
Planning Speech Acts in a Logic of Action and Change∗

Martin Magnusson and Patrick Doherty
Department of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden

{marma,patdo}@ida.liu.se

Abstract
Cooperation is a complex task that necessarily involves
communication and reasoning about others’ intentions and
beliefs. Multi-agent communication languages aid design-
ers of cooperating robots through standardized speech acts,
sometimes including a formal semantics. But a more direct
approach would be to have the robots plan both regular and
communicative actions themselves. We show how two ro-
bots with heterogeneous capabilities can autonomously de-
cide to cooperate when faced with a task that would other-
wise be impossible. Request and inform speech acts are for-
mulated in the same first-order logic of action and change as
is used for regular actions. This is made possible by treating
the contents of communicative actions as quoted formulas
of the same language. The robot agents then use a natural
deduction theorem prover to generate cooperative plans for
an example scenario by reasoning directly with the axioms
of the theory.

1 Introduction
Autonomous agents reason about the world to form plans
and affect the world by executing those plans. Thus, agents’
plans have an indirect effect on the world, and it becomes
important for reasoning agents to take other agents’ plans
into account. Furthermore, they would do well to plan ac-
tions that affect other agent’s plans and thereby (doubly in-
directly) affect the world. Philosophers of linguistics have
realized that we humans do this all the time through com-
munication. In particular, Searle’s speech acts [24] charac-
terize natural language utterances as actions with conditions
upon their execution and effects on the mental states of oth-
ers.

Perrault, Allen, and Cohen [19] establish a useful con-
nection between speech acts and planning. They formalize
speech acts as planning operators in a multi-modal logic of
belief and intention. Using these an agent can inform other
agents about some fact, request other agents to perform

∗This work is supported in part by the Swedish Foundation for Strategic
Research (SSF) Strategic Research Center MOVIII, the Swedish Research
Council Linnaeus Center CADICS, and CENIIT, the Center for Industrial
Information Technology.

some action, or ask other agents questions by requesting
them to inform about some fact. They encoded simplified
versions of these actions as STRIPS-like planning operators
and used a backward-chaining algorithm to generate plans
involving both regular actions and speech acts.

Research on software agents [8] has also adopted speech
acts. This body of work depends fundamentally on agent
communication languages, which are standardized sets of
speech acts that ensure interoperability in agent to agent
communication. The two most well known standards,
KQML [5] and FIPA/ACL [6], are both based on speech act
theory. FIPA/ACL also has a logical semantics defined us-
ing multi-modal BDI logic. But the semantics is meant only
as a prescriptive guide when implementing software agents.
Some researchers try to obtain, and sometimes even prove,
conformance between the implementation and the seman-
tics, while most programmers are probably not overly con-
cerned with such matters. Moreover, the communication
language is only a wrapper for a content language, which
has to provide its own semantics. There is no integration
of speech acts within a more general framework of action
and change. Instead, these agent communication langauge
technologies remain agnostic as to how to plan speech acts
and other actions to achieve goals.

Morgenstern [16] offers an integrated theory of both
types of actions using a syntactic first-order logic that in-
cludes quotation. Davis and Morgenstern [2] provide an
alternative integration using regular first-order logic. The
two theories’ semantics cover both the speech acts and their
content. However, while the theories were authored with
the aim of applications in multi-agent planning, their use
has so far been mainly of a prescriptive nature, in the im-
plementation of a STRIPS-like planner in the case of the
former theory, and as a specification for future implementa-
tions in the case of the latter theory.

In this paper we formalize inform and request speech acts
in first-order logic with quotation. The representation is
based on Temporal Action Logic (TAL), a first-order lan-
guage with a well developed methodology for representing
time, action, and change. TAL is complemented by syntac-
tic operators that express the modalities of belief and com-
mitment. They take quoted formulas as arguments and al-
low for the encoding of the effects of speech acts on other
agents’ beliefs and commitments. The resulting formalism

39



can be used to represent and reason about both speech acts
and their message content, may it be facts, actions, or other
speech acts. We automate such reasoning through a nat-
ural deduction theorem prover that incorporates a form of
abductive planning. The system is applied to a multi-agent
planning problem involving the cooperation between two
robots through planned goal delegation and knowledge ac-
quisition, which is introduced below.

2 Cooperation and Communication
Consider a motivating scenario involving an autonomous
unmanned aerial vehicle named uav1. The robot is
equipped with a winch system capable of lifting and drop-
ping supply crates. Suppose it is assigned the task of deliv-
ering crate15 to the storage building store23. It would be
unwise (although perhaps spectacular) to have the robot fly
into the building. Instead, UAVs are restricted to operate in
designated fly-zones, and storage buildings are not among
them.

A class of autonomous unmanned ground vehicles pro-
vide services complementary to flying robots. They too can
attach crates, using fork lifts, but stick to driving short dis-
tances in and between buildings designated as drive-zones.
One of the UGVs, named ugv3, happens to sit idle in the
building store14.

To succeed at its task the UAV will have to request help
from the ground robot to get crate15 into the building,
where it can not fly itself. It knows that ground robots
have the capability of delivering crates between locations
in drive-zones, and it might consider delegating its task to
ugv3. But crate15’s current location prevents simply dele-
gating the goal since the crate is far outside any drive-zone
areas where a ground vehicle could fetch it. Instead, uav1
will have to deliver crate15 to a rendezvous point, acces-
sible to both UAVs and UGVs. Only then is it possible to
request ugv3 to see to it that the crate gets to its final desti-
nation.

Such a plan is only possible if the two robots manage to
coordinate their actions through communication. We would
like them to figure out the above plan, including both phys-
ical actions and communicative speech acts, completely au-
tonomously. This will require a sufficiently expressive rep-
resentation and reasoning formalism. We present our pro-
posal next.

