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Abstract

In option searches, a user seeks to locate an ideal
option (e.g. a flight, restaurant, book, etc.) from a
set of n such options. The aim of this paper is to
provide a solid mathematical basis for optimizing
presentation length in such searches. The paper
develops an information theoretic model that takes
into account the user’s ability to discern among op-
tions as well as their a priori preference. The devel-
oped model makes definite predictions about what
clusterings of a user query are more or less informa-
tive based on measures of information gain. Users
are offered descriptions of such clusters as the ba-
sis for subsequent refinement steps in a drill-down
dialogue to locate the best option. We have imple-
mented an initial system that performs reasonably
well on moderately large data sets and gives in-
tuitively appealing results. The system is in the
process of being integrated into a natural language
interface system for end-user evaluation.

1 Introduction

As pointed out in [5], it is critical that spoken di-
alogue systems limit presentation duration for in-
teractive option searches. Thus if the user requests
“flights to Berlin leaving before noon,” and there
are many such flights, it is a mistake to simply start
listing them in succession — the user would become
irritated by the long descriptions and would be un-
likely to remember enough detail to make an op-
timal choice. In the database of table 1 there are
just four such flights, but even here it might be bet-
ter to ask the follow up question, “Do you prefer
Lufthansa or SAS?”. Such summarize-and-refine
(SR) techniques [4] cluster the options meeting the

user’s constraints into sets (e.g. “the SAS flights”
and “the Lufthansa flights”), present these sets as
summaries (or implicitly through questions) and
then let the user refine the search to the cluster that
interests them most. Such techniques promote effi-
ciency by reducing what would be a linear number
of descriptions to a roughly logarithmic number.

While such summarize-and-refine systems are
particularly suited to spoken dialogue systems
where users can reliably command systems to drill
down into one or another summary, there are diffi-
culties when such systems pick summaries that are
not discernible to the user. For example if the sys-
tem were to respond to the question above with
“do you prefer flights on an A300 or an A3207”,
most users would be hard pressed to make an in-
formed choice. The work presented here, inspired
by [1], recasts the interactive search process in an
information theoretic light and introduces a model
of discernibility among options as well as a general
parameter 7 of intolerance for a sub-optimal re-
sults. The work’s main contribution is to propose
a more solid mathematical basis for optimizing pre-
sentation length in options searches.

2 Foundations

2.1 Options, databases, answer sets
and clusterings

Consider the universe of values Y and, for a given
k., all the k-tuples U*, hereafter referred to as op-
tions. We denote the i-th value (starting at 1) of
option t as t[i]. The set of conditions C are func-
tions mapping U* — {true, false}, that is for ¢ € C
and option ¢t € U*, ¢(t) is either true or false. Let
D be a database of n options t1,..,t,. An answer
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no. dest airline dep price meal aircraft
1 Paris SAS 8 €200 yes A300
2 Berlin Luft 8 €250 yes A320
3  London SAS 9 €150 yes A300
4  Paris AF 9 €250 yes A320
5  Berlin Luft 9 €200 no A320
6 London BA 10 €200  yes A320
7  Berlin SAS 10 €250 no A300
8  Berlin SAS 11 €100 no A300

Table 1: Example Last Minute Travel Database

set is denoted as {z|z € D A Q(z)} where Q(z) is
a boolean combination of conditions. Hereafter we
will assume that D is fixed and thus drop explicit
reference to it, instead describing answers sets as
simply {x|Q(z)}. The semantics of answer sets are
standard, where (Vt € D)(t € {z|Q(z)} & Q(1)).
Often we will refer to the expression Q(z) as a
query.

When deciding the next dialogue move after the
user has identified {z|Q(x)} as the set that they
interested in, we must consider the possible clus-
terings (Q(x) : Q1(x), .., @m(x)) which present m
further summarize-and-refine sets to consider. As
an example, the clustering of the query for “the
flights to Berlin leaving before noon” into those on
Lufthansa or SAS is:

({x|beforeNoon(x) A toBerlin(z)} :

{z|beforeNoon(z) A toBerlin(z) A onLuft(x)},
{z|beforeNoon(z) A toBerlin(x) A onSAS(z)})

Note that our definition of a clustering puts no
conditions on the relationship between {z|Q(x)}
and U™ {z|Q;(x)}. Thus the relationship may
be specialization, generalization or some combina-
tion thereof. For example a ‘specializing’ clustering
of “the flights to Berlin leaving before noon” into
those €100 euro or less is:

({x|beforeNoon(z) A toBerlin(z)} :

{z|beforeNoon(z) A toBerlin(x) A
PriceLEQ(x, 100)})

A ‘generalizing’ clustering could be:

({x|beforeNoon(x) A toBerlin(z)} :
{z|before3PM(z) A toBerlin(x) A onLuft(z)},
{z|before1PM(z) A toBerlin(x) A onSAS(x)})

2.2 User preferences

A model of user preference captures the a priori
assumptions about how the user values alternative
options. Note that within a specific dialogue, users
express hard conditions such as the destination or
the need to fly at a specific time that are not cap-
tured in the user model. However given that a set of
options meet the hard constraints supplied by the
user, the user model will rank these options based
on this a priori model. Moreover as we shall see be-
low, based on notions of discernibility, options that
fall outside of the user supplied hard constraints
may in fact be worth presenting.

