
Modelica Library for Improved Spacecraft Resource Budgeting

Niccolo Cymbalist Marc-Andre Lauriault Chahé Adourian (supervisor)
Space Technologies, Canadian Space Agency

John H. Chapman Space Centre 6767 Route de l'Aéroport Saint-Hubert, QC, Canada

Abstract

The SpacecraftLib library has been developed in
Modelica for use in the domain of Systems
Engineering for space systems with a special
emphasis on modularity, usability and ease of
modification and expansion. It is a
multidisciplinary tool which combines all the
relevant subsystems. Power, command and data
handling, and mechanical models are integrated
into a single Modelica device in order to model as
completely as possible the behaviour of a physical
onboard device. We will describe the tool,
examine a case study and briefly analyze the
results of a simulation.

Keywords: spacecraft simulation; resource
budgeting; systems engineering; command
network

1. Introduction

Modeling and simulation tools in Systems
Engineering for spacecraft have the potential to
improve the efficiency of the design process. One
task in which simulation may be effectively
utilized is to assist in the generation of
requirements through improved resource
budgeting. Budgeting in this context is defined as
the process of characterizing the components
which affect an overall system parameter while
focusing on system level requirements and trade-
offs [1].
A simulation tool for use in Systems Engineering
as a whole, and specifically the resource budgeting
exercise, must meet the following requirements:

• Simple. The model must have the capability of

being rapidly and easily assembled and
modified.

• Multidisciplinary. The behaviour and
interactions of power, command and data

handling, mechanical and thermal systems and
link behaviour must be modeled together.

• Appropriate level of detail. The model must

be accurate enough to define requirements.

• Easily Customizable and Expandable. The

tool must be able to be extended for use in
more advanced stages of the design process.

Currently available spacecraft simulation tools are
generally either simple spreadsheet based models,
mission design tools (STK)[2], complex custom
built simulators or tools targeted at a specific
subsystem, such as Attitude and Orbit Control
Systems (AOCS)[3]. While these tools are all
useful in their respective domains, they do not
meet the needs of a resource budgeting tool for
spacecraft Systems Engineering.

This paper introduces a Modelica library
specifically designed for resource budgeting,
capable of expanding to a full design tool, called
SpacecraftLib. It can be used to build a ground
station and multiple spacecraft models, each
including power, payload, command and data
handling subsystems and link models. The
spacecraft models receive and react to time-tagged
commands during the simulation and interact with
commercial spacecraft modeling software for
advanced functions.

The use of this tool will allow the user to optimize
the level of complexity of the simulator at each
stage of the design process, especially in the early
stages of the design, by increasing or decreasing
the complexity of the models built using
SpacecraftLib. This will lead to a more effective
and efficient design process.

This library is implemented in Modelica because
we find it well suited to hybrid, multidisciplinary
modeling due to its modularity and ease of use.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 151 DOI: 10.3384/ecp09430037

2. The SpacecraftLib library

The SpacecraftLib library is divided into 4 main
sections, each containing components used to
model a different subsystem.

These components are easily assembled into
devices, which behave as physical onboard devices
would. They have mass and inertia, consume
power, generate data and interact with the user or
onboard computer via the command network.

• The DataBudget package includes

components for processor, data flow,
command network and communications
equipment modeling.

• The PowerBudget package includes

components used for power generation and
distribution modeling. It also includes
components used to model the power
consumption characteristics of onboard
devices.

• The Mechanical package includes a version

of the Multibody library expanded to
account for advanced gravity and magnetic
fields modeling. It includes a modified
world model, as well as reaction wheel,
extendable solar array and thruster
assemblies. It also includes controllers for
each of the assemblies.

• The OrbitalMechanics package includes an

ephemerides generator for the nine planets
and the Moon based on external ephemeris
tables.

We provide the user with an inheritable device
template with components common to all devices:
a command port and command decoder, power
consumption characteristics and a state box. To
model the behavior of a specific device, the user
may extend the device template to a new class and
add the desired components from the available
subsystem packages (see Figure 1).

Figure 1. Camera device

The devices are in turn assembled into a complete
spacecraft model which is initialized into an orbit.
The model exchanges data with the ground station,
generates and consumes power and responds to
user commands.

SpacecraftLib is complemented by ephemeris
tables and solar flux data from STK and a
commercial spacecraft modeling library called
Spacecraft Control Toolbox[4]. The latter was
converted from MATLAB to C to interface with
Modelica.

