Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

Higher-Order Non-Causal Modelling and Simulation of
Structurally Dynamic Systems

George Giorgidze

Henrik Nilsson

Functional Programming Laboratory
School of Computer Science
University of Nottingham
United Kingdom

{ggg, nhn}@cs.nott.ac.uk

Abstract

This paper explores a novel approach to the implementation
of non-causal modelling and simulation languages support-
ing highly structurally dynamic systems. One reason the
support for structural dynamics is limited in present main-
stream non-causal modelling and simulation languages is
that they are designed and implemented on the assumption
that symbolic processing of models and ultimately compila-
tion of simulation code takes place prior to simulation. We
seek to lift that restriction, without sacrificing efficiency,
by exploiting just-in-time (JIT) compilation to allow new
simulation code, reflecting structural changes, to be gener-
ated as the simulation progresses. Our work is carried out
in a framework called Functional Hybrid Modelling that
supports higher-order modelling, as higher-order modelling
lends itself naturally to expressing structural dynamism.
However, the central ideas of the paper should be of general
interest in the area of structural dynamism. The paper pro-
vides an in-depth description of the implementation tech-
niques we have developed as well as a performance evalua-
tion.

Keywords: Non-causal Modelling and Simulation, Struc-
turally Dynamic Systems, Functional Programming, Just-
In-Time Compilation, Symbolic/Numerical Methods

1 Introduction

When developing dynamic models of physical systems, it
is often desirable to model major changes in system be-
haviour by changing the differential algebraic equations
(DAEs) that describe the dynamics of the system. These
major changes can be due to the modelled system itself ex-
hibiting structural changes, due to a need to change to sim-
plified models of parts of a system for periods of time, and
so on [12]. Models whose equational description change
over time are called structurally dynamic, and each struc-
tural configuration is known as a mode of operation. Struc-

© The Modelica Association, 2009

208

turally dynamic systems are an example of the more general
notion of hybrid systems, systems that exhibit both contin-
uous and discrete behaviour.

Unfortunately, the support offered by current modelling
languages for expressing structurally dynamic systems (as
well as hybrid systems in general) is somewhat limited
[13, 20, 22]. This is true in particular for non-causal mod-
elling languages, which is the class of modelling languages
with which we are concerned in this paper. There are a num-
ber of reasons for this limited support, many of them re-
lated to the technical difficulties of simulating structurally
dynamic models, such as identifying suitable state variables
for different modes and proper transfer of the state between
modes [12, 13].

However, there is also one less fundamental reason,
namely the common assumption that most or all process-
ing to put a model into a form suitable for simulation
will take place prior to simulation [18, 21]. By enforc-
ing this assumption in the design of a modelling language,
its implementation can be simplified as there is no need
for simulation-time support for handling structural changes.
For instance, a compiler can typically generate static simu-
lation code (often just sequences of assignment statements)
with little or no need for dynamic memory management.
This results in good performance. But the limitations are
also obvious: for example, the number of modes must be
modest as, in general, separate code must be generated for
each mode. This rules out supporting highly structurally dy-
namic systems: systems where the number of modes is too
large to make explicit enumeration feasible, or even a priori
unbounded.

There are a number of efforts to design and implement
modelling and simulation languages with improved support
for structural dynamics. Examples include HYBRSIM [14],
MOSILAB [19], and Sol [22]. Of these, Sol is likely the
most flexible. However, thus far, implementations have ei-
ther been interpreted (HYBRSIM and Sol), or the language
has been restricted so as to limit the number of modes to
make it feasible to compile code for all modes prior to sim-
ulation (MOSILAB).

DOI: 10.3384/ecp09430137

Proceedings 7th Modelica Conference, Como, Italy, Sep.

This paper contributes towards the design and implemen-
tation of modelling and simulation languages by demon-
strating support both for modelling of highly structurally
dynamic systems and for compilation of simulation code
for efficiency. We present a prototype implementation of a
non-causal language allowing arbitrary structural changes
during simulation. Central to this capability, and the focus
of this paper, is that the equations that describe the cur-
rent operating mode are compiled into simulation code at
each structural change using a code-generation framework
supporting just-in-time (JIT) compilation: the Low Level
Virtual Machine (LLVM) [7]. We describe the compilation
process as well as the necessary supporting run-time ma-
chinery, and we provide small but detailed benchmarks that
demonstrate that the generated simulation code is fairly ef-
ficient and that the overhead of the processing of structural
changes is not unreasonable, particularly not for an early
prototype. As far as we know, this is the first time JIT com-
pilation has been used for dynamic compilation of simu-
lation code to enable efficient simulation of highly struc-
turally dynamic models in the context of non-causal mod-
elling. The implementation is available on-line' under the
open source BSD license.

This work has been carried out in the context of our re-
search on Functional Hybrid Modelling (FHM) [17, 18],
a novel approach to purely declarative languages for non-
causal, hybrid modelling and simulation. A central aspect of
FHM is that models are first-class entities. This means they
can be manipulated programmatically (past as arguments
to functions, returned as results of functions, etc.), just like
any other type of value such as integers or Booleans. This
is called higher-order modelling [3].2

Higher-order modelling, with just a minimum of addi-
tional language constructs, lends itself very well to express-
ing highly structurally dynamic systems: all that is needed
is the means to allow new model fragments to be computed
not only before simulation starts, but also during simula-
tion, at events, and to be integrated into the simulated sys-
tem at those points. This is the approach taken by FHM. In-
deed, the ease by which higher-order modelling can express
structural dynamics was partly what motivated our research
into FHM in the first place [17].

However, at its core, this paper is concerned with tech-
niques for implementing languages supporting modelling of
highly structurally dynamic systems, and we would thus
like to emphasise that the ideas and results presented in
this paper are not limited to the setting of FHM, but are,
on the whole, applicable to modelling and simulation lan-
guages supporting structurally dynamic systems in general.
We would also like to reiterate that the focus of this pa-
per is squarely on the mechanics of integrating dynamic
code generation into the implementation of a non-causal
modelling language: many of the other technical problems
briefly mentioned above remain to be solved.