The work here allows for any type of quantitative
model of user preference, but to avoid formal dif-
ficulties, we assume that for all t € D, util(t) > 0.
The following shorthand notation expresses total
utility over an answer set:

>

te{z|Q(x)}

util({z]|Q(x)}) = util (¢)

2.3 Discernibility

In addition to the model of preference, there is a re-
lated model of discernibility. Two options are per-
fectly discernible if the user can immediately recog-
nize them as being qualitatively different. For ex-
ample, under a ‘normal’ context, a flight to Berlin
versus a flight to Paris are perfectly discernible
where as two flights to Berlin, one on an A300 and
other on an A320 are not discernible.

Formally, for each i-th component of the options,
assume that there is a function ¢; : U x U — [0..1].
The intuition of (; is that if options ¢ and ¢’ agree
on all components other than i (i.e. t[j] = t'[f]
for 1 < j < k and j # i), then ¢;(¢[i], ¢'[i]) is the
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probability that ¢ and ¢’ are indistinguishable to
the user. The product of these measures gives an
overall measure of similarity for tuples.

k
sim(t,t') = H Gi(t[i], '[i])

Note that sim(¢,¢) = 1 and that sim(¢,¢') = 0 if
there is at least one component upon which ¢ and
t' are perfectly discernible.

3 Owur Approach

3.1 The ideal answer assumption

We make what we call the ideal answer assump-
tion which states that there is some option opt € D
which is the single best option that the user is
searching for. The amount of information that can
be usefully applied to locating opt is measured in
bits, or answers to ‘yes/no’ questions. While in
cases of perfect discernibility, it will take log, n bits
to locate opt among n options, due to problems of
discernibility only so many bits may be usefully em-
ployed to locate opt. Note that this is different from
a measure of entropy. Consider the cases in which
all options are completely indiscernible. Answering
yes/no questions provides no information toward
locating the ideal option. The best one can do in
fact is simply pick one the options at random and
present it as the ideal. Formally, we use the follow-
ing definition of the information content within a
cluster:

x x 2
[({2]Q(x)}) = logs( Q@)Y

> X

te{z|Q(z)} te{z|Q(z)}

=)

sim(t',1)

The prior probability of an option being ideal is
proportional to its utility with respect to the model
of a priori user preferences:

util(t)
util({z|z € D})
We introduce the notation id; to denote the situ-
ation in which the user has identified the option tas

opt. Of course, based on problems of discernibility,
the user could be wrong.

P(t = opt) =

sim(t, )

Z sim(t', 1)

t'e{z|zeD}

P(t = optlid;) =

We now introduce the generalized notation idg to
denote the situation in which the user has declared
that opt € {z|Q(x)}. We obtain:

P(t = optlidg) =
= optlid;) - L@
t”e{xz@:(x)}P(t - o) util({z|Q(z)})

Note that we are weighing options in {z|Q(z)}
according to the model of user preference. This
makes sense, because the model of preference gives
us our a priori probability that a given option
within {z|Q(z)} would be selected as ideal by the
user. Now we develop the full generalized form:

>

t'e{z|Q" (=)}

P(opt € {z|Q'(x)}[idq) = P(t" = optlidg)

3.2 Information Gain

The natural question to consider is how much in-
formation is gained through a clustering (Q(x) :
Q1(2),..,Qm(x)). This is decided in the normal
way by subtracting the information required to lo-
cate opt within {z|Q(x)} from the information re-
quired to locate opt within each cluster {z|Q;(z)}
weighted by the probability that the user will se-
lect the given cluster Q;(z) on their next refinement
move. Finally consideration must be given to the
possibility that the user refines the wrong cluster
or that opt is not within any cluster {z|Q;(z)}. In
such a case the user suffers the cost v measured in
terms of bits. Given these ideas we arrive at the
following measure of gain:

gam(<Q(x) : Ql(x)7 --an(I))) =
I({z|Q(x)}) + P(opt ¢ {z]|Q(z)}idg) - v

m

ZP(selQi) ~(I({=]Qi(x)}) +
P(opt ¢ {z|Qi(x)}idg,) - )

m

—P(opt € {z|Q(x) A\ ~Qi(x)}idg) - ¥

i=1

where selg, means that the user will select ); as
the basic of further refinement.
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Using the model of user preferences we assume’

that:

util({z[Qi(z)})
Y util({zlQ'(2)})

Q' e{Q1,,.Qm}

P(SelQi) =

That is to say that the probability of a user se-
lecting a set corresponds to the total utility within
the set relative to the total utility of all sets under
consideration.