2.1 DataBudget section

SpacercraftLib provides components to model the
processor unit(s), the command network, the flow
of data between different devices and the ground
station, and the communication equipment on the
ground and onboard the spacecraft(s). The results
of the simulation allow the user to accurately
define the requirements of the command and data
handling system onboard the spacecraft and on the
ground.

2.1.1 Data flow modeling

In SpacecraftLib data is treated as a flow,
behaving such that it may be generated, deleted, or
compressed. Data modeling components include
various data links, data storage units, data sources
and sinks, and data processing units. These
components are purely conceptual, designed to
model the behavior of a data handling system
instead of modeling the actual physical
components of the system.

Data ports are flow connectors together with a
control line. Data ports may be active or passive.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 152

The active ports define the bit rates (in or out)
while the passive ports simply accept this flow.

The passive port may send back information
regarding the state of the receiving device via the
control line. This allows the active device to stop
removing (feeding) data when the receiving device
is not able to give (accept) data. Link components
are either variable bit rate links with a maximum
bit rate set by the user or links that compress or
expand the volume of data. The latter are used to
model data compression and EDAC (error
detection and correction) operations. Switch
components include on/off switches and splitters.

2.1.2 Command network modeling

The effort to maximize the usability of the tool led
to the creation of a flexible layered command bus
with ‘plug and play’ behavior. It allows for rapid
assembly or modification of a model by dropping
in a new device, naming it, and connecting it to the
bus. The command network model is portable and
has potential applications outside the field of
spacecraft engineering.

The command network contains two
complimentary levels of hierarchy. One level is
name based and one level is based on numerical
indices. The name based level roughly corresponds
to the physical location of the device to which the
command is intended for, and is set by the user.
The second level is based on numerical indices,
and is automatically generated and hidden from
the user. This level is used internally to map the
network of devices so that each ‘parent’ device
knows the location of all its ‘child’ devices and is
able to forward the command to the appropriate
device.

This combination of name and numeric based
addressing separates the user from the numerical
address system, allowing the user to specify the
command destination using only the physical
location of the device, as demonstrated in Figure 2.

Figure 2. Command syntax examples

In order to achieve ‘plug and play ’ level usability,
the Modelica code is complemented by a custom
built C library. The Modelica model (Modelica
side) and C library (C side) run concurrently
throughout the simulation. Flowchart 1 illustrates
the sequence of events in the command network
model.

Flowchart 1. Sequence of events in command
network model

The command network is composed of four
components on the Modelica side (see Figure 3),

initialization

send command

receive command

command list
imported

device name &
address mapped

devices get
numeric address

numeric address appended
to command

commands filter through
network

command body converted to
signal

command executed
at t=time tag

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 153

including the commandInput, networkNode, device
and satControls components.

Figure 3. Command network example

1. The commandInput component imports the
textual commands from the user, parses and
translates them and stores them in a buffer. It
retrieves the appropriate numerical address for
each command from the automatically generated
device list on the C side and appends it to the
command (see networkNode description, next
paragraph, for details on the address generation
mechanism). CommandInput then sends the
commands through the network in packets. The
size and frequency of the packets are defined by
the user.

2. The networkNode component is a node in the
network between different levels. It contains a user
assigned address index which is used to generate
the addresses of devices under it (at initialization)
and to filter the commands by their address indices
(when the commands are sent during the
simulation). The Modelica code automatically
generates an address at initialization by
propagating an empty array from the top to the

lower levels of the network. At each node in the
network, the empty array gets progressively
populated, recording its path through the network
from the command source (which may be either
the commandInput component or a parent device)
to each device.

3. The device component is at the receiving end of
the command network. The user assigns a name to
the device instance as a parameter. Upon
initialization, the device receives a unique
identifier (UID) from the C side and registers itself
to the list of devices by passing its name, UID,
address and parent device UID (if applicable) back
to the C side. When a device receives a command
or packet of commands, it either passes them on to
a sub-device through its internal network or feeds
the commands to the satControls component.

4. The satControls component receives the
commands, extracts the time tag, translates them to
the appropriate signals and places the commands
in a queue. When simulation time matches the
time tag the command is executed.

On the C side, there is a unique identifier generator
and the address list which contains the device
UID, address, name and parent/child relationship
with other devices. The C code and Modelica
model interface via three external C functions.

1. The registerUID function is called by the device
component to obtain a unique identifier from the C
side.

2. The registerDevice function is called by the
device component to pass its name, address, UID
and parent UID to the C side to be added to the
device list (mapped).

3. getDeviceAddress is called by the
commandInput and device components, to retrieve
the device and sub device addresses, respectively.