'http://cs.nott.ac.uk/ ggg/

2As it is reminiscent of higher-order functions. A function is higher-
order if some of its arguments or result is function-valued. Not to be con-
fused with other meanings of higher-order.

© The Modelica Association, 2009

20-22, 2009

The rest of this paper is organised as follows. Section 2
provides background on FHM and LLVM. FHM is intro-
duced by means of an example that is also used in the re-
mainder of the paper, so we recommend that all readers,
even if already familiar with FHM, take at least a quick
look at this section. Section 3 explains how our language
is implemented, with a particular emphasis on the methods
we use to support highly structurally dynamic systems. The
performance of our prototype implementation is evaluated
in Section 4. Related work is discussed in Section 5. Finally,
Section 6 considers future work and conclusions are given
in Section 7.

2 Background

2.1 Functional Hybrid Modelling

In the following, we give a brief overview of Functional Hy-
brid Modelling (FHM) to explain the notation used in the
rest of the paper and to provide some general background.
In particular, we introduce Hydra, the FHM language we
are currently working on. For details, see earlier papers on
FHM [17, 18]. However, we again remind the reader that
in the present context, FHM and Hydra should mostly be
seen as a particular syntax that is convenient for express-
ing structurally dynamic systems; neither is central to the
contributions of this paper.

With FHM, we seek to develop a small but expressive,
purely declarative, non-causal and hybrid modelling lan-
guage. A key motivation is to develop simple and clear se-
mantical foundations for this class of modelling languages,
with a view to paving the way for improvements such as
more flexible support for hybrid modelling and type sys-
tems exploiting domain knowledge in new ways [15].

Our hypothesis is that the aims of FHM can be realised by
identifying the core semantical concepts of non-causal and
hybrid modelling and embedding these as first-class entities
in a declarative host language. This achieves a separation of
concerns that we believe is both sound and expedient, as it
highlights similarities and differences with other classes of
languages and allows us to focus our research on what is
specific to non-causal, hybrid modelling languages.

2.2 Signal Relations

FHM was inspired by Functional Reactive Programming
(FRP) [4] and then in particular Yampa [16]. FRP is an
approach to reactive programming that in many ways can
be seen as causal modelling. It is realised by enriching a
functional language with a first-class notion of functions
operating on signals, signal functions, where a signal is
a time-varying value. In other words, signal functions are
very much like “blocks” in a causal modelling language like
Simulink, except having first-class status, which means that
ordinary functions can operate on signal functions achiev-
ing what in many modelling languages would be consid-
ered meta-modelling capabilities. In particular, new sig-
nal functions can be computed as a system is running and

209

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

then “switched in” to become part of that system, allowing
highly structurally dynamic systems to be modelled [16].

What distinguishes non-causal from causal modelling
languages is that models are described in terms of undi-
rected equations over time-varying entities. In other words,
relations on signals as opposed to functions on signals. The
essence of FHM is thus the addition of first-class relations
on signals, signal relations, to a functional language.

There are consequently two levels to FHM: the func-
tional level, concerned with defining ordinary functions
operating on time-invariant values, and the signal level,
concerned with the definition of relations between signals
(time-varying values), and, indirectly, the definition of the
signals themselves as solutions satisfying the constraints
imposed by the signal relations. The definitions at the sig-
nal level may freely refer to entities defined at the functional
level, which is crucial in the following. Also, defined signal
relations are ordinary time-invariant values at the functional
level (first-class entities). Signals, on the other hand, are not
first-class entities at the functional level. However, as dis-
cussed in the following, instantaneous values of signals can
be propagated back to the functional level allowing e.g. the
future system structure to depend on signal values at dis-
crete points in time.

For those familiar with languages like Modelica, note that
a signal relation has many similarities to a class: fundamen-
tally a signal relation is just an encapsulated set of equations
that constrain a number of signal variables. Also like a class,
signal relations can be instantiated, creating copies of the
encapsulated equations imposing their constraints on some
variables in the current context. This is called signal relation
application. Unlike Modelica, there is no class hierarchy
and thus no inheritance, so the only way to reuse equations
is by signal relation application. On the other hand, signal
relations are first class entities, giving a lot of additional ex-
pressive power, whereas classes are not.

2.3 Hydra by Example: The Breaking Pen-
dulum

Let us illustrate the key aspects of FHM and Hydra through
an example. As this paper is concerned with structural dy-
namism, we chose a variation of a breaking pendulum [11,
pp- 31-33] as it is representative yet small. The pendulum
is modelled as a point mass m at the end of a rigid, mass-
less rod, subject to gravity mg; see Figure 1. Additionally,
the rod could break at some point in time, causing the mass
to fall freely. The breaking of the pendulum causes a sig-
nificant change in the structure of the system, so much that
languages like Modelica do not support non-causal simula-
tion of a pendulum that breaks during simulation [18].

We start by modelling a free-falling body in Hydra. Let
us begin by defining some type abbreviations and con-
stants for convenience. Hydra is implemented as an em-
bedding in Haskell [5], the host language. The functional
level discussed above is thus provided by Haskell, saving
us the work of implementing a functional language from
scratch. Type abbreviations and constants are ordinary time-

© The Modelica Association, 2009

Figure 1: A pendulum subject to gravity.

invariant definitions and defined at the functional level; i.e.,
directly in Haskell. We define the position and velocity to
be pairs of reals, and the state of a body in motion to be
given by its position and velocity. An entity of type Body is
thus an aggregate of four real-valued fields. We also define
the gravitational acceleration g to a suitable value:

type Position = (Double, Double)
type Velocity = (Double, Double)

type Body = (Position, Velocity)
g :: Double
g =9.81

A model of a free-falling body is a signal relation
parametrised on the initial state of the body. In Hydra,
exploiting that signal-relations are first-class entities, a
parametrised signal relation is just a function that computes
the appropriate signal relation from the parameters and re-
turns this computed signal relation as its result. This is thus
an example of higher-order modelling. In our case, we ob-
tain a function that computes a signal relation constraining a
variable of type Body (or rather, its four real-valued fields)
given an initial value of the state, also of type Body (— is
the type former for functions in Haskell):

freeFall :: Body — SR Body

The function freeFall is defined by pattern matching on
its one argument of type Body, binding (functional-level)
variables x0, y0, vz0, and vy0 to the initial position and
velocity:

freeFall (20, y0), (vz0,vy0)) = ...

