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Abstract 
 
The SpacecraftLib library has been developed in 
Modelica for use in the domain of Systems 
Engineering for space systems with a special 
emphasis on modularity, usability and ease of 
modification and expansion. It  is a 
multidisciplinary  tool which combines all the 
relevant subsystems. Power, command and data 
handling, and  mechanical models are integrated 
into a single Modelica device in order to model as 
completely as possible the behaviour of a physical 
onboard device.  We will describe the tool, 
examine a case study and briefly analyze the 
results of a  simulation. 
 
Keywords: spacecraft simulation; resource 
budgeting; systems engineering; command 
network 
 
 
1. Introduction 
 
Modeling and simulation tools in Systems 
Engineering for spacecraft have the potential to 
improve the efficiency of the design process. One 
task in which simulation may be effectively 
utilized is to assist in the generation of 
requirements through improved resource 
budgeting.   Budgeting in this context is defined as 
the process of characterizing the components 
which affect an overall system parameter while 
focusing on system level requirements and trade-
offs [1]. 
A simulation tool for use in Systems Engineering 
as a whole, and specifically the resource budgeting 
exercise, must meet the following requirements: 
 
• Simple. The model must have the capability of 

being rapidly and easily assembled and 
modified. 
 

• Multidisciplinary. The behaviour and 
interactions of power, command and data 

handling, mechanical and thermal systems and 
link behaviour must be modeled together. 

 
• Appropriate level of detail. The model must 

be accurate enough to define requirements. 
 
• Easily Customizable and Expandable. The 

tool must be able to be extended for use in 
more advanced stages of the  design process. 

 
Currently available spacecraft simulation tools are 
generally either simple spreadsheet based models, 
mission design tools (STK)[2], complex custom 
built simulators or tools targeted at a specific 
subsystem, such as Attitude and Orbit Control 
Systems (AOCS)[3]. While these tools are all 
useful in their respective domains, they do not 
meet the needs of a resource budgeting tool for 
spacecraft Systems Engineering. 
 
This paper introduces a Modelica library 
specifically designed for resource budgeting,  
capable of expanding to a full design tool, called 
SpacecraftLib. It can be used to build a ground 
station and multiple spacecraft models, each 
including power, payload, command and data 
handling subsystems and link models. The 
spacecraft models receive and react to time-tagged 
commands during the simulation and interact with 
commercial spacecraft modeling software for 
advanced functions.   
 
The use of this tool will allow the user to optimize 
the level of complexity of the simulator at each 
stage of the design process, especially in the early 
stages of the design, by increasing or decreasing 
the complexity of the models built using 
SpacecraftLib. This will lead to a more effective 
and efficient  design process. 
 
This library is implemented in Modelica because 
we find it well suited to hybrid, multidisciplinary 
modeling due to its modularity and ease of use.  
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2. The SpacecraftLib library 
 
The SpacecraftLib library is divided into 4 main 
sections, each containing components used to 
model a different subsystem.   
 
These components are easily assembled into 
devices, which behave as physical onboard devices 
would. They have mass and inertia, consume 
power, generate data and interact with the user or 
onboard computer via the command network. 

 
• The DataBudget package includes 

components for processor, data flow, 
command network and communications 
equipment modeling.  

 
• The PowerBudget package includes 

components used for power generation and 
distribution modeling. It also includes 
components used to model the power 
consumption characteristics of onboard 
devices. 

  
• The Mechanical package includes a version 

of the Multibody library expanded to 
account for advanced gravity and magnetic 
fields modeling. It includes a modified 
world model, as well as reaction wheel, 
extendable solar array and thruster 
assemblies. It also includes controllers for 
each of the assemblies. 

 
• The OrbitalMechanics package includes an 

ephemerides generator for the nine planets 
and the Moon based on external ephemeris 
tables. 

 
We provide the user with an inheritable device 
template with components common to all devices: 
a command port and command decoder, power 
consumption characteristics and a state box. To 
model the behavior of a specific device, the user 
may extend the device template to a new class and 
add the desired components from the available 
subsystem packages (see Figure 1). 
 

 
Figure 1. Camera device 
 
The devices are in turn assembled into a complete 
spacecraft model which is initialized into an orbit. 
The model exchanges data with the ground station, 
generates and consumes power and responds to 
user commands.  
 
SpacecraftLib is complemented by ephemeris 
tables and solar flux data from STK and a 
commercial spacecraft modeling library called 
Spacecraft Control Toolbox[4]. The latter was 
converted from MATLAB to C to interface with 
Modelica.  
 
2.1 DataBudget section 
 
SpacercraftLib provides components to model the 
processor unit(s), the command network, the flow 
of data between different devices and the ground 
station, and the communication equipment on the 
ground and onboard the spacecraft(s). The results 
of the simulation allow the user to accurately 
define the requirements of the command and data 
handling system onboard the spacecraft and on the 
ground.  
 