3 Temporal Action Logic
First-order logic might serve as a solid foundation. But it is
by itself too noncommittal regarding choices of how to rep-
resent actions and their effects on time-varying properties of
the world. Several alternative logics of action and change
are available to aid a logicist researcher. We present work
with one such logic, the Temporal Action Logic (TAL).

The origins of TAL are found in Sandewall’s model-
theoretic Features and Fluents framework [23]. Doherty
[3] selected important concepts, such as an explicit time
line and the use of occlusion (discussed below), to form
TAL and gave it a proof-theoretic first-order characteriza-
tion. Many extensions since have turned TAL into a very
expressive language for commonsense reasoning. Doherty
and Kvarnström [4] provide a detailed account of the logic,
but the version presented below includes further extensions
that make TAL suitable for applications in multi-agent plan-
ning and reasoning.

In TAL, properties and relations that may change over
time are modeled by fluents. A fluent f is a function of time,
and its value at a time point t is denoted (value t f ). When
we talk about a time interval i between two time points t1
and t2 we mean the interval (t1,t2] that is open on the left
and closed on the right. The functions (start i) and (finish i)
picks out t1 and t2 respectively. An agent carrying out an
action a during time interval i is specified by the predicate
(Occurs agent i a). But the most important feature of TAL is
probably its occlusion concept. A persistent fluent’s value is
permitted to change when occluded, but must persist during
time intervals when not occluded. The following formula
(with free variables implicitly universally quantified and in
prefix form to make the representation of quoted formulas
more convenient) relates a fluent f ’s value at the start and
end time points of a time interval i:

(→ (¬ (Occlude i f ))
(= (value (start i) f ) (value (finish i) f ))) (1)

By assuming that fluents are not occluded unless otherwise
specified one is in effect making the frame assumption that
things usually do not change. Exceptions are specified by
action specifications that explicitly occlude fluents that the
action affects. E.g., if uav1 flies between two locations, its
location fluent (location uav1) would be occluded during
any interval with a non-empty intersection with the move-
ment interval. This prevents any use of Formula 1 for re-
lying on the default persistence of the robot’s location that
conflicts with the robot’s moving about. By exercising fine-
grained control over occlusion one gains a flexible tool for
dealing with important aspects and generalizations of the
frame problem.

3.1 A Syntactic Belief Operator
Previous accounts of TAL lack a representation of agents’
mental states and beliefs. Introducing a syntactic belief op-
erator provides a simple and intuitive notion of beliefs. To
explain this let us first assume that uav1 believes it is at loc1
at noon. The following formula1 would represent this belief
in its knowledge base:

(= (value 12:00 (location uav1)) loc1) (2)
1Clock times such as 12:00 are not really part of the logic. We assume

a translation scheme between clock times and integers.

40



Similarly, if it was ugv3 that believed that uav1 is at loc1,
Formula 2 would be in its knowledge base. Beliefs about
others’ beliefs are then really beliefs about what formulas
are present in others’ knowledge bases. If uav1 believes
that ugv3 believes what Formula 2 expresses, then uav1 be-
lieves that ugv3 has Formula 2 in its knowledge base. This
would be represented in the knowledge base of uav1 by the
following formula:

(Believes ugv3 12:00
’(= (value 12:00 (location uav1)) loc1))

The first argument of the Believes predicate is then the agent
holding the belief. The second argument is the time point at
which the agent holds the belief. Finally, the third argument
is a quoted version of the formula expressing the belief, in
this case Formula 2. This is what makes Believes a syntactic
operator.

We use the quotation notation from KIF [7], which is
a formal variant of Lisp’s. An expression preceded by a
quote is a regular first-order term that serves as a name of
that expression. Alternatively one may use a backquote, in
which case sub-expressions can be unquoted by preceding
them with a comma. This facilitates quantifying-in by ex-
posing chosen variables inside a backquoted expression for
binding by quantifiers. E.g., we use quantifying-in to repre-
sent uav1’s belief that ugv3 knows its own location, without
uav1 having to know the name for that location:

(∃ x (Believes ugv3 12:00
‘(= (value 12:00 (location ugv3)) ’,x)))

Note that while x ranges over locations2, it is the name of
a location that should occur as part of the third argument
of Believes. The quote preceding the comma ensures that
whatever value x is bound to is quoted to produce the name
of that value.

While a quoted formula still looks like a formula, it is in
fact a term. This means that standard inference rules such
as modus ponens are not applicable to the quoted formulas
that appear as arguments in the Believes operator. There are
two possible solutions to this limitation. Either we could
add axioms that express inference rules for beliefs, or we
could employ a theorem prover with special purpose infer-
ence rules for beliefs. We pursue the latter alternative in the
theorem prover described in Section 5, for efficiency rea-
sons. While it should still be possible to characterize these
inference rules in terms of axioms, this is subject to future
work.

3.2 Action Occurrences
An action occurs when it is possible for an agent to exe-
cute the action, during some time interval i, and the agent
is committed to the action occurring, at the start of the time
interval. The predicate (Possible agent i action) represents

2TAL is an order sorted logic. In our implementation we indicate vari-
able sorts by prefixes, but ignore these here for readability.

physical and knowledge preconditions for an agent carry-
ing out an action during time interval i, while (Committed
agent t p) represents an agent’s commitment at time point t

to satisfy the formula p. Both predicates require a quoted
expression in their third argument position, which precludes
the free use of substitution of equals without regards to the
agent’s knowledge. Using these predicates we can formal-
ize the above intuition about action occurrences:

(→ (∧ (Possible agent i ‘’,action)
(Committed agent (start i)

‘(Occurs ’,agent ’,i ’,action)))
(Occurs agent i action))

Note the interaction between backquote and quote in
‘’,action to make sure that the argument of Possible is the
name of the action. The initial backquote turns the follow-
ing quote into the name of a quote, leaving the variable ac-
tion free for binding. The resulting expression denotes the
quoted version of whatever the variable is bound to rather
than a quoted variable that can not be bound at all.