The bound variables scope over the body of the function,
here indicated by an ellipsis.

Note that the Haskell syntax for function application is
simply juxtapositioning; e.g., f 1 denotes the application of
the function f to the argument 1, g 2 3 the application of the
function g to the two arguments 2 and 3, and so on. Paren-
theses are not part of the syntax of function application as
such, although they are used for grouping and, as here, to
denote tuples. The syntax of function definition mirrors the

210

Proceedings 7th Modelica Conference, Como, Italy, Sep.

syntax of function application. The function freeFuall is thus
syntactically a function of a single argument: a pair of pairs
of reals.

The body of freeFall defines the parametrised signal re-
lation. To do this, we need to work at the signal level.
The Hydra embedding is achieved through quasiquoting,
a Haskell extension provided by the Glasgow Haskell
Compiler (GHC) [10]. Quasiquoting allows custom syn-
tax to be realised by arranging for source text delimited by
quasiquotes to be passed to a custom-written function that
parses the text and translates it into abstract syntax of the
host language. In GHC, this is done prior to type checking.
Quasiquoting is thus rather similar to what can be achieved
through a pre-processor, except more tightly integrated with
the compiler and less work to implement. The Hydra open-
ing quasiquote is [$hydra|, and the closing quote is |]. Be-
tween them, we have signal-level definitions expressed in
our custom syntax. The complete definition of freeFall is
as follows:

freeFall (20, y0), (vz0,vy0)) = [$hydra|
sigrel ((z,y), (v, vy)) where
init (z,y) = ($209%, $y0$)
init (vz, vy) = ($vz08%, $vy093)
(der x, der y) = (vz, vy)
(der vz, der vy) = (0,— $ g%)
l

The keyword sigrel starts the definition of a signal rela-
tion. It is followed by a pattern that introduces signal vari-
ables giving local names to the signals that are going to be
constrained by the signal relation. This pattern thus speci-
fies the interface of a signal relation, similarly to how func-
tion arguments specify the interface of a function. After the
keyword where follow the equations that define the rela-
tion. These equations may introduce additional signal vari-
ables as needed. Equations marked by the keyword init are
initialisation equations used to specify initial conditions.

To refer to functional-level entities at the signal level, in-
side the quasiquotes, such references need to be antiquoted
by enclosing them between $-signs. Arbitrary Haskell ex-
pressions, using any functional-level variable in scope out-
side the quasiquoted block, are allowed between the an-
tiquotes. However, none of the signal-level variables are in
scope in antiquoted code. The abstract syntax for each an-
tiquoted Haskell expressions is then spliced in at the point
of the antiquote. For example, note how the functional-
level parameters defining the initial position and velocity
(20, y0, vx0, vy0) are referenced in the initialisation equa-
tions. A signal relation may thus depend on functional-level
values, thus making it parametrised. As we will see, these
values can be any kind of functional-level values, includ-
ing signal relations, thus achieving higher-order modelling
without further ado.

Of course, the quasiquotes and antiquotes are just an arti-
fact of our specific approach to implementing Hydra. A less
“noisy” syntax would certainly be possible (with some im-
plementation effort). However, the explicit quoting makes
the distinction between the functional level and the signal

© The Modelica Association, 2009

20-22, 2009

level manifest, which is helpful at least for explanatory pur-
poses.

Readers who are familiar with Modelica might find it il-
luminating to compare the Hydra model above with a Mod-
elica version. To facilitate comparison, we have kept the
Modelica version as close as possible to the Hydra version,
rather than trying to provide the “most natural” Modelica
model:

model FreeFall
parameter Real x0, y0, vx0, vyO0;
Real x(start=x0), y(start=y0);
Real vx(start=vx0), vy (start=vyO0);

equation
der (x) = vx;
der(y) = vy;
der (vx) = 0;
der (vy) = —-g;

end FreeFall;

Here, g is assumed to be a constant defined elsewhere.
Note how Modelica parameters, that denote entities that re-
main constant during continuous integration, correspond to
functional-level variables in Hydra, while Modelica vari-
ables that change during continuous integration correspond
to signal-level Hydra variables. A difference, though, is
that Modelica parameters can only change at the very start
of a simulation, while Hydra functional-level variables can
change at every event occurrence.

In a completely analogous way to the free-falling mass,
we define a parametrised signal relation that models the
pendulum in its unbroken mode. The parameters are the
length of the rod [and the initial angle of deviation phi0:

pendulum :: Double — Double — SR Body
pendulum | phi0 = [$hydra|
sigrel ((z,y), (vz, vy)) where
init phi = $phi0 $
init der phi =0
init vz =0
init vy =0
(z,y) = ($1 8 xsin phi,— $ 1§ xcos phi)
(vz,vy) = (der z, der y)
der (der phi) + (839 $ / $18) * sin phi =0
I

Again, for comparison, we give a Modelica version:

model Pendulum
parameter Real 1,
Real x, vy, vx, Vy;
Real phi (start=phi0),
equation
1 x sin(phi);
-1 % cos(phi);
der (x) ;
vy = der(y);
phid = der (phi);
der (phid) + (g/1)
end Pendulum;

rhiO;
phid;
X:

y =
v =

* sin(phi) = 0;

211

Proceedings 7th Modelica Conference, Como, Italy, Sep.