2.1.1 Data flow modeling  
 
In SpacecraftLib data is treated as a flow, 
behaving such that it may be generated, deleted, or 
compressed. Data modeling components include 
various data links, data storage units, data sources 
and sinks, and data processing units. These 
components are purely conceptual, designed to 
model the behavior of a data handling system 
instead of modeling the actual physical 
components of the system. 
 
Data ports are flow connectors together with a 
control line. Data ports may be active or passive. 
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The active ports define the bit rates (in or out) 
while the passive ports simply accept this flow.  
 
The passive port may send back information 
regarding the state of the receiving device via the 
control line. This allows the active device to stop 
removing (feeding) data when the receiving device 
is not able to give (accept) data. Link components 
are either variable bit rate links with a maximum 
bit rate set by the user or links that compress or 
expand the volume of data. The latter are used to 
model data compression and EDAC (error 
detection and correction) operations.  Switch 
components include on/off switches and splitters.   
 

2.1.2 Command network modeling 
 
The effort to maximize the usability of the tool led 
to the creation of a flexible layered command bus 
with ‘plug and play’ behavior. It allows for rapid 
assembly or modification of a model by dropping 
in a new device, naming it, and connecting it to the 
bus. The command network model is portable and 
has potential applications outside the field of 
spacecraft engineering.  
 
The command network contains two 
complimentary levels of hierarchy. One level is 
name based and one level is based on numerical 
indices. The name based level roughly corresponds 
to the physical location of the device to which the 
command is intended for, and is set by the user. 
The second level is based on numerical indices, 
and is automatically generated and hidden from 
the user. This level is used internally to map the 
network of devices so that each ‘parent’ device 
knows the location of all its ‘child’ devices and is 
able to forward the command to the appropriate 
device.  
 
This combination of name and numeric based 
addressing separates the user from the numerical 
address system, allowing the user to specify the 
command destination using only the physical 
location of the device, as demonstrated in Figure 2.  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 2. Command syntax examples 
 
In order to achieve ‘plug and play ’ level usability, 
the Modelica code is complemented by a custom 
built C library. The Modelica model (Modelica 
side) and C library (C side) run concurrently 
throughout the simulation. Flowchart 1 illustrates 
the sequence of events in the command network 
model. 

Flowchart 1. Sequence of events in command 
network model  
 
The command network is composed of four 
components on the Modelica side (see Figure 3), 

initialization 

send command 

receive command 

command list 
imported 

device name & 
address mapped 

devices get 
numeric address 

numeric address appended 
to command 

commands filter through 
network 

command body converted to 
signal 

command executed               
at  t=time tag 
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including the commandInput, networkNode, device 
and satControls components. 
 

  
Figure 3. Command network example 
 
1. The commandInput component imports the 
textual commands from the user, parses and 
translates them and stores them in a buffer. It 
retrieves the appropriate numerical address for 
each command from the automatically generated 
device list on the C side and appends it to the 
command (see networkNode description, next 
paragraph, for details on the address generation 
mechanism). CommandInput then  sends the 
commands through the network in packets. The 
size and frequency of the packets are defined by 
the user. 
 
2. The networkNode component is a node in the 
network between different levels. It contains a user 
assigned address index which is used  to generate 
the addresses of devices under it (at initialization) 
and to filter the commands by their address indices 
(when the commands are sent during the 
simulation). The Modelica code automatically 
generates an address at initialization by 
propagating an empty array from the top to the 

lower levels of the network. At each node in the 
network, the empty array gets progressively 
populated, recording its path through the network 
from the command source (which may be either 
the commandInput component or a parent device) 
to each device. 
 
3. The device component is at the receiving end of 
the command network. The user assigns a name to 
the device instance as a parameter.  Upon 
initialization, the device receives a unique 
identifier (UID) from the C side and registers itself 
to the list of devices by passing its name, UID, 
address and parent device UID (if applicable) back 
to the C side. When a device receives a command 
or packet of commands, it either passes them on to 
a sub-device through its internal network or feeds 
the commands to the satControls component. 
 
4. The satControls component receives the 
commands, extracts the time tag, translates them to 
the appropriate signals and places the commands 
in a queue. When simulation time matches the 
time tag the command is executed. 
 
On the C side, there is a unique identifier generator 
and the address list which contains the device 
UID, address, name and parent/child relationship 
with other devices. The C code and Modelica 
model interface via three external C functions. 
 
1. The registerUID function is called by the device 
component to obtain a unique identifier from the C 
side. 
 
2. The registerDevice function is called by the 
device component to pass its name, address, UID 
and parent UID to the C side to be added to the 
device list (mapped). 
 