3.3 Action Specifications

Each one of an agent’s available actions has an action spec-
ification that consists of three parts. The first part deter-
mines under what conditions an action is possible. It may
include physical preconditions, but also involves knowledge
preconditions on behalf of the agent executing the action.

Consider e.g. a stock market agent that plans to get rich
by buying “the stock that will increase in value”. While
theoretically correct, the plan is of no practical value unless
the agent knows a name that identifies some particular stock
that it reasonably expects will increase in value. To make
this intuition formal, Moore [14] suggests that an action is
only executable if the agent knows rigid designators for all
of the action’s arguments. Morgenstern [15] modifies this
suggestion slightly in her requirement that standard identi-
fiers are known for the action arguments.

Our action specifications follow Morgenstern and use the
syntactic predicate (Identifier x) to single out a name x as a
standard identifier. In the stock market example, the action
of buying stock would not be executable unless the agent in
fact knew the name under which the stock was listed.

The second part of an action specification lists additional
requirements for any agent that decides to execute the ac-
tion itself. To execute an action the agent must invoke some
piece of computer code implementing it. Since our actions
have an explicit time argument we think of the agent as hav-
ing an execution schedule to which procedure calls can be
added at specific time points. Executing an action then in-
volves looking up standard identifiers for its arguments and
scheduling the procedure call associated with the action.
The effect of deciding to execute an action is that the agent
becomes committed to the action occurrence. An alterna-
tive way of ensuring commitment to an action is to delegate

41



its execution to someone else through the use of the request
speech act, as we will see later.

Finally, the third part of an action specification details the
effects of the action on the world and on the mental states
of agents. This allows agents to reason about actions and
form plans to achieve goals.

4 Formalization
We are now able to formalize the agent cooperation scenario
presented in Section 2 using TAL. The following unique
names assumptions are needed:

(�= l1 l2) l1, l2 ∈ {base, helipad2, store14, store23}
(�= c1 c2) c1, c2 ∈ {nil, crate15}

The terms in the first set are locations and the second are
crates, where nil denotes a null element of the crate sort.
In addition, quoted expressions are considered equal only
when they are syntactically identical.

The term names in the following set are standard identi-
fiers that can be used as arguments to procedure calls in the
robot’s internal action execution mechanism. We might e.g.
imagine that the procedure for flying to one of the named
locations involves a simple lookup of a GPS coordinate in
an internal map data structure.

(Identifier x) x ∈ {’uav1, ’ugv3, ’crate15, ’base,
’helipad2, ’store14, ’store23}

Operating restrictions on UAVs and UGVs are given by fly-
and drive-zones:

(FlyZone base)
(FlyZone helipad2)
(DriveZone store14)
(DriveZone store23)
(DriveZone helipad2)

The above knowledge is common to all agents in our sce-
nario.

4.1 Physical Actions
The bulk of the robots’ knowledge base is made up of the
action specifications. Each of the three specification parts
are given by an implication. Starting with the fly action we
note that it is possible for a UAV to fly to a location in a fly-
zone if the UAV knows a standard identifier for the location.
Secondly, an agent may commit to flying by scheduling a
fly procedure call. The constant self is a placeholder for the
identifier of the agent in whose KB the formula appears, e.g.
uav1 or ugv3 in our case. This means that, while an agent
can reason about whether it is possible for another agent to
fly, it can not schedule a call to the fly procedure in another
agent’s execution mechanism. Thirdly, at the end of the fly
interval the UAV ends up at its destination.

In addition, modified fluents need to be occluded to over-
rule their default persistence. Flying should occlude the

UAV’s location fluent in any interval that intersects the fly-
ing action since (Occlude i f ) means that f is occluded
somewhere in interval i. This could be expressed as an im-
plication (→ (Intersect i2 i) (Occlude i2 (location uav))).
However, the action specification below uses the contrapos-
itive form of this formula. The reason for this is discussed
further in Section 5.

(→ (∧ (Believes uav (start i) ‘(= ’,to ,x))
(Identifier x)
(FlyZone to))

(Possible uav i ‘(fly ’,to)))
(→ (∧ (= to x) (Identifier ‘’,x)

(Schedule self i (fly x)))
(Committed self (start i) ‘(Occurs self ’,i (fly ’,to))))

(→ (Occurs uav i (fly to))
(∧ (= (value (finish i) (location uav)) to)

(→ (¬ (Occlude i2 (location uav))) (Disjoint i2 i))))

Note that the above might sometimes require the agent to
reason about its own beliefs. Suppose, for example, that
uav1 is considering the possibility of flying itself to ugv3’s
location. Its knowledge base might contain the formula (=
(value t1 (location ugv3)) helipad2), expressing the belief
that ugv3 is at helipad2. Then uav1 would make the belief
explicit by asserting (Believes uav1 t2 ’(= (value t1 (loca-
tion ugv3)) helipad2)), where t2 is the current time.

Ground vehicles have a very similar action that allows
them to drive to locations in drive-zones:

(→ (∧ (Believes ugv (start i) ‘(= ’,to ,x))
(Identifier x)
(DriveZone to))

(Possible ugv i ‘(drive ’,to)))
(→ (∧ (= to x) (Identifier ‘’,x)

(Schedule self i (drive x)))
(Committed self (start i) ‘(Occurs self ’,i (drive ’,to))))

(→ (Occurs ugv i (drive to))
(∧ (= (value (finish i) (location ugv)) to)

(→ (¬ (Occlude i2 (location ugv))) (Disjoint i2 i))))

Both types of agents can carry one crate at a time, and the
fluent (carrying agent) indicates which one it is at the mo-
ment. To attach a crate the agent must not already be carry-
ing anything, indicated by the value nil, and the agent and
crate must be at the same place. The action effects occlude
the crate’s location (as well as the carrying fluent) since we
can no longer depend on the frame assumption that it will
remain in the same place.