We proceed to extend the above definition into a signal
relation that also provides an event signal defining when
the pendulum is to break. An event signal is a signal that
is only defined at discrete points in time, events. In this
case, an event is generated at a specified point in time, and
the value of the event signal is the state (position and ve-
locity) of the pendulum at that point. Note how the new
signal relation is defined by extending the previous one.
The parametrised signal relation pendulum is applied to the
length of the pendulum and the initial angle of deviation at
the functional level (within antiquotes), thus computing a
signal relation. This relation is then applied at the signal
level, through signal relation application (the operator ¢),
instantiating the equations of pendulum in the context of
breakingPendulum and thus effectively extending the def-
inition of pendulum:

breakingPendulum :: Double — Double — Double
— SR (Body, E Body)
breakingPendulum t | phi0 = [$hydra|
sigrel (((z, y), (v, vy)).
event eQ((_, _), (-, _))) where
$ pendulum 1 phi0 $ o ((z,y), (vz, vy))
event e = ((x,y), (vr, vy)) when time = $t $

H

The process of unfolding signal relation applications is
called flattening and is in many ways similar to the trans-
formation of hierarchical models in languages like Model-
ica into a flat system of equations, a process usually also re-
ferred to as flattening. Unfolding signal relation application
in Hydra is straightforward: the actual arguments (signal-
valued expressions) to the right of the signal relation appli-
cation operator ¢ are simply substituted for the correspond-
ing formal arguments (signal variables) in the body of the
signal relation to the left of ¢. The only real issue is that
name capture, accidental clashes of variable names®, must
be avoided by an appropriate renaming strategy.

Finally, we simulate the actual breaking of the pendulum
by switching from the pendulum equations to the free fall
equations at the point where the event is generated. This is
accomplished by the switch-combinator* with the follow-
ing type signature:

switch :: SR (a, E b) — (b — SR a) — SR a

The as and bs in the above type signature are polymorphic
type variables that can be instantiated to any specific type.
For example, a would be a pair of reals for a binary signal
relation.

The switch-combinator is another example of higher-
order modelling: it takes two signal relations as arguments
(one plain signal relation and one parametrised signal rela-
tion; i.e. a function returning a signal relation) and com-
bines them into a new signal relation that initially im-
poses constraints according to the first relation, and after

3For example, a local variable in a signal relation body having the same
name as a variable in one of the actual arguments.

4A combinator is a function without free variables. Functions whose
main purpose is to combine functions into new functions, are often referred
to as combinators to emphasise this purpose.

© The Modelica Association, 2009

20-22, 2009

the switch according to the second relation. Again, this is in
many ways just syntax that happens to fit well in our FHM
setting. One could envision alternative ways of expressing
switching from one set of equations to another, such as con-
ditionals where each branch give one set of equations.

In more detail, the switch-combinator expects an event
signal output from its first signal relation argument. The
first time this event signal is defined, the switch combinator
applies its second argument (the parameterised signal rela-
tion) to the value of the event signal at this point, computing
a new signal relation of the same type as the first signal re-
lation argument, and then replacing the equations from the
first signal relation with those of the newly computed signal
relation:

mainSR :: SR Body
mainSR = switch (breakingPendulum 10 1 (pi / 4))
freeFuall

Note that the switching event carries the state of the pen-
dulum at the breaking point as a value of type Body. This
value is passed to freeFall, resulting in a model of the free-
falling mass that is initialised in a way that ensures that the
position and velocity of the mass become continuous sig-
nals.

2.4 The Low Level Virtual Machine

The Low Level Virtual Machine (LLVM) [7] is a language-
independent, portable, optimising, compiler back-end. As
its name suggests, it provides a compiler with a virtual ma-
chine target and takes care of translating the LLVM code
into code for any specific, concrete, architecture supported
by the LLVM. There are a number of backends with capa-
bilities similar to LLVM that we could have used instead.
However, LLVM is rather typical, so the following discus-
sion, while centred around LLVM, is mostly relevant also
for other similar backends.

The LLVM has been very carefully engineered to on
the one hand be sufficiently high-level to be truly portable
across different architectures, shielding the the compiler
from the low-level details of the ultimate target. In that
sense, it is a principled alternative to using a language like C
as a compiler target for portability. Also, this makes it pos-
sible to support generic, target-independent optimisations at
the LLVM level, saving the compiler writer from the burden
of implementing many standard optimisations from scratch.
On the other hand, LLVM has also been engineered to be
sufficiently low-level to not get in the way of generating
high-performance code, and to not make any assumptions
about the source language. Taken together, this means that
the LLVM it is an ideal target for compilers for a wide range
of different languages.

The LLVM is thus rather unlike what probably is the most
common virtual machine, the Java Virtual Machine (JVM).
The JVM is very Java-centric, making it a poor fit for any
language which isn’t similar to Java. Also the JVM is funda-
mentally a byte-code interpreter, which incurs performance

212

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

penalties, even if just-in-time (JIT) compilation often is em-
ployed to speed up the interpretation. LLVM code, on the
other hand, is designed to be compiled into code for the ul-
timate target architecture.

That said, the LLVM, like the JVM, does support adding
in new code dynamically to running applications. The
LLVM achieves this through JIT compilation. An applica-
tion that needs to invoke code that is generated dynamically
is linked with the LLVM JIT compiler. The code generator
of the JIT compiler is the same as in LLVM static com-
piler [9]. The LLVM code generator has been shown to out-
perform the code generator of GNU Compilers Collection
(GCC) in a number of benchmarks, both in speed of code
generation and execution of generated code [8].

The JIT compiler can be invoked through the provided
API whenever a piece of new code needs compiling. The
JIT compiler will return a handle to the generated code. This
can then be called, just like any statically compiled func-
tion, and equally efficient. It is also possible to dispose of
dynamically generated code that is no longer needed. The
LLVM JIT capabilities turned out to be a very good fit for
supporting structurally dynamic simulation, as will be dis-
cussed in the following.

3 Simulation

In this section we describe how simulation is performed in
Hydra. The process is illustrated in Figure 2 and is con-
ceptually divided into four stages. In the first stage, a sig-
nal relation is flattened and subsequently transformed into a
mathematical representation suitable for numerical simula-
tion. In the second stage, this representation is just-in-time
compiled into efficient machine code. In the third stage, the
compiled code is passed to a numerical solver that simulates
the system until the end of simulation or an event occur-
rence. In the fourth stage, in the case of an event occurrence,
the event is analysed, a corresponding new signal relation is
computed and the process is repeated from the first stage.
In the following, each stage is described in more detail.

3.1 Symbolic Processing

As a first step, all signal variables are renamed to give them
distinct names. This is to simplify the process of flattening,
signal relation application unfolding (see section 2.3). All
event variables are also given distinct names to allow the
event handler to identify a corresponding event variable in
the original unflattened signal relation at the moment of an
event occurrence (see section 3.4). Having carried out this
preparatory renaming step, all signal relation applications
are unfolded until the signal relation is completely flattened.

