Abstract

We describe how the radiosity method can be used to compute the global illumination of a static scene with dynamic lights. A transfer function that maps the direct illumination to the global illumination is precalculated. Real-time performance is reached for simple scenes.

Keywords: global illumination, radiosity, real-time, precomputed radiance transfer

1 Introduction

The radiosity method can be used to compute the global illumination, direct and indirect lighting, of a scene that consists of ideal diffuse surfaces. The surfaces are first divided into patches. The radiosity equation system describes the relation between the global illumination of all patches \(B = (B_1, \ldots, B_n)^T \) and the emission of all patches \(E = (E_1, \ldots, E_n)^T \) [Hanrahan et al. 1991]:

\[MB = E \]

The matrix \(M \) depends on the geometric relation between the patches (form factors) and the patches’ colors (diffuse reflectance). For our purposes we may consider \(E \) to be the direct illumination of the patches. The direct illumination of each patch can be computed in real-time using standard methods like shadow mapping [Akenine-Moller and Haines 2002]. The inverse of \(M \) describes the linear mapping from direct illumination to global illumination:

\[B = M^{-1} E \]

It holds coefficients that tell how much light that travels from one patch to another after an infinite number of bounces in the scene. The matrix \(M \) is very expensive to compute but if the geometry and textures of the scene are static, \(M \) remains static as well. \(M^{-1} \) may thus be precomputed and used as a transfer function that maps arbitrary direct illumination to global illumination. The process of computing the global illumination can thus be performed with a large matrix-vector multiplication. That is, for each patch that we want to illuminate globally, we sum over all other patches and accumulate their contribution. Illuminating all patches thus results in a time complexity of \(O(n^2) \), where \(n \) is the number of patches.

2 Compressing the Matrix

For larger scenes a time complexity of \(O(n^2) \) is not manageable. [Hanrahan et al. 1991] reduces the number of interactions, described by \(M \), by clustering of small interactions. This method can be modified and used for \(M^{-1} \) as well. It however only clusters neighbouring patches lying in the same plane. For scenes consisting of large planar surfaces the time complexity is reduced to \(O(n) \).

[Willmott et al. 1999] describe a method that extends clustering to patches that are just approximately planar. They use it for the radiosity equation system described by \(M \). Extending it to \(M^{-1} \) is not as straightforward as the planar clusters first mentioned. This and other techniques are discussed by [Lehtinen et al. 2008]. It should also be noted that it is just necessary to update the interactions between patches visible on screen and those illuminated directly.

3 Conclusion

It is today possible to do real-time global illumination of simple static scenes with dynamic lights. There exist promising ideas and if they are all incorporated in an implementation, preferably accelerated by graphics hardware, real-time performance will probably also be possible for more complex scenes.

References