(→ (∧ (Believes agent (start i) ‘(= ’,crate ,x))
(Identifier x)
(= (value (start i) (carrying agent)) nil)
(= (value (start i) (location agent))

(value (start i) (location crate))))
(Possible agent i ‘(attach ’,crate)))

42



(→ (∧ (= crate x) (Identifier ‘’,x)
(Schedule self i (attach x)))

(Committed self (start i)
‘(Occurs self ’,i (attach ’,crate))))

(→ (Occurs agent i (attach crate))
(∧ (= (value (finish i) (carrying agent)) crate)

(→ (¬ (Occlude i2 (location crate)))
(Disjoint i2 i))

(→ (¬ (Occlude i3 (carrying agent)))
(Disjoint i3 i))))

Detaching a crate has the effect that the crate ends up at the
same location that the agent is currently at:

(→ (∧ (Believes agent (start i) ‘(= ’,crate ,x))
(Identifier x)
(= (value (start i) (carrying agent)) crate))

(Possible agent i ‘(detach ’,crate)))
(→ (∧ (= crate x) (Identifier ‘’,x)

(Schedule self i (detach x)))
(Committed self (start i)

‘(Occurs self ’,i (detach ’,crate))))
(→ (Occurs agent i (detach crate))

(∧ (= (value (finish i) (carrying agent)) nil)
(= (value (finish i) (location crate))

(value (finish i) (location agent)))
(→ (¬ (Occlude i2 (location crate)))

(Disjoint i2 i))
(→ (¬ (Occlude i3 (carrying agent)))

(Disjoint i3 i))))

4.2 Speech Acts
Speech acts can be used to communicate knowledge to,
and to incur commitment in, other agents. We reformulate
Allen’s speech acts [1] in TAL using the syntactic belief and
commitment predicates. More complex formulations have
been suggested in the literature, e.g. to allow indirect speech
acts [18]. But our robots will stick to straight answers and
direct requests, without regard for politeness (although see
Section 7 for a discussion of this).

The type of information we will be interested in is know-
ing what a particular value is. This is straight forwardly
communicated by standard identifiers. E.g., if ugv3 wishes
to inform uav1 that its location is store14 at noon, it may
schedule an action of the following form:

(inform uav1
’(= (value 12:00 (location ugv3)) store14)) (3)

However, this is complicated when uav1 wishes to ask ugv3
what its location is. In accordance with much research in
speech acts, we view questions as requests for information.
The UAV should thus request that the UGV perform the
inform action in Formula 3. Though since uav1 does not
know where ugv3 is, which is presumably the reason why
it is asking about it in the first place, it can not know what
action to request.

Again we follow Allen’s directions and introduce an in-
formRef action designed to facilitate questions of this type.
The informRef action does not mention the value that is un-
known to the UAV agent, which instead performs the fol-
lowing request:

(request ugv3
’(Occurs ugv3 i2 (informRef uav1

(value 12:00 (location ugv3)))))

The above request still contains the unknown time interval
i2, which ugv3 may instantiate in any way it chooses. The
explicit time representation used by TAL opens up the pos-
sibility of a general account of the knowledge preconditions
and knowledge effects of action’s start and end time points,
but formulating it is part of future work.

The informRef preconditions require that the informing
agent knows what the value is, which is being informed
about. The effects assert the existence of a value for which
the speaker knows a standard name.

Note that an agent that commits to executing the action
schedules an inform procedure call, plugging in the sought
value. In contrast, an agent that only reasons about the ef-
fects of the informRef action, as in the question example
above, knows that the value will become known, but need
not yet know its name.

(→ (∧ (Believes speaker (start i) ‘(= ’,value ,x))
(Identifier x)
(Believes speaker (start i) ‘(= ’,hearer ,y))
(Identifier y))

(Possible speaker i ‘(informRef ’,hearer ’,value)))
(→ (∧ (= value x) (Identifier ‘’,x)

(= hearer y) (Identifier ‘’,y)
(Schedule self i (inform y ‘(= ’,value ’,x))))

(Committed self (start i)
‘(Occurs self ’,i (informRef ’,hearer ’,value))))

(→ (Occurs speaker i (informRef hearer value))
(∃ x (∧ (Believes hearer (finish i) ‘(= ’,value ,x))

(Identifier x))))

Many other formalizations of speech acts restrict requests
to action occurrences. Our formulation of requests sup-
ports any well formed formulas, whether they are declara-
tive goals or action occurrences. The effect is that the agent
that is the target of the request is committed to satisfying
the formula.

(→ (∧ (Wff formula)
(Believes speaker (start i) ‘(= ’,hearer ,x))
(Identifier x))

(Possible speaker i ‘(request ’,hearer ’,formula)))
(→ (∧ (Wff formula)

(= hearer x) (Identifier ‘’,x)
(Schedule self i (request x formula)))

(Committed self (start i)
‘(Occurs self ’,i (request ’,hearer ’,formula))))

(→ (Occurs speaker i (request hearer formula))
(Committed hearer (finish i) formula))

43



The Wff predicate determines whether the quoted expres-
sion is a well formed formula. While we could write ax-
ioms defining it, since quoted expressions are terms in our
language, we find it convenient to view it as defined by se-
mantic attachment.

Finally, to delegate declarative goals an agent must know
something about the capabilities of other agents. In our sce-
nario, UAVs know that ground robots are able to transport
crates between locations in drive-zones. This allows uav1
to delegate its goal task and trust that it will indeed be sat-
isfied.

(→ (∧ (DriveZone (value (start i) (location crate)))
(DriveZone to)
(Committed ugv (start i)

‘(= (value (finish ’,i) (location ’,crate)) ’,to)))
(= (value (finish i) (location crate)) to))

This concludes our formalization of the robot cooperation
scenario. We turn our attention next towards the question of
how to perform automated reasoning with it.