3. getDeviceAddress is called by the 
commandInput and device components, to retrieve 
the device and sub device addresses, respectively.  
 

2.1.3 Processor modeling   
 
The processor model is used to test sequences of  
instructions in a process and to evaluate the 
processing load on the CPU. The main 
components are the processor model template and 
the individual process blocks (see Figure 4).  
 
The processor model template is an extendable 
version of the device model, with the addition of 
data ports and additional parameters to 
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characterize the processing power and internal 
bitrates.  The user may select from the available 
process blocks to build a new processor model, or 
implement custom process blocks. Standard 
processor options are also available. 
 

 
 
Figure 4. An example of a processor  model  
 
Each process block contains a set of instructions 
which are executed in sequence when the process 
block is activated. The processor block executes 
the instruction by sending signals to the ‘dumb’ 
components in the processor, such as the data link, 
compress and switch components.  

 
2.1.4 Communications modeling 

 
The communications modeling components 
include: 
 
• Onboard communication equipment consisting 

of customizable TX and RX antennas. User 
defined parameters include antenna gain, 
transmission power and frequency.  

 
• Ground station antenna, characterized by its 

location in latitude and longitude, horizon 
angle, gain and by the parameters affecting 
attenuation. 

 
• The link analysis block uses Princeton 

Satellite functions to calculate the theoretical 
maximum uplink and downlink bitrates 

(Shannon limit) based on the ground station 
and onboard antenna parameters and the 
location of the spacecraft and ground station.  

 
2.2 PowerBudget section 
 
The power budget section contains the components 
related to the generation, storage, distribution and 
consumption of power which would be found in a 
typical photovoltaic cell based power subsystem. 
Customization is achieved through parameterizing 
the components and through redeclaration. For 
instance, the user may use one large solar array at 
one average temperature or multiple smaller solar 
arrays of different temperatures to account for 
temperature differences across a physical solar 
array. 
 
• The solar array model is parameterized by the 

number and area of solar cells, maximum 
power current, maximum power voltage, array 
temperature and temperature coefficients. It 
generates power according to the angle of 
incidence of the panel and the intensity of the 
solar flux. 

 
• The battery model takes into account the cell 

capacity, maximum depth of discharge, 
charge/discharge ratio, and maximum charge 
and discharge rate. 

 
• The power distribution model interacts with 

the power consumption block in the device 
model to provide power according to the state 
of device: on, off or idle. The device has 
parameters to specify the power consumption 
at each state.  

 
2.3  Mechanics section 
 
In order to model the physical characteristics of 
each device as well as the spacecraft Attitude and 
Orbit Control System, the standard Modelica 
Multibody world model and body model  were 
modified to incorporate more complex gravity and 
magnetic fields, as well as gravity gradient effects 
[5]. Various actuators including reaction wheels, 
thrusters, torque rods and their respective 
controllers are included in the Mechanics section.  
 

2.3.1 world model 
 
The extended world model includes the option to 
use a spherical harmonics gravity model instead of 
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point gravity. This component models the Earths 
magnetic field using the International 
Geomagnetic Reference Field (IGRF) and 
incorporates a default spherical earth visualization 
where the radius is set to the average Earth radius. 
The user may customize the precision of the 
gravity and magnetic field models by specifying 
the number of coefficients used for the gravity and 
magnetic field polynomials. The world model 
detects when the spacecraft comes in contact with 
the earth surface. 
 
2.3.2 complexBody model 
 
This model is derived from the standard body 
model, modified to allow the user to  account for 
gravity gradient torque, if desired. The gravity 
gradient calculation function is in the world model. 
 

 
 
Figure 5. Multibody spacecraft visualization 
 
Available actuators include reaction wheels, 
thrusters and magnetic torque rods. All are 
assembled from the standard Multibody library 
components and the modified complexBody model. 
 
• Reaction wheels are generally mounted on 

each of the 3 axes. One spare wheel is 
mounted obliquely and ready to take over in 
case one of the 3 primary wheels fails. In order 
to accurately model any unique reaction wheel 
assembly, the user can specify the orientation 
of each wheel, shape, size and density of the 
rotor. 

 

• Thrusters are modeled by exerting a frame 
force on the thruster nozzle. The user specifies 
the mass of the thruster assembly and the 
maximum force exerted by the thruster, as 
well as the position and orientation of the 
thruster nozzle. 

 
• Magnetic torque rods are modeled by exerting 

a torque on the torque rod body. The 
component magneticFieldSensor  is used to 
measure the magnitude and orientation of the 
magnetic field in order to apply the 
appropriate torque. 

 
There are controller blocks for performing 
operations including detumbling (stabilizing the 
spacecraft into a certain attitude after separation 
from the launcher, see Figure 5) and momentum 
unloading (using the torque rods to decrease the 
momentum which has accumulated in the reaction 
wheels), as well as routine changes in attitude and 
orbit. 
 