3.3 Decision procedure

Given a non-empty Q(z), we generate a set of al-
ternative clusterings, picking the one with highest
benefit. Benefit is determined by the dividing infor-
mation gain by the cost of summarizing the clusters
to the user. Formally we pick § in:

gain((Q(z) : Q1 (), ..., @m(2)))

cost(s)

)

§ = arg max(
s€S

where s = (Q(z) : Q1(z),..,Qm(z)) and S is the
set of clustering statements. To keep things simple
we assume that the cost of reporting the cluster-
ing (Q(x) : Q1(x),..,Qm(x)) is simply m. This
assumption is of course too simplistic — a more rea-
sonable measure, though beyond the scope of this
paper, would be based on the cost of presenting the
clustering in natural language.

Because S is (practically) infinite, we must give
up on optimality and instead generate a represen-
tative sample S’ C S. This set of clusterings
is built randomly through splitting Q(z) via new
conditions and then by specializing (or generaliz-
ing) or further splitting the resulting clusters. Our
methods to calculate gain are purely distributional.
That is we directly compute our measures through
iterating over answers sets yielded by our clusters.
The calculation of gain is O(m-n?) for the n options
under consideration and a clustering of m clusters.
Thus if we recast our problem as a search prob-
lem, the evaluation function is polynomial in the
size of the problem. Although our current method
to obtaining S’ is still rather naive, such methods
can achieve reasonable performance for moderately
sized data sets.

IThere are several other reasonable models that can be
used here. For example the average utility or even a more
complex measure of perceived utility based on discernibility.

Thus far we have left the set of conditions C un-
specified. The conditions are just boolean map-
pings over options (or k-tuples). While the condi-
tion PricelsPrime(z) may return true for all options
where the fifth component is a prime number, there
are an infinite number of such far fetched conditions
and thus we isolate attention to a fixed finite set of
conditions Csimple € C which are the conditions that
‘make sense’ in the given domain.

Given Csimple, the set Q of semantically distinct
queries that may be built up as boolean formulas
from conditions within Csimple. Note that Q is large,
though finite. We assume here that the natural lan-
guage interface may relate user typed (or spoken)
strings to elements within Q for the purposes of
understanding and paraphrasing.

4 Example

Although we have a working demonstration system,
we choose here to present a series of examples to
illustrate the properties of our algorithm over the
database of table 1.

4.1 Three user models and a model
of discernibility

To simplify the presentation we assume a very sim-
ple linear user model based on the coefficients a;
and b;. To achieve this we capture a value map-
ping function v; for the i-th option component val-
ues to numerical measures: v;(U) — R. Assume
that v;(z) = z for numerical values and v;(z) = 1
for non-numerical values. The default utility of an
option is thus measured as:

k
util(t) = > a; - vi(t[i]) + b;
i=1

We present three user models. The first is for
Maxwell Entropy: a; = 0,b; = % As we can see,
Max has no default preference for one option over
another. The second user model is that of the stu-
dent who only favors one option over another based
on price: a; = 0,b; = 0 for i # 5, a5 = —1,b5 =
300. The third user model is that of a business trav-
eler that prefers early flights and flights on SAS.
As we shall see later this model is able to induce

a tradeoff between options (e.g. early non-SAS
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flights vs. later SAS flights): a; = 0,b; = 0 for
i < 3,1 >4, v3('SAS) = 1, vs('Lufthansa’) = 0.1,
vs("AirFrance’) = 0.1, v3('BritishAir') = 0.1, a3 = 1,
b3 = 0, a4 = 7.2, b4 = 2.6.

We assume the same model of discernibility for
all users. For flight number and aircraft type we
assume no ability of the users to discern between
options, that is (1 (v1,v2) = 1 and (7(v1,v2) = 1
for all value pairs v; and vo. For destination we
assume perfect discernibility, that is (a(v1,v2) =1
when v;1 = vy and 0 otherwise. For airline and
meal we assume strong discernibility, specifically
C3(v1,v2) = 1 and (g(v1,v2) = 1 when v; = vy and
.33 otherwise. For departure time and price we

use an exponential measure. That is (4(v1,v2) =
o — _lvi—wva] . .
e~ lvi=v2l gnd Cs(v1,v9) = e 100 Given this

model, sim(ty,t4) = .074.