5 Automated Natural Deduction
Earlier work with TAL has made use of a model-theoretic
tool for automated reasoning called VITAL [9]. But this
tool relies upon the set of actions being pre-specified and
consequently does not support planning. Later work made
deductive planning possible through a compilation of TAL
formulas into Prolog programs [10]. But Prolog’s limited
expressivity makes it inapplicable to interesting planning
problems involving incomplete information and knowledge
producing actions, such as speech acts. Instead, our cur-
rent work concentrates on an implementation of a theorem
prover based on natural deduction, inspired by similar sys-
tems by Rips [22] and Pollock [20].

Natural deduction is an interesting alternative to the
widely used resolution theorem proving technique. A nat-
ural deduction prover works with the formulas of an agent’s
knowledge base in their “natural form” directly, rather than
compiling them into clause form. The set of proof rules is
extensible and easily accommodates special purpose rules
that can make reasoning in specific domains or using a spe-
cific formalism like TAL more efficient. We are actively
experimenting with different rule sets so the description be-
low is of a preliminary nature.

Rules are divided into forward and backward rules. For-
ward rules are applied whenever possible and are designed
to converge on a stable set of conclusions so as not to con-
tinue generating new inferences forever. Backward rules,
in contrast, are used to search backwards from the current
proof goal and thus exhibits goal direction. Combined, the
result is a bi-directional search for proofs.

Nonmonotonic reasoning and planning is made possible
in our theorem prover through an assumption-based argu-
mentation system. The set of abducibles consists of negated

occlusion, action occurrences, temporal constraints, and
positive or negative holds formulas, depending on the cur-
rent reasoning task [13]. These are allowed to be as-
sumed rather than proven, as long as they are not counter-
explained or inconsistent. As an example, consider the
following natural deduction proof fragment, explained be-
low (where the justifications in the right margin denote row
numbers, (P)remises, (H)ypotheses, and additional back-
ground (K)nowledge).

1 (= (value 12:00 (location uav1)) base) P
2 (∧ (= (start i37) 12:00) (= (finish i37) 13:00)) P
3 (¬ (Occlude i37 (location uav1))) H
4 (= (value 13:00 (location uav1)) base) 1-3,K
5 (= helipad2 helipad2) K
6 (Believes uav1 (start i38) ’(= helipad2 helipad2)) 5
7 (Possible uav1 i38 ’(fly helipad2)) 6,K
8 (Schedule uav1 i38 (fly helipad2)) H
9 (Committed uav1 (start i38)

’(Occurs uav1 i38 (fly helipad2))) 8,K
10 (Occurs uav1 i38 (fly helipad2)) 7,9,K
11 (= (value (finish i38) (location uav1))

helipad2) 10,K
12 (→ (¬ (Occlude i (location uav1)))

(Disjoint i i38)) 10,K
13 (Disjoint i37 i38) 3,12

The UAV is located at base at noon, as in Row 1. Suppose
it needs to remain at the same location at 1 p.m. One way
of proving this would be by using the persistence formula
in Section 3. The location fluent is only persistent if it is
not occluded. While uav1 has no knowledge about whether
it is occluded or not, (¬ Occlude) is abducible and may be
(tentatively) assumed. The effect of making non-occlusion
abducible is to implement a default persistence assumption.
Row 2 introduces a fresh interval constant and Row 3 indi-
cates the assumption using a Copi style (described e.g. by
Pelletier [17]) vertical line in the margin.

Suppose further that uav1 also needs to visit helipad2.
The only way of proving this would be to use the fly action
defined in Section 4. A backward modus ponens rule adopts
(Occurs uav1 i38 (fly helipad2)) as a sub goal. Backward
chaining again, on the action occurrence axiom in Section 3,
causes (Possible uav1 i38 ’(fly helipad2)) and (Committed
uav1 (start i38) ’(Occurs uav1 i38 (fly helipad2))) to be-
come new sub goals. These are again specified by the fly
action specification. The first of these sub goals is satisfied
by Row 6 and the fact that helipad2 is both an identifier and
a fly-zone. The commitment goal in Row 9 is satisfied by
Row 5, the fact that helipad2 is a viable argument to the fly
procedure, and Row 8, which assumes that uav1 schedules
the procedure call. The implementation of the proof rule
that adds Row 8 performs the actual scheduling by updating
an internal data structure. It is still possible to backtrack, re-
moving the assumption in Row 8, as long as the procedure
call has not yet been executed, i.e. if it is scheduled to occur
at some future time or if execution has not yet reached this

44



point. This could happen if something causes the theorem
prover to reconsider flying to helipad2, or if scheduling the
flight causes a conflict with some other assumption that was
made previously. In such cases the procedure call would be
removed from the internal data structure as well.3 Finally,
having proved the robot’s ability and commitment to flying
to helipad2 Row 10 concludes that the flight will occur, with
the effect that uav1 ends up at helipad2 in Row 11.

Flying should occlude the location fluent in any intersect-
ing interval. This would most naturally be expressed by
(→ (Intersect i i38) (Occlude i (location uav1))). But, as
noted in Section 4, we use the contrapositive form instead.
The reason is the need for consistency checking when as-
sumptions have been made. It is well known that the prob-
lem of determining consistency of a first-order theory is not
even semi-decidable. Our theorem prover uses its forward
rules to implement an incomplete consistency check (more
on this below), and the contrapositive form makes these for-
ward rules applicable. Row 12, which is an effect of the fly
action, together with the assumption in Row 3 trigger the
forward modus ponens rule, adding the disjointness con-
straint in Row 13. This enforces a partial ordering of the
two intervals to avoid any conflict between the persistence
of the UAV’s location, and its moving about. Another for-
ward inference rule consists of a constraint solver that deter-
mines whether the set of temporal constraints is consistent.
If it is impossible to order i37 and i38 so that they do not in-
tersect in any way, then an inconsistency has been detected
and the prover needs to backtrack, perhaps cancelling the
most recent assumption or removing the action that was last
added to the schedule.

