDP attempts its integra-

tion into the existing causality graph. This may lead 

to premature or speculative causalizations. In conse-

quence, residuals may yield from overdetermined 

equations. 

Whenever a residual is generated, their correspon-

dent sources of overdetermination are examined. 

Based on this analysis, an appropriate action is taken 

in order to eliminate the overdetermination. This ac-

tion is distinct from case to case. It can represent the 

undoing of former causalizations or state selections 

but also the extraction of an algebraic loop. In this 

way, the DDP enables the treatment of DAEs that 

result from variable-structure systems in an efficient 

manner. 

7 Conclusions 

The current framework of Sol represents a feasible 

solution for the modeling and simulation of variable-

structure systems, although being rudimentary in 

many aspects. The example of the trebuchet demon-

strates that the object-oriented modeling paradigm of 

Modelica can be successfully extended to variable-

structure systems of higher index. The modeling of 

certain subparts can be quite demanding but the re-

sulting components are fairly generic in their usage.  

The Sol language by itself is even simpler than Mod-

elica and hence major additions to the Modelica lan-

guage would not be required (like state charts as in 

[3]). The power and expressiveness of Sol originates 

from the generalizations of successful Modelica con-

cepts and not from the introduction of new para-

digms. 
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These generalizations though, require new methods 

for the processing of such a model. This is a chal-

lenging task that demands new solutions for many 

major stages in the classic processing scheme. The 

simulator Solsim meets these requirements now to a 

sufficient extent.  

Since Solsim is an interpreter it represents computa-

tional overkill for many specific applications and 

thus cannot be applied yet for computationally very 

demanding applications. Instead, it represents a truly 

general framework that can be applied to a broad 

range of models from various domains. We think 

that this approach is more promising in the long 

term, since specializations can still be implemented 

when necessary. 

For instance, there is a sub-class of Sol models that 

is decomposable into a reasonably constrained num-

ber of modes. The trebuchet belongs to this sub-

class. For such models, code corresponding to each 

mode can be compiled in advance and then be exe-

cuted. There would be no principal problem in de-

tecting members of this sub-class and alter the trans-

lation accordingly. For other cases, a just-in-time 

compilation may be desired. Corresponding solutions 

are meanwhile developed in the framework of Hydra 

[1]. 

Both the language Sol and the corresponding soft-

ware Solsim need further extensions, refinement and 

optimization. But most of our future effort is planned 

for the completion of the whole framework. The Sol 

project shall be made openly accessible in a well-

documented state. We thereby hope to establish a 

promising field for future research that lets us and 

other researchers elaborate new modeling and proc-

essing techniques.  
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