4.2 System runs

Give the database of table 1 and the user and
discernibility models above, table 2 shows the cal-
culation of gain for various clusterings of the input
query "the flights to Berlin leaving before noon.”
The highest benefit clusterings are presented along
with several lower scoring alternatives to illustrate
the sensitivity to the given user model. The key
parameter that controls the behavior of the system
is the penalty parameter ~.

5 Discussion

The work presented here is preliminary, likely to
undergo much revision and refinement as it is in-
tegrated and evaluated within an operational NLI
system [2]. Among the unsettled issues are the
form and scope of the models of utility and dis-
cernibility. For example the independence assump-
tion made in the current model of discernibility is
likely to be inadequate in general. As an anony-
mous reviewer points out, a possible reason why
SAS and Lufthansa are discernible could be that
SAS provides meals while Lufthansa does not. We
agree, although we note that a more sophisticated
model could be developed and plugged into our ba-
sic approach. As for scope, we have assumed that
preference and discernibility models can be crafted
for large classes of users in a given context. For
example we assume that under a wide variety of

conditions flights on A320’s and flights on A300’s
are indiscernible. Likewise we model flights to dif-
ferent locations as nearly perfectly discernible.

While perhaps our models of preference and dis-
cernibility should be generalized, we feel justified
in stipulating the ideal answer assumption and
our method of calculating information gain, con-
founded by discernibility and preference. A natu-
ral question is whether the ideal answer assump-
tion can be relaxed. Our hypothesis is that the
discernibility model and ~, the penalty of picking a
non-ideal option, already provide enough machin-
ery to get desired results. In any case, some variant
of the ideal answer assumption seems necessary to
cast the problem in an information theoretic light.

In contrast to summarize-and-refine based ap-
proaches [4], user-modeling based approaches, as
characterized by [3, 6] rank matching options based
on their utility, offering the highest ranking options
first. Recently these two strategies (summarize-
and-refine and user-modeling) have been combined
into a single approach [1] based on building an op-
tion tree over the (current) set of options which
specifies refinement paths based on a user model
of attribute importance and attribute value pref-
erences. Such option trees are further pruned
based on dominance relations amongst options (i.e.
when one option will always be preferred over an-
other) and option trees are able to express trade-
offs among options when the user has conflicting
preferences (e.g. if the user prefers early flights
and flights on SAS, then a response might be 7 At
8 am, flight 2 is the earliest flight to Berlin, but it’s
with Lufthansa, while flight 7, leaving at 10am, is
the earliest flight to Berlin on SAS.”) An elusive
goal of the work in this paper, not yet achieved, is
to provide an information theoretic account of why
presenting such trade-offs yields especially high in-
formation gain.

6 Conclusions

We live in a time of tremendous choice; we pick
from hundreds of mobile phone models, thousands
of travel destinations and millions of potential chat
partners. When confronted with such complex
choices, people tend to become either mazrimiz-
ers, spending large amounts of time studying the
various options, their features and trade-offs, or
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user response penalty (7) | benefit
M. Entropy “The 2 flights with Lufthansa or 2 flights with SAS?” 3 bits .39
“Flight #7 (SAS at 10) or flight #8 (SAS at 11) or 3 bits .25
flight #2 (Lufthansa at 8)”
Student “Flight #8 the cheapest or the 3 other more expen- 3 bits .52
sive flights.”
“Flight #8 the cheapest.” .1 bits 1.94
“Flight #8 the cheapest or flight #5.” .1 bits .89
Business “Flight #2 (the earliest), Flight #7 (the earliest on 3 bits 51
SAS), or the remaining 2 flights?”

Table 2: Response to a request for ”the flights to Berlin leaving before noon.”

they become satisfiers, making snap decisions, of-
ten bad, but saving time and mental energy. This
paper serves both these types through increasing
the efficiency of finding high quality options. This
paper has presented a method to uniformly mea-
sure clusterings that either generalizes the user’s
query or specializes the user’s query or in fact some
combination of such strategies. The higher the
penalty parameter 7, the more the system will opt
toward a maximizer strategy.

This paper follows in the tradition of coopera-
tive query answering which seeks to provide the
user with more natural answers. This paper has
mainly developed a set of theoretical tools and have
verified the reasonableness of the developed tool
through a simple, distributional implementation of
the said concepts. The work in this paper tends
more toward summarize-and-refine methods than
user modeling based techniques. One aspect that
the system does not explore are the subtle issues of
contrast and linguistic nuance in presenting results.
The system follows the summarize-and-refine ap-
proach in this respect, providing relatively straight
forward summarizations of the best clustering that
are found. Future work aims toward building a
more efficient algorithm to search for possible clus-
ters and incorporating the work into a query para-
phrasing and natural language interface system for
end-user evaluation [2].
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