2.4 Orbital mechanics 
 
The orbital mechanics section includes a precise 
ephemeredes model based on tables generated by 
STK.  It generates the position in heliocentric 
equatorial coordinates for the nine planets and the 
Moon by interpolating the ephemeris tables using 
a Lagrange polynomial expansion. 
 
 
3. Case study 
 
To verify the behavior of SpacecraftLib , we built 
a generic spacecraft (called Sat, see Figure 6) with 
all the major subsystems. These include command 
and data handling (C&DH), power control and 
distribution unit (PCDU),  Tracking, Telemetry 
and Control (TTC), Attitude Control System 
(ACS) and a payload consisting of 2 sensors. We 
orbited the spacecraft for 2 orbits, and uploaded a 
list of commands to be performed over the 
duration of its short ‘mission’. 
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Figure 6. Model of complete spacecraft ‘Sat’ and ground station  
 
 
• C&DH. This subsystem is composed of 1 

processor with a maximum processing power 
of 100 KIPS and internal bitrate of 10 Mbps, a 
science data memory unit, and an execution 
memory unit. 

• PCDU. This subsystem includes the power 
controller and a battery, and is connected to 2 
solar arrays.  

• TTC. This subsystem includes a processor, 
buffer memory, a transmitting antenna and a 
receiving antenna.  

• ACS. For this example, the attitude control 
system is a dummy system to model power 
consumption. Multibody components are not 
used and the orbital parameters for the 
duration of the simulation are imported from 
STK. 

 
The ground station is located in St Hubert, 
Quebec, at the location of the Canadian Space 
Agency while the spacecraft orbits at an altitude of 
approximately 820 km in a near polar, circular 
orbit, with an inclination of 98.7 degrees.  
 

We entered the commands into a .txt file before 
compiling the model and ran the simulation for 
12000 seconds (about 2 orbits). 
 
The commands included image capture and 
compression operations, device state changes (on, 
off and idle), attitude changes and data 
transmission operations. The model reacted to 
these commands at the appropriate times, 
exhibiting behaviour which would allow us to 
optimize the design. 
 
 
3.1 Results and Analysis 
 
We will examine the behaviour of the C&DH 
subsystem as well as the link behaviour.  
 
In Figure 7, the upper plot shows the amount of 
data in the memory space allocated to unprocessed 
science data. Each spike corresponds to an 
unprocessed image entering the raw data memory, 
and immediately being removed, processed and 
placed in the memory allocated to processed data 
(not plotted).  
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The lower plot in Figure 7 shows the status of the 
‘shutter’ on the camera sensors. At each pulse, the 
‘camera’ takes an image and generates a certain 
amount of data, which is passed to the raw data 
memory. 
 
In Figure 8, the upper plot shows the maximum 
theoretical bitrate possible according to the 
Shannon-Hartley theorem[1] and the actual 
transmission bit rate. The lower plot shows the 
amount of data in the TTC memory (buffer). As 
soon as there is a link, the data in the TTC memory 
is transmitted.  
 
Certain facts which have an impact on the design 
are immediately evident. From the upper plot in 
Figure 7, we can conclude that for this operating 

profile, there must be at least 350 to 400 Mb of 
storage allocated to the raw data from the sensors.  
 
From Figure 8 we see that the communications 
system is not optimized for this operating profile. 
At a downlink bitrate of 10 Mbps it takes only a 
fraction of the available link duration to download 
all the data. This is an indication that 
communication equipment capable of 10 Mbps 
downlink speeds is not necessary for this imaging 
rate, which will have secondary and tertiary effects 
on the power subsystem specifications, solar array 
size, and eventually on the total mass of the 
spacecraft. Moreover, the closer we get to the 
Shannon limit of the channel the more we must 
invest in terms of hardware and power for 
advanced coding techniques.                                                   

 
 
 

 
 
Figure 7. Science memory level (upper), camera state (lower)  

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 158



 
 
Figure 8. Maximum theoretical bitrate and actual bitrate (upper), TTC buffer level (lower) 
 

 
4. Conclusion 
 
Modelica is proving to be well suited to hybrid 
modeling of power, data and command systems as 
applied to a generic spacecraft modeling tool for 
Systems Engineering, when complemented by our  
C library. It provides a flexible graphical modeling 
environment that allows for fast and accurate 
estimates for use in resource budgeting. The 
precision of the estimates depends on the fidelity 
of the subsystem models, so further improvement 
of the subsystem models will allow the tool to 
progress to a full design tool. Various features of 
the Spacecraft Budgeting Library, notably the 
command network model, are portable and may be 
reused for other applications. 
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