2.1.3 Processor modeling

The processor model is used to test sequences of
instructions in a process and to evaluate the
processing load on the CPU. The main
components are the processor model template and
the individual process blocks (see Figure 4).

The processor model template is an extendable
version of the device model, with the addition of
data ports and additional parameters to

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 154

characterize the processing power and internal
bitrates. The user may select from the available
process blocks to build a new processor model, or
implement custom process blocks. Standard
processor options are also available.

Figure 4. An example of a processor model

Each process block contains a set of instructions
which are executed in sequence when the process
block is activated. The processor block executes
the instruction by sending signals to the ‘dumb’
components in the processor, such as the data link,
compress and switch components.

2.1.4 Communications modeling

The communications modeling components
include:

• Onboard communication equipment consisting

of customizable TX and RX antennas. User
defined parameters include antenna gain,
transmission power and frequency.

• Ground station antenna, characterized by its

location in latitude and longitude, horizon
angle, gain and by the parameters affecting
attenuation.

• The link analysis block uses Princeton

Satellite functions to calculate the theoretical
maximum uplink and downlink bitrates

(Shannon limit) based on the ground station
and onboard antenna parameters and the
location of the spacecraft and ground station.

2.2 PowerBudget section

The power budget section contains the components
related to the generation, storage, distribution and
consumption of power which would be found in a
typical photovoltaic cell based power subsystem.
Customization is achieved through parameterizing
the components and through redeclaration. For
instance, the user may use one large solar array at
one average temperature or multiple smaller solar
arrays of different temperatures to account for
temperature differences across a physical solar
array.

• The solar array model is parameterized by the

number and area of solar cells, maximum
power current, maximum power voltage, array
temperature and temperature coefficients. It
generates power according to the angle of
incidence of the panel and the intensity of the
solar flux.

• The battery model takes into account the cell

capacity, maximum depth of discharge,
charge/discharge ratio, and maximum charge
and discharge rate.

• The power distribution model interacts with

the power consumption block in the device
model to provide power according to the state
of device: on, off or idle. The device has
parameters to specify the power consumption
at each state.

2.3 Mechanics section

In order to model the physical characteristics of
each device as well as the spacecraft Attitude and
Orbit Control System, the standard Modelica
Multibody world model and body model were
modified to incorporate more complex gravity and
magnetic fields, as well as gravity gradient effects
[5]. Various actuators including reaction wheels,
thrusters, torque rods and their respective
controllers are included in the Mechanics section.

2.3.1 world model

The extended world model includes the option to
use a spherical harmonics gravity model instead of

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 155

point gravity. This component models the Earths
magnetic field using the International
Geomagnetic Reference Field (IGRF) and
incorporates a default spherical earth visualization
where the radius is set to the average Earth radius.
The user may customize the precision of the
gravity and magnetic field models by specifying
the number of coefficients used for the gravity and
magnetic field polynomials. The world model
detects when the spacecraft comes in contact with
the earth surface.

2.3.2 complexBody model

This model is derived from the standard body
model, modified to allow the user to account for
gravity gradient torque, if desired. The gravity
gradient calculation function is in the world model.

Figure 5. Multibody spacecraft visualization

Available actuators include reaction wheels,
thrusters and magnetic torque rods. All are
assembled from the standard Multibody library
components and the modified complexBody model.

• Reaction wheels are generally mounted on

each of the 3 axes. One spare wheel is
mounted obliquely and ready to take over in
case one of the 3 primary wheels fails. In order
to accurately model any unique reaction wheel
assembly, the user can specify the orientation
of each wheel, shape, size and density of the
rotor.

• Thrusters are modeled by exerting a frame
force on the thruster nozzle. The user specifies
the mass of the thruster assembly and the
maximum force exerted by the thruster, as
well as the position and orientation of the
thruster nozzle.

• Magnetic torque rods are modeled by exerting

a torque on the torque rod body. The
component magneticFieldSensor is used to
measure the magnitude and orientation of the
magnetic field in order to apply the
appropriate torque.

There are controller blocks for performing
operations including detumbling (stabilizing the
spacecraft into a certain attitude after separation
from the launcher, see Figure 5) and momentum
unloading (using the torque rods to decrease the
momentum which has accumulated in the reaction
wheels), as well as routine changes in attitude and
orbit.

2.4 Orbital mechanics

The orbital mechanics section includes a precise
ephemeredes model based on tables generated by
STK. It generates the position in heliocentric
equatorial coordinates for the nine planets and the
Moon by interpolating the ephemeris tables using
a Lagrange polynomial expansion.