For some restrictions on the input theory we are able
to guarantee completeness of the nonmonotonic reasoning
[13]. But in the general case, when one cannot guarantee
completeness of the consistency checking, we might con-
ceivably fail to discover that one of the assumptions is un-
reasonable. This would not be a cause of unsoundness,
since we are still within the sound system of natural deduc-
tion, but it might result in plans and conclusions that rest
on impossible assumptions. A conclusion Φ depending on
an inconsistent assumption would in effect have the logical
form ⊥→ Φ, and thus be tautological and void. This is to
be expected though. Since consistency is not even semi-
decidable, the most one can hope for is for the agent to
continually evaluate the consistency of its assumptions, im-
proving the chances of them being correct over time, while
regarding conclusions as tentative. [21].

6 Generated Plans
By applying the natural deduction theorem prover to the
TAL formalization we are able to automatically generate

3The link between theorem proving and action execution is an interest-
ing topic. The mechanism described above is one approach, but we are
currently investigating alternatives.

plans for the robot cooperation scenario. We present the
proof goals and the resulting plans below.

Let us initially place the crate and the UAV (carrying
nothing) at base at 12:00:

(= (value 12:00 (location crate15)) base)
(= (value 12:00 (location uav1)) base)
(= (value 12:00 (carrying uav1)) nil)

The goal is to have crate15 delivered to the storage named
store23 at some future time point:

Show (∃ t (= (value t (location crate15)) store23))

The UAV uses theorem proving to reason backwards from
this goal approximately like what follows. “For the crate to
be at store23 someone must have put it there. I could put it
there myself if I was located at store23 carrying crate15.
But I can’t think of any way to satisfy the fly-zone pre-
condition of flying to store23. Though my knowledge of
ground vehicles suggests a completely different possibility.
My goal would also be satisfied if both the crate’s location
and store23 were in drive-zones, and some ground vehicle
had committed to the goal. In fact, helipad2 is a drive-zone,
and it is also a fly-zone, so I can go there and drop the crate
off. Before going there I should attach crate15, which is
right here next to me. Then I’ll decided upon some partic-
ular ground robot, say, ugv3, and request that it adopts the
goal that crate15 is at store23.”

While the robots are not nearly as self aware as this
monologue suggests, it corresponds roughly to the search
space for the following plan:

(Schedule uav1 i1 (attach crate15))
(Schedule uav1 i2 (fly helipad2))
(Schedule uav1 i3 (detach crate15))
(Schedule uav1 i4

(request ugv3
’(= (value (finish i5) (location crate15)) store23)))

(Before i1 i2)
(Before i2 i3)
(Before i3 i4)
(Before i4 i5)

The UAV executes its plan, including sending the goal re-
quest to ugv3. We switch to look inside the mind of the
UGV as it tries to prove that the requested formula is sat-
isfied. Suppose that half an hour has passed and that the
UGV happens to be at some other storage building, carry-
ing nothing:

(= (value 12:30 (location ugv3)) store14)
(= (value 12:30 (carrying ugv3)) nil)

The UGV will have to drive to the crate in order to pick
it up and deliver it to store23. But ugv3 does not know
crate15’s location, and scheduling a drive to (value 12:30
(location crate15)) is prevented by the Identifier require-
ment on the drive action argument. The restriction is neces-
sary since trying to find the coordinate of (value 12:30 (lo-
cation crate15)) will certainly not generate any results given

45



the robot’s area map. The plan should instead involve find-
ing a standard identifier for crate15’s current location and
looking that up in the map.

We assume that ugv3 believes that uav1 knows where
crate15 is, and that whatever location that is, it is a drive-
zone (although see Section 7 for a discussion of this):

(∃ x (∧ (Believes uav1 12:30
‘(= (value 12:30 (location crate15)) ,x))

(Identifier x)))
(DriveZone (value 12:30 (location crate15)))

The task is then to prove the content of uav1’s request:

Show (= (value (finish i5) (location crate15)) store23)

The resulting plan makes use of the request and informRef
speech act combination to formulate a question correspond-
ing to “what is crate15’s location”. Furthermore, while this
question will equip the robot with a standard identifier, this
identifier is not yet known at the time the plan is being con-
structed. Rather than scheduling the drive procedure call,
ugv3 instead plans to request itself to carry out the driving
after having asked uav1 about crate15’s location. At the
time at which this request is managed, the required infor-
mation will be available for scheduling the actual drive pro-
cedure call. The rest should be a simple matter of going to
store23 to drop crate15 off at its goal:

(Schedule ugv3 i6
(request uav1

’(Occurs uav1 i7
(informRef ugv3

(value (start i5) (location crate15))))))
(Schedule ugv3 i8

(request ugv3
’(Occurs ugv3 i9

(drive (value (start i5) (location crate15))))))
(Schedule ugv3 i10 (attach crate15))
(Schedule ugv3 i11 (drive store23))
(Schedule ugv3 i12 (detach crate15))
(Before i6 i7)
(Before i7 i8)
(Before i8 i9)
(Before i9 i10)
(Before i10 i11)
(Before i11 i12)

Let us switch our attention back to uav1 and see what
it plans to do about ugv3’s request for information. The
UAV’s current state is described by:

(= (value 12:30 (location crate15)) helipad2)
(= (value 12:30 (location uav1)) helipad2)
(= (value 12:30 (carrying uav1)) nil)

The proof goal is defined by the incoming request:

Show (Occurs uav1 i7
(informRef ugv3

(value (start i5) (location crate15))))

Since uav1 has first hand knowledge about crate15’s loca-
tion it schedules an inform procedure call according to the
definition of the informRef speech act:

(Schedule uav1 i7
(inform ugv3

‘(= (value (start i5) (location crate15)) helipad2)))

Switching our focus back to ugv3 we find that it has re-
ceived the formula that uav1 informed it about:

(= (value (start i5) (location crate15)) helipad2)

This puts ugv3 in a position where it can prove the content
of its request to itself:

Show (Occurs ugv3 i9
(drive (value (start i5) (location crate15))))

The result is that the missing drive procedure call is inserted
at the right place in the execution schedule with the standard
identifier plugged in as its argument:

(Schedule ugv3 i9 (drive helipad2))

Once at helipad2, the rest of the scheduled actions will have
the robot attaching crate15, driving to store23, and dropping
the crate off to satisfy the goal and complete the scenario.