Further symbolic processing is then performed to trans-
form the flattened signal relation into a form that is suitable
for numerical simulation. In particular, derivatives of com-
pound signal expressions are computed symbolically. In the
case of higher-order derivatives, extra variables and equa-
tions are introduced to ensure that all derivatives in the flat-
tened system are first order. While the numerical solver used

© The Modelica Association, 2009

777777 v

Signal Relation

v

Flattened
Signal Relation

Symbolic
Processing

(%2, 8,9, 0)| | f(%5,7,0.0)| |e(%,7,4,1)

Q2 g LILVM LLVM LILVM
§ 9 Code Code Code
B 5
P S S "
? S) Machine Machine Machine
s O ode Code Code
< 8 KINSOL
o .9
5 5 I

=
= E
AB | g e IDA
- =
s E ||
$ = vent
H

s

Simulation Result

Figure 2: Simulation run-time system of Hydra

in the current implementation handles higher-index systems
of equations, it is desirable to perform index reduction sym-
bolically at this stage as well [1, 23]. Hydra does not yet do
this, but we intend to implement symbolic index reduction
in the future.

Finally, the following equations are generated at the end
of the stage of symbolic processing:

L dT

Z(E7x7g7t) :O7t:t0 (1)
az _
f(Eax7yat):O (2)

@

e(a,x,y,t):O (3)

Here, & is a vector of differential variables, ¥ is a vector
of algebraic variables, ¢ is time, and ¢ is the starting time
for the current set of equations. Equation 1 determines the

initial conditions for Equation 2 (i.e., the values of ‘fl—f,f

213

Proceedings 7th Modelica Conference, Como, Italy, Sep.

and ¢/ at time ¢g). Equation 2 is the main DAE of the system
that needs to be integrated in time starting from the initial
conditions. Equation 3 specifies the event conditions.

3.2 Just-in-time Compilation

The generated equations are implicitly formulated ones: the
mathematical representation of non-causal signal relations.
In general, it is not possible to transform these implicit
equations into explicit ones; i.e., to completely causalise
them [1]. Consequently, a system of implicit equations
needs to be solved at the start of the simulation of each
structural configuration mode and at every integration step.
For example, a numerical solution of an implicitly formu-
lated DAE (Equation 2) involves execution of the function
f, anumber of times (sometimes hundreds or more at each
integration step), with varying arguments, until it converges
to zero. The number of executions of f depends on various
factors including the required precision, the initial guess,
the degree of non-linearity of the DAE, etc.

To enable efficient simulation, it is important to compile
the functions ¢, f, and e to a representation that can be ex-
ecuted efficiently. In addition, as Hydra allows the equa-
tions to change completely during simulation, it follows that
compilation cannot be performed only before the simulation
starts, but has to be performed during the simulation as well,
whenever the equations change.

The simulation run-time system of Hydra supports JIT
machine code generation using the compiler infrastructure
provided by LLVM. The functions i, f and e are compiled
into LLVM instructions that in turn are compiled by the
LLVM JIT compiler into machine code for the processor
architecture the simulation is running on. As noted above,
the process of JIT compilation is triggered by the simula-
tion run-time system at every discrete event that changes
the equations of the system. The generated machine code is
then passed to the numerical solver.

3.3 Numerical Simulation

The numerical suite used in the current implementation of
Hydra is called SUNDIALS [6]. The following components
of SUNDIALS are used:

e KINSOL: nonlinear algebraic equation systems solver

e IDA: differential algebraic equation systems solver

The code for the function ¢ is passed to KINSOL that
numerically solves the system and returns initial values (at
time tg) of %,9&' and ¢/. These vectors together with the code
for the functions f and e are passed to IDA that proceeds to
solve the DAE by numerical integration. This continues un-
til either the simulation is complete or until one of the events
defined by the function e occurs. Precise event detection fa-

cilities are provided by IDA.

© The Modelica Association, 2009

20-22, 2009

3.4 Event Handling

At the moment of an event occurrence, the numerical sim-
ulator terminates and presents the following information to
an event handler:

e Name of the event signal variable for which an event
occurrence has been detected

e Time ¢, of the event occurrence

e Instantaneous values of the signal variables (i.e., val-

ues of Cfl—f, Z and ¥ at time t.)

In the case of the breaking pendulum model, the name of
the detected event signal variable is e. In addition, ¢, = 10,
r =~ 0.21,y = —0.98, vxr ~ 2.25 and vy ~ 0.49. Here, z,
y, vz and vy are the signal variables that are constrained by
the pendulum signal relation.

Next, the event handler traverses the original unflattened
signal relation and finds the event value expression (i.e., a
signal-level expression) that corresponds to the aforemen-
tioned event signal variable. In the case of the breaking
pendulum model, the expression is ((x,y), (vz, vy)). This
expression is evaluated by substituting the instantaneous
values of the corresponding signals for the variables. In
the case of the breaking pendulum model, the computed
value is ((0.21,—0.98), (2.25,0.49)). However, note that
this now is a functional-level expression. This is the only
place in Hydra where instantaneous values of signals are
passed back to the functional level.

As a final step, the event handler applies the second
argument of the switch combinator (i.e., the function to
compute the new signal relation to switch into) to the
functional-level event value. In the case of the break-
ing pendulum model, the function freeFull is applied to
((0.21,—-0.98), (2.25,0.49)).

The result of this application is a new signal relation. The
simulation process continues from the first stage of sym-
bolic processing and onwards by discarding the old sig-
nal relation and simulating the new one. In the case of the
breaking pendulum model, the pendulum signal relation is
discarded together with the machine code that was gener-
ated for it by the LLVM JIT compiler.

In the current implementation, the new signal relation is
flattened and new equations generated without reusing old
ones from previous modes. In other words, events are not
treated locally. In addition, the state of the whole system
needs to be transferred for global and explicit reinitialisa-
tion of the entire system at every event using a top level
switch, like in the breaking pendulum example. We hope to
address these issues in the future: see Section 6.