3. Case study

To verify the behavior of SpacecraftLib , we built
a generic spacecraft (called Sat, see Figure 6) with
all the major subsystems. These include command
and data handling (C&DH), power control and
distribution unit (PCDU), Tracking, Telemetry
and Control (TTC), Attitude Control System
(ACS) and a payload consisting of 2 sensors. We
orbited the spacecraft for 2 orbits, and uploaded a
list of commands to be performed over the
duration of its short ‘mission’.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 156

Figure 6. Model of complete spacecraft ‘Sat’ and ground station

• C&DH. This subsystem is composed of 1

processor with a maximum processing power
of 100 KIPS and internal bitrate of 10 Mbps, a
science data memory unit, and an execution
memory unit.

• PCDU. This subsystem includes the power
controller and a battery, and is connected to 2
solar arrays.

• TTC. This subsystem includes a processor,
buffer memory, a transmitting antenna and a
receiving antenna.

• ACS. For this example, the attitude control
system is a dummy system to model power
consumption. Multibody components are not
used and the orbital parameters for the
duration of the simulation are imported from
STK.

The ground station is located in St Hubert,
Quebec, at the location of the Canadian Space
Agency while the spacecraft orbits at an altitude of
approximately 820 km in a near polar, circular
orbit, with an inclination of 98.7 degrees.

We entered the commands into a .txt file before
compiling the model and ran the simulation for
12000 seconds (about 2 orbits).

The commands included image capture and
compression operations, device state changes (on,
off and idle), attitude changes and data
transmission operations. The model reacted to
these commands at the appropriate times,
exhibiting behaviour which would allow us to
optimize the design.

3.1 Results and Analysis

We will examine the behaviour of the C&DH
subsystem as well as the link behaviour.

In Figure 7, the upper plot shows the amount of
data in the memory space allocated to unprocessed
science data. Each spike corresponds to an
unprocessed image entering the raw data memory,
and immediately being removed, processed and
placed in the memory allocated to processed data
(not plotted).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 157

The lower plot in Figure 7 shows the status of the
‘shutter’ on the camera sensors. At each pulse, the
‘camera’ takes an image and generates a certain
amount of data, which is passed to the raw data
memory.

In Figure 8, the upper plot shows the maximum
theoretical bitrate possible according to the
Shannon-Hartley theorem[1] and the actual
transmission bit rate. The lower plot shows the
amount of data in the TTC memory (buffer). As
soon as there is a link, the data in the TTC memory
is transmitted.

Certain facts which have an impact on the design
are immediately evident. From the upper plot in
Figure 7, we can conclude that for this operating

profile, there must be at least 350 to 400 Mb of
storage allocated to the raw data from the sensors.

From Figure 8 we see that the communications
system is not optimized for this operating profile.
At a downlink bitrate of 10 Mbps it takes only a
fraction of the available link duration to download
all the data. This is an indication that
communication equipment capable of 10 Mbps
downlink speeds is not necessary for this imaging
rate, which will have secondary and tertiary effects
on the power subsystem specifications, solar array
size, and eventually on the total mass of the
spacecraft. Moreover, the closer we get to the
Shannon limit of the channel the more we must
invest in terms of hardware and power for
advanced coding techniques.

Figure 7. Science memory level (upper), camera state (lower)

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 158

Figure 8. Maximum theoretical bitrate and actual bitrate (upper), TTC buffer level (lower)

4. Conclusion

Modelica is proving to be well suited to hybrid
modeling of power, data and command systems as
applied to a generic spacecraft modeling tool for
Systems Engineering, when complemented by our
C library. It provides a flexible graphical modeling
environment that allows for fast and accurate
estimates for use in resource budgeting. The
precision of the estimates depends on the fidelity
of the subsystem models, so further improvement
of the subsystem models will allow the tool to
progress to a full design tool. Various features of
the Spacecraft Budgeting Library, notably the
command network model, are portable and may be
reused for other applications.

References:

[1] W.J. Larson, and J.R.Wertz, editors. Space
mission analysis and design. Microcosm
Press/Kluwer Academic Publishers, 1999.

[2] STK 8, Analytical Graphics, Inc.

[3] T. Pulecchi, F. Casella, M. Lovera. A
Modelica Library for Space Flight Dynamics.
In Proceedings of the 5th Modelica

Conference, Vienna, Austria, volume 1, page
107.

[4] Spacecraft Control Toolbox, Princeton
Satellite Systems, Inc.

[5] Built by Dyna Benchergui and Andre-Claude
Gendron

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 159