7 Limitations and Future Work
The work presented in this paper is far from a complete
solution to the robot cooperation scenario. One unsolved
question regards our assumption that ugv3 believes that
uav1 knows where crate15 is. Maybe there ought to be
some commonsense knowledge that would allow it to defea-
sibly infer uav1’s knowledge from the fact that it delegated a
goal that directly involved that knowledge. One might sus-
pect that this is but one instance of a more general problem
of reasoning about who is likely to know what in which sit-
uations. An alternative solution would be to have the UAV
reason about the fact that ugv3 needs to know where the
crate is to be able to move it to its destination. The UAV
could then pro-actively inform the UGV about the crate’s
location before requesting the UGV to move it.

An ad hoc move that we were forced to make was to re-
move the informRef speech act from the UAVs knowledge
base while generating the first plan. While this particular
action is not needed for that particular plan, the UAV clearly
ought to have access to all its actions at all times. The rea-
son for our move has to do with the fact that uav1 must
attempt to solve the goal itself before considering delegat-
ing it. What makes our scenario interesting is that it is not
possible to solve without cooperation. But uav1 can not
know that trying to deliver crate15 by itself is futile until
it has explored all alternative ways of doing so. Unfortu-
nately, the informRef speech act made for a rather unwieldy
search space, which was more than our theorem prover had
time to explore while we cared to wait. This prevented

46



uav1 from giving up on the prospect of managing the de-
livery by itself within a reasonable amount of time. We sus-
pect that as the agents are equipped with more knowledge
and actions, more possibilities will open up in the theorem
prover’s search space, and the need for some kind of heuris-
tic to help guide search will increase.

The speech acts themselves are subject to some limita-
tions. One is our disregard of any physical preconditions to
communication such as geographical closeness constraints.
Our robots are assumed to have a radio link at all times. An-
other limitation is that we do not consider indirect speech
acts. This seems reasonable as long as we are thinking of
communication between our robots. But there is no denying
that many of the speech acts uttered by humans are indirect.
A human UAV operator uttering “Could you make sure that
crate15 is in store23?” is presumably requesting the UAV
to make sure the goal is satisfied rather than querying about
its ability to do so. Another serious limitation is our as-
sumption that other agents always accept requests. Some
rejected requests could reasonably be handled during plan
execution through re-planning or plan repair. But others
should be considered already during planning and would
result in conditionally branching plans or plans with loops
that repeat requests until accepted.

A future development could be the inclusion of compos-
ite actions, which would make it possible to explicitly rep-
resent informRef as a macro action that includes an inform
speech act. This is in contrast to our current formalization
where inform is only a procedure call and not a stand alone
action. Another possibility for development exists with re-
gards to the execution schedule mechanism. While we think
that it is a promising method for integrating planning and
execution, the description of its workings that we have pro-
vided here is rather sketchy and needs further elaboration.
In particular we would like to take advantage of our inte-
grated temporal constraint solver to calculate action dura-
tions and schedule actions at explicit clock times.

Finally, an agent architecture based exclusively on logi-
cal reasoning raises efficiency concerns. Both plans in our
running example were automatically generated by the theo-
rem prover in 2 minutes and 35 seconds on a Pentium M 1.8
GHz laptop with 512 MB of RAM. That might or might not
be reasonable, depending on the application. But, in either
case, it was admittedly a small problem, which begs the
question of whether the architecture will scale up to real-
world problems. Alas, we do not yet know. But there are at
least some reasons to be optimistic.

One reason is, as already mentioned, the use of a tempo-
ral constraint solver for reasoning with time. More gener-
ally, one can view special purpose algorithms as additional
natural deduction rules that make certain types of inferences
efficient. Another reason is the choice of an interruptible al-
gorithm for nonmonotonic reasoning. In a real-time setting
the agent can act, at any time, to the best of its knowledge
given the reasoning it has performed up to that point.

But most encouragingly, achieving satisfactory perfor-

mance in certain domains is already possible. E.g., our the-
orem prover was applied to UAV surveillance and quickly
generated plans for realistic size problems [11]. Further-
more, the agent architecture was used to the control the
characters in a computer game that requires real-time in-
teraction [12]. We believe computer games to be a particu-
larly suitable domain for empirical studies of logical agents
on the road from tiny benchmark problems towards larger
real-world applications.

8 Conclusions

We have described a scenario involving communication and
cooperation between two robots. The solution required one
robot to plan to delegate a goal through communication us-
ing a request speech act. The other robot had to plan to
achieve knowledge preconditions, again through commu-
nication using a nested request and informRef speech act.
These speech acts were formalized in an extension of Tem-
poral Action Logic that includes syntactic belief and com-
mitment operators, which were made possible through the
use of a quotation mechanism. The formalization made it
possible to generate a plan involving both cooperation and
communication using automated theorem proving. Finally,
a novel scheduling mechanism provided a tightly coupled
integration between planning and the execution of gener-
ated plans.