4 Performance

In this section we provide an initial performance evaluation
of the current prototype implementation of Hydra. We are
mainly concerned with the overheads of mode switching
(computing new structural configurations at events, sym-
bolic processing of the equations, and JIT compilation) and

214

Proceedings 7th Modelica Conference, Como, Italy, Sep.

how this scales when the size of the models grow in order
to establish the feasibility of our approach. The time spent
on numerical simulation is of less interest at this point: as
we are using standard numerical solvers, and as our model
equations are compiled down to native code with efficiency
on par with statically generated code (see section 2.4),
this aspect of the overall performance should be roughly
similar to what can be obtained from other compilation-
based modelling and simulation language implementations.
For this reason, and because other compilation-based, non-
causal modelling and simulation language implementations
do not carry out dynamic reconfiguration, we do not com-
pare the performance to other simulation software. The re-
sults would not be very meaningful.

The evaluation setup is as follows. The numerical simula-
tor integrates the system using variable-step, variable-order
BDF (Backward Differentiation Formula) solver [1]. Abso-
lute and relative tolerances for numerical solution are set to
1075 and trajectories are printed out at every point where
t = 1073 % k, k € N. For static compilation and JIT com-
pilation we use GHC 6.10.4 and LLVM 2.5 respectively.
Simulations are performed on a 2.0 GHz x86-64 Intel®)
Core™2 CPU. However, presently, we do not exploit any
parallelism, running everything on a single core.

Let us first consider the model of the breaking pendu-
lum from Section 2.3. We simulate it over the time interval
t € [0,20], letting the pendulum break at ¢ = 10. Table 1
shows the amount of time spent simulating each mode of
the system, and within that how much time that is spent
on each of the four conceptual simulation process stages
(see Section 3). As can be seen, most time (80-90 %) is
spent on numerical simulation, meaning the overheads of
our dynamic code generation approach was small in this
case. Also, in absolute terms, it can be seen that the amount
of time spent on symbolic processing, JIT compilation, and
event handling was small, just fractions of a second.

20-22, 2009

component). Every time ¢ = 10 % k, where k € N, the num-
ber of circuit components is increased by 200 (and thus the
number of equations by 1000) by switching the additional
components into the circuit.

200 Components 400 Components 600 Components
1000 Equations 2000 Equations 3000 Equations
tel0,10) t € [10, 20) t € [20, 30)
CPU Time CPU Time CPU Time
S P S % s %
Symbolic 0.063 0.6 0.147 0.6 0.236 0.5
Processing
T 1.057 10.2 2.120 8.3 3.213 6.6
Compilation
Numerical 9.273 89.2 23.228 91.1 45.140 929
Simulation
Event 0.004 0.0 0.006 0.0 0.008 0.0
Handling
[Total [10397] 100.0 [25501 [100.0 [48.598 | 100.0 |

Table 2: Time profile of structurally dynamic RLC circuit
simulation, part I

Pendulum Free Fall
te0,10) t € [10, 20]
CPU Time CPU Time
s % s %
Symbolic 0.0001 0.2 | 0.0000 0.0
Processing
JT 0.0110 18.0 | 0.0077 9.1
Compilation
Numerical 0.0500 81.8 0.0767 90.9
Simulation
Event 0.0000 0.0 - -
Handling
[Total [0.0611 [100.0 [0.0844 [100.0]

Table 1: Time profile of the breaking pendulum simulation

However, the breaking pendulum example is obviously
very small (just a handful of equations), and it only needs
to be translated to simulation code twice: at simulation start
and when the pendulum breaks. To get an idea of how the
performance of the prototype implementation scales with
an increasing number of equations, we constructed a hy-
brid model of an RLC circuit (i.e., a circuit consisting of
resistors, inductors and capacitors) with dynamic structure.
In the first mode the circuit contains 200 components, de-
scribed by 1000 equations in total (5 equations for each

© The Modelica Association, 2009

800 Components 1000 Components 1200 Components
4000 Equations 5000 Equations 6000 Equations
t € [30, 40) t € [40, 50) t € [50, 60]
CPU Time CPU Time CPU Time
S %o S %o S 4
Symbolic 0.328 0.4 0.439 0.4 0.534 0.3
Processing
JIT 4.506 4.9 5.660 5.1 6.840 43
Compilation
Numerical 86.471 94.7 105.066 94.5 152.250 95.4
Simulation
Event 0.011 0.0 0.015 0.0
Handling
[Total [91317 100.0 [111.179] 100.0 | 159.624 [100.0 |

Table 3: Time profile of structurally dynamic RLC circuit
simulation, part II

Tables 2 and 3 show the amount of time spent in each
mode of the system and in each conceptual stage of simu-
lation of the structurally dynamic RLC circuit. In absolute
terms, it is evident that the extra time spent on the mode
switches becomes significant as the system grows. How-
ever, in relative terms, the overheads of our dynamic code
generation approach remains low at about 10 % or less of
the overall simulation time.

While JIT compilation remains the dominating part of the
time spent at mode switches, Figure 3 demonstrates that the
performance of the JIT compiler scales well. In particular,
compilation time increases roughly linearly in the number
of equations. In addition, it should be noted that the time
spent on symbolic processing and event handling remains
encouragingly modest (both in relative and absolute terms)
and grows slowly as model complexity increases. There are
also many opportunities for further performance improve-
ments: see Section 6 for some possibilities.

Our approach offers new functionality in that it allows
non-causal modelling and simulation of structurally dy-
namic systems that simply cannot be handled by static ap-
proaches. Thus, when evaluating the feasibility of our ap-
proach, one should weigh the overheads against the limi-
tation and inconvenience of not being able to model such
systems non-causally.

215

Proceedings 7th Modelica Conference, Como, Italy, Sep.