The formalization used quotation, which seems most be-
fitting of a logicist framework. The robots’ explicit repre-
sentation of beliefs as formulas in a knowledge base moti-
vates their representation of others’ beliefs as quoted for-
mulas. Further benefits may be gained by using quotation
in the context of speech acts. A fuller theory of commu-
nication will presumably also include locutionary acts, i.e.
the actual utterances that encode messages between agents.
These are most naturally thought of as strings consisting of
quoted formulas from the agents’ knowledge bases.

Our philosophy is based on the principle that logic is an
intelligent agent’s “language of thought”. The formaliza-
tion of the speech acts are similar to their corresponding
semantics proposed in the literature. But unlike many other
approaches that view the semantics as normative, such as
agent communication languages, we put the formulas in our
agents’ heads where the agents can reason with them using
theorem proving. In fact, our use of a prefix notation for for-
mulas makes the correspondence between the theory in this
paper and its Lisp implementation exact, save for some log-
ical symbols that are not available for use as Lisp identifiers.
Through this approach we hope to construct an agent archi-
tecture based on logical planning with a level of flexibility
that would be difficult to match using agent programming
languages.

47



References
[1] James Allen. Natural Language Understanding.

Benjamin-Cummings Publishing Co., Inc., Redwood
City, CA, USA, 1988.

[2] Ernest Davis and Leora Morgenstern. A first-order
theory of communication and multi-agent plans. Jour-
nal of Logic and Computation, 15(5):701–749, 2005.

[3] Patrick Doherty. Reasoning about action and change
using occlusion. In Proceedings of the Eleventh Euro-
pean Conference on Artificial Intelligence ECAI’94,
pages 401–405, 1994.

[4] Patrick Doherty and Jonas Kvarnström. Temporal ac-
tion logics. In Vladimir Lifschitz, Frank van Harme-
len, and Bruce Porter, editors, Handbook of Knowl-
edge Representation. Elsevier, 2007.

[5] Tim Finin, Jay Weber, Gio Wiederhold, Michael
Genesereth, Richard Fritzson, Donald McKay, James
McGuire, Richard Pelavin, Stuart Shapiro, and
Chris Beck. Specification of the KQML agent-
communication language. Technical Report EIT TR
92-04, Enterprise Integration Technologies, Palo Alto,
CA, July 1993.

[6] Foundation for Intelligent Physical Agents. FIPA
communicative act library specification. http://
www.fipa.org/specs/fipa00037/, 2002.

[7] Michael R. Genesereth and Richard E. Fikes. Knowl-
edge interchange format, version 3.0 reference man-
ual. Technical Report Logic-92-1, Computer Science
Department, Stanford University, June 1992.

[8] Michael R. Genesereth and Steven P. Ketchpel. Soft-
ware agents. Communications of the ACM, 37(7):48–
53, 1994.

[9] Jonas Kvarnström. VITAL: Visualization and imple-
mentation of temporal action logics. http://www.
ida.liu.se/˜jonkv/vital/, 2007.

[10] Martin Magnusson. Deductive Planning and Com-
posite Actions in Temporal Action Logic. Li-
centiate thesis, Linköping University, September
2007. http://www.martinmagnusson.com/
publications/magnusson-2007-lic.pdf.

[11] Martin Magnusson and Patrick Doherty. Deductive
planning with inductive loops. In Gerhard Brewka
and Jérôme Lang, editors, Proceedings of the 11th
International Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), pages 528–
534. AAAI Press, 2008.

[12] Martin Magnusson and Patrick Doherty. Logical
agents for language and action. In Christian Darken
and Michael Mateas, editors, Proceedings of the 4th
Artificial Intelligence and Interactive Digital Enter-
tainment Conference AIIDE-08. AAAI Press, 2008.

[13] Martin Magnusson, Jonas Kvarnström, and Patrick
Doherty. Abductive reasoning with filtered circum-
scription. In Proceedings of the 8th Workshop on
Nonmonotonic Reasoning, Action and Change NRAC
2009. UTSePress, 2009. Forthcoming.

[14] Robert Moore. Reasoning about knowledge and ac-
tion. Technical Report 191, AI Center, SRI Interna-
tional, Menlo Park, CA, October 1980.

[15] Leora Morgenstern. Knowledge preconditions for ac-
tions and plans. In Proceedings of the 10th Inter-
national Joint Conference on Artificial Intelligence,
pages 867–874, 1987.

[16] Leora Morgenstern. Foundations of a logic of knowl-
edge, action, and communication. PhD thesis, New
York, NY, USA, 1988. Advisor: Ernest Davis.

[17] Francis Jeffry Pelletier. A brief history of natural de-
duction. History and Philosophy of Logic, 20:1–31,
1999.

[18] C. Raymond Perrault and James F. Allen. A plan-
based analysis of indirect speech acts. Computational
Linguistics, 6(3-4):167–182, 1980.

[19] C. Raymond Perrault, James F. Allen, and Philip R.
Cohen. Speech acts as a basis for understanding
dialogue coherence. In Proceedings of the 1978
workshop on Theoretical issues in natural language
processing, pages 125–132, Morristown, NJ, USA,
1978. Association for Computational Linguistics.

[20] John Pollock. Natural deduction. Technical re-
port, Department of Philosophy, University of
Arizona, 1999. http://www.sambabike.
org/ftp/OSCAR-web-page/PAPERS/
Natural-Deduction.pdf.

[21] John L. Pollock. Cognitive Carpentry: A Blueprint for
how to Build a Person. MIT Press, Cambridge, MA,
USA, 1995.

[22] Lance J. Rips. The psychology of proof: deductive
reasoning in human thinking. MIT Press, Cambridge,
MA, USA, 1994.

[23] Erik Sandewall. Features and Fluents: The Represen-
tation of Knowledge about Dynamical Systems, vol-
ume 1. Oxford University Press, 1994.

[24] John R. Searle. Speech Acts: An Essay in the Philoso-
phy of Language. Cambridge University Press, 1969.

48