Symbolic Processing —e—
JIT Compilation —*—
Event Handling —e—

| | | | | |
1000 2000 3000 4000 5000 6000
Number of Equations

Figure 3: Plot demonstrating how CPU time spent on mode
switches grows as number of equations increase in struc-
turally dynamic RLC circuit simulation

5 Related Work

5.1 Sol

Sol is a Modelica-like language [21, 22]. It introduces lan-
guage constructs that enable the description of systems
where objects are dynamically created and deleted, thus
aiming at supporting modelling of highly structurally dy-
namic systems. So far, the research emphasis has been on
the design of the language itself along with support for in-
cremental dynamic recausalisation and dynamic handling
of structural singularities. An interpreter is used for sim-
ulation. The work on Sol is thus complementary to ours:
techniques for dynamic compilation would be of interest
in the context of Sol to enable it to target high-end sim-
ulation tasks; conversely, algorithms for incremental re-
causalisation is of interest to us to minimise the amount of
work needed to regenerate simulation code after structural
changes (see Section 6).

5.2 MOSILAB

MOSILAB is an extension of the Modelica language that
supports the description of structural changes using object-
oriented statecharts [19]. This enables modelling of struc-
turally dynamic systems. It is a compiled implementation.
However, the statechart approach implies that all structural
modes must be explicitly specified in advance, meaning
that MOSILAB does not support highly structurally dy-
namic systems. Even so, if the number of possible config-
urations is large (perhaps generated mechanically by meta-
modelling), techniques like those we have investigated here
might be of interest also in the implementation of MOSI-
LAB.

© The Modelica Association, 2009

20-22, 2009

5.3 Modelling Kernel Language

Broman [2, 3] is developing the Modelling Kernel Lan-
guage (MKL) that is intended to be a core language for
non-causal modelling languages such as Modelica. Broman
takes a functional approach to non-causal modelling, simi-
lar to the FHM approach [17, 18]. One of the main goals of
MKL is to provide a formal semantics of the core language.
Currently, this semantics is based on an untyped, effectful
A-calculus.

Similarly to Hydra, MKL provides a A-abstraction for
defining functions and an abstraction similar to sigrel for
defining non-causal models. Both functions and non-causal
models are first-class entities in MKL, enabling higher-
order, non-causal modelling. The similarity of the basic ab-
stractions in Hydra and MKL leads to a similar style of
modelling in both languages.

Thus far, the work on MKL has not specifically consid-
ered support for structural dynamics, meaning that its ex-
pressive power in that respect is similar to current main-
stream, non-causal modelling and simulation languages like
Modelica. However, given the similarities between MKL
and FHM/Hydra, MKL should be a good setting for ex-
ploring support for structural dynamics, which ultimately
could carry over to better support for structural dynamics
for any higher-level language that has a semantics defined
by translation into MKL. Again, the implementation tech-
niques discussed in this paper should be of interest in such
a setting.

6 Future Work

In the current implementation of Hydra, a new flat system of
equations is generated at each mode switch without reusing
the equations of the previous mode. It would be interesting
to identify exactly what has changed at each mode switch,
thus allowing reuse of the equations from the previous mode
as much as possible. We hope to benefit from Zimmer’s
related work on incremental symbolic processing methods
for structurally dynamic, non-causal simulation [22, 23]. In
particular, information about the equations that remain un-
changed during the mode switches provides opportunities
for the JIT compiler to reuse the machine code from the
previous mode, thus reducing the burden on the JIT com-
piler and consequently the compilation time during mode
switches.

We are considering approaches for further performance
improvements by taking advantage of multi-core hardware.
In principle, the functions 4, f and e (see Figure 2) could be
JIT compiled in parallel, which should give a respectable
speedup on a two-core system. The functions could also
be broken down into smaller functions, each independently
compilable, thus potentially keeping a fair number of cores
busy simultaneously.

Another, or possibly complementary, idea, is a mixed in-
terpreter and JIT compiler approach. Numerical simulation
would start directly after the symbolic processing stage by
interpreting the simulation code. At the same time, a JIT

216

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

compilation process would be forked in the background.
This seems particularly easy in the context of LLVM as it
provides both an interpreter and JIT compiler for LLVM
code. Numerical simulation would initially progress with
an extra interpretive overhead. However once the JIT com-
pilation process is finished, the interpreter would be substi-
tuted by the JIT compiled code. On multi-core hardware,
this may lead to significant performance improvements by
decreasing the delays during the mode switches and im-
proving overall simulation time.

In the current version of Hydra, transfer of system state
between modes and reinitialisation has to be coded explic-
itly at every switch for the entire system. This quickly be-
comes infeasible as models grow. Better language support
for declaratively specifying implicit state transfer for un-
changing parts of a system is thus something that we intend
to look into.

7 Conclusions

This paper presents a novel approach to the implementation
of non-causal modelling and simulation languages. It allows
symbolic processing and code generation to be carried out
as the model undergoes structural changes during the sim-
ulation, thus enabling non-causal modelling and simulation
of highly structurally dynamic systems. Our approach pro-
vides an efficient alternative to interpreted implementations
of structurally dynamic modelling languages and, at the
same time, lifts the restrictions that are associated with pre-
simulation compilation of non-causal modelling languages.
Our work is carried out in the framework of Functional
Hybrid Modelling (FHM) because, by supporting higher-
order modelling, this provides expressive language features
for describing structurally dynamic systems. However, our
implementation approach can be applied to other modelling
languages that aim to support structural dynamism.

Acknowledgements. This work was supported by EP-
SRC grant EP/D064554/1. We would like to thank the
anonymous reviewers for their thorough and constructive
feedback that helped improve the paper.

References

[1] Kathryn Eleda Brenan, Stephen La Vern Campbell,
and Linda Ruth Petzold. Numerical solution of initial-

value problems in differential-algebraic equations.
SIAM, Philadelphia, 1996.

David Broman. Flow Lambda Calculus for declarative
physical connection semantics. Technical Reports in
Computer and Information Science 1, Linkoping Uni-
versity Electronic Press, 2007.

(2]

David Broman and Peter Fritzson. Higher-order
acausal models. In Peter Fritzson, Frangois Cellier,
and David Broman, editors, Proceedings of the 2nd

© The Modelica Association, 2009

(4]

(5]

(6]

(7]

(8]

(9]

[13]

217

International Workshop on Equation-Based Object-
Oriented Languages and Tools (EOOLT), number 29
in Linkoping Electronic Conference Proceedings,
pages 59-69, Paphos, Cyprus, 2008. Linképing Uni-
versity Electronic Press.

Conal Elliott and Paul Hudak. Functional reactive an-
imation. In Proceedings of ICFP’97: International
Conference on Functional Programming, pages 163—
173, June 1997.

George Giorgidze and Henrik Nilsson. Embedding a
functional hybrid modelling language in Haskell. In
Refereed Proceedings of the 20th International Sym-
posium on the Implementation and Application of
Functional Languages (IFL °08), University of Hert-
fordshire, Hatfield, UK, September 2008. To Appear.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant,
Steven L. Lee, Radu Serban, Dan E. Shumaker, and
Carol S. Woodward. Sundials: Suite of nonlinear and
differential/algebraic equation solvers. ACM Trans.
Math. Softw., 31(3):363-396, 2005.

Chris Lattner. LLVM: An Infrastructure for
Multi-Stage Optimization. Master’s thesis, Com-
puter Science Dept., University of Illinois at
Urbana-Champaign, Urbana, IL, Dec 2002. See
http://1lvm.org.

Chris Lattner. Introduction to the llvm compiler
system. In Proceedings of International Workshop
on Advanced Computing and Analysis Techniques in
Physics Research, Erice, Sicily, Italy, 2008.

Chris Lattner and Vikram Adve. The LLVM Compiler
Framework and Infrastructure Tutorial. In LCPC’04
Mini Workshop on Compiler Research Infrastructures,
West Lafayette, Indiana, Sep 2004.

Geoffrey Mainland. Why it’s nice to be quoted:
quasiquoting for haskell. In Haskell ’07: Proceedings
of the ACM SIGPLAN workshop on Haskell workshop,
pages 73-82, New York, NY, USA, 2007. ACM.

The Modelica Association. Modelica — A Unified
Object-Oriented Language for Physical Systems Mod-
eling: Tutorial version 1.4, December 2000.

Pieter J. Mosterman. Hybrid Dynamic Systems: A
Hybrid Bond Graph Modeling Paradigm and its Ap-
plication in Diagnosis. PhD thesis, Graduate School
of Vanderbilt University, Nashville, Tennessee, May
1997.

Pieter J. Mosterman. An overview of hybrid simula-
tion phenomena and their support by simulation pack-
ages. In HSCC ’99: Proceedings of the Second In-
ternational Workshop on Hybrid Systems, pages 165—
177, London, UK, 1999. Springer-Verlag.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

© The Modelica Association, 2009

Pieter J. Mosterman, Gautam Biswas, and Martin Ot-
ter. Simulation of discontinuities in physical system
models based on conservation principles. In Proceed-
ings of SCS Summer Conference 1998, pages 320-
325, July 1998.

Henrik Nilsson. Type-based structural analysis for
modular systems of equations. In Peter Fritzson,
Francois Cellier, and David Broman, editors, Proceed-
ings of the 2nd International Workshop on Equation-
Based Object-Oriented Languages and Tools, num-
ber 29 in Linkoping Electronic Conference Pro-
ceedings, pages 71-81, Paphos, Cyprus, July 2008.
Link&ping University Electronic Press.

Henrik Nilsson, Antony Courtney, and John Peterson.
Functional reactive programming, continued. In Pro-
ceedings of the 2002 ACM SIGPLAN Haskell Work-
shop (Haskell’02), pages 51-64, Pittsburgh, Pennsyl-
vania, USA, October 2002. ACM Press.

Henrik Nilsson, John Peterson, and Paul Hudak. Func-
tional hybrid modeling. In Proceedings of PADL’03:
Sth International Workshop on Practical Aspects
of Declarative Languages, volume 2562 of Lecture
Notes in Computer Science, pages 376-390, New Or-
leans, Lousiana, USA, January 2003. Springer-Verlag.

Henrik Nilsson, John Peterson, and Paul Hudak. Func-
tional hybrid modeling from an object-oriented per-
spective. In Peter Fritzson, Francois Cellier, and
Christoph Nytsch-Geusen, editors, Proceedings of
the st International Workshop on Equation-Based
Object-Oriented Languages and Tools (EOOLT),
number 24 in Linkdping Electronic Conference
Proceedings, pages 71-87, Berlin, Germany, 2007.
Link&ping University Electronic Press.

Christoph Nytsch-Geusen, Thilo Ernst, André Nord-
wig, Peter Schwarz, Peter Schneider, Matthias Vet-
ter, Christof Wittwer, Thierry Nouidui, Andreas Holm,
Jiirgen Leopold, Gerhard Schmidt, Alexander Mattes,
and Ulrich Doll. MOSILAB: Development of a mod-
elica based generic simulation tool supporting model
structural dynamics. In Proceedings of the 4th Inter-
national Modelica Conference, pages 527-535, Ham-
burg, Germany, 2005.

Giinther Zauner, Daniel Leitner, and Felix Breite-
necker. Modelling structural-dynamics systems in
Modelica/Dymola, Modelica/MOSILAB, and Any-
Logic. In Peter Fritzson, Francois Cellier, and
Christoph Nytsch-Geusen, editors, Proceedings of
the st International Workshop on Equation-Based
Object-Oriented Languages and Tools (EOOLT),
number 24 in Link6ping Electronic Conference Pro-
ceedings, pages 99-110, Berlin, Germany, 2007.
Link&ping University Electronic Press.

Dirk Zimmer. Enhancing Modelica towards variable
structure systems. In Peter Fritzson, Francois Cellier,

[22]

[23]

218

and Christoph Nytsch-Geusen, editors, Proceedings
of the Ist International Workshop on Equation-Based
Object-Oriented Languages and Tools (EOOLT),
number 24 in Linkdping Electronic Conference
Proceedings, pages 61-70, Berlin, Germany, 2007.
Linkoping University Electronic Press.

Dirk Zimmer. Introducing Sol: A general methodol-
ogy for equation-based modeling of variable-structure
systems. In Proceedings of the 6th International Mod-
elica Conference, pages 47-56, Bielefeld, Germany,
2008.

Dirk Zimmer. An application of Sol on variable-
structure systems with higher index. In Proceedings
of the 7th International Modelica Conference, Como,
Italy, 20009.

