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Abstract 
Rational numbers are important as a foundation for later mathematics 
learning and particularly for learning algebra. Most researcher agree that 
students find rational numbers difficult. This article question the 
traditional use of partitioning as the starting point for the teaching of 
fractions. It seeks the origin of children’s understanding of rational 
numbers in their understanding of division. A number of empirical 
studies are presented on children’s use of action schemes for division, 
correspondence and partitioning. At last conclusions and implications 
for education are drawn. 
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Introduction 
There may not be many things that mathematics educators and researchers agree 
on but most would certainly agree that students find rational numbers difficult (e.g. 
Behr, Lesh,  Post, & Silver, 1983; Brousseau, Brousseau, & Warfield, 2004; Davis, 
Hunting, & Pearn,1993; Freudenthal, 1983; Kerslake, 1986; Kieren, 1988; Ohlsson, 
1987, 1988; Pitkethly & Hunting, 1996; Post, Behr, & Lesh, 1986; Stafylidou & 
Vosniadou, 2004). Several misconceptions that children seem to hold about rational 
numbers have been described, a large variety of experimental teaching programmes 
developed, but teaching and learning about rational numbers remains a dishearten-
ing experience for many teachers and learners. It is, however, a topic of major im-
portance in mathematics education. The recent report by the U.S.A. National 
Mathematics Panel reaffirms the importance of teaching students about rational 
numbers as a foundation for later mathematics learning, and in particular as a criti-
cal foundation for learning algebra (Fennell, Faulkner, Ma, Schmid, Stotsky, Wu et 
al., 2008). 

This paper has as its starting point the simple idea that rational numbers are 
numbers in the domain of quotients (Brousseau, Brousseau, & Warfield, 2007; 
Kieren, 1993; Ohlsson, 1988). Although there are different subconstructs or 
meanings for rational numbers (see, for example, Behr, Harel, Post, & Lesh, 1992; 
Kieren, 1988), it seems reasonable to seek the origin of children’s understanding of 
rational numbers in their understanding of division. Our hypothesis is that in 
division situations children can develop some insight into the equivalence and 
order of quantities that would normally be represented by fractions, even in the 
absence of knowledge of representations for fractions, either in written or oral 
form. 

In the first section of this paper, the two schemes of action that children use 
in division situations are identified and the insights into aspects of rational numbers 
that each scheme can promote are explored. In the second and third sections, 
research about the development of each of the two schemes of action is 
considered. The last section summarizes the conclusions and implications for 
education. 

Two Schemes of Action for Division 
The mathematics education literature traditionally considers two types of division 
problems: partitive and quotative division. Fischbein, Deri, Nello, and Marino 
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(1985) define partitive division (which they also term sharing division) as a model 
for situations in which  
 

an object or collection of objects is divided into a number of equal fragments or 
subcollections. The dividend must be larger than the divisor; the divisor (operator) must be 
a whole number; the quotient must be smaller than the dividend (operand)… In quotative 
division or measurement division, one seeks to determine how many times a given quantity 
is contained in a larger quantity. In this case, the only constraint is that the dividend must 
be larger than the divisor. If the quotient is a whole number, the model can be seen as 
repeated subtraction (Fischbein, Deri, Nello, & Marino, 1985, p. 7).  

 

This classification distinguishes two ways in which children use the same scheme of 
action, which will be referred to here as partitioning. In both types of division 
problems identified by Fischbein and his colleagues: (a) there is one whole (an 
object or a collection of objects) and the question is how it is divided into equal 
parts; (b) the dividend is larger than the divisor; and (c) the children’s actions 
involve forming equal parts which exhaust the whole. The difference between the 
two types of problems is that in partitive division the children are told how many 
parts there should be but not the size of the parts, whereas in quotative division 
they are told the size of the parts and are asked to find out how many parts of this 
size fit into the whole. 

When children use the scheme of partitioning, the insights that they gain 
about quantities can help them understand some principles that apply in the 
domain of rational numbers. They can, for example, reason that, the more parts 
they cut the whole into, the smaller the parts will be. This insight is relevant to 
quantities that are normally represented by fractions and could help them 
understand how fractions are ordered.  

If children can achieve a higher level of precision in reasoning about 
partitioning, they could develop some understanding of the equivalence of 
fractions: they could come to understand that, if they have twice as many parts, 
each part would be halved in size. For example, you would eat the same amount of 
chocolate after cutting one chocolate bar into two parts and eating one part as after 
cutting it into four parts and eating two, because the number of parts and the size 
of the parts compensate for each other precisely. 

It is an empirical question whether children attain these understandings in the 
domain of whole numbers and extend them to rational numbers. 

Although partitioning is the scheme that is most often used to introduce 
children to fractions, it is not the only scheme of action relevant to division. 
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Children also use correspondences in division situations when the dividend is 
represented by one measure and the divisor is represented by another measure. The 
difference between partitioning and correspondence division is that in partitioning 
there is a single whole (or measure) and in correspondence there are two measures. 
An example of correspondence is when children share out chocolate bars to a 
number of recipients: here the dividend is in one domain of measures – the number 
of chocolate bars – and the divisor is in another domain – the number of children. 
In this case, and precisely because there are two domains of measures, the 
assumptions made about the relative size of the dividend and the divisor identified 
by Fischbein and colleagues do not apply: the dividend does not have to be larger 
than the divisor, and most children are ready to agree that it is perfectly possible to 
share one chocolate bar among three children – that is, it is perfectly possible to 
divide a smaller number by a larger number. 

The difference between these two schemes of action may seem, at first glance, 
too subtle to be of interest when we are thinking of children’s understanding of 
fractions, and research on children’s understanding of fractions has not made this 
into a core distinction so far. However, it is argued in this paper that this is a crucial 
distinction both in terms of what insights each scheme of action affords and in 
terms of the empirical research results.  

There are at least four differences between what children might learn about 
quantities which are usually represented by fractions from using the partitioning 
scheme or the scheme of correspondences.  

The first difference is that there is no necessary relation between the size of 
the dividend and that of the divisor when children set two measures in 
correspondence. In contrast, as pointed out by Fischbein and his colleagues, the 
dividend is assumed to be larger than the divisor in partitioning. Therefore, it may 
be easier for children to develop an understanding of improper fractions when they 
use correspondences between two fields of measures than when they use 
partitioning of a single whole. They might have no difficulty in understanding that 
3 chocolate bars shared between 2 children means that each child could get one 
chocolate bar plus a half. In contrast, in partitioning situations children might be 
puzzled if they are told that someone ate 3 parts of a chocolate bar divided in 2 
parts. 

A second possible difference between the two schemes of action may be that 
children could conclude when using correspondences that the way in which 
partitioning is carried out does not matter, as long as the correspondences between 
the two measures are “fair”. They could, for example, understand that if you have 3 
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chocolate bars to be shared by 2 children, it is not necessary to divide all 3 
chocolate bars in half, and then distribute the halves; giving a whole chocolate bar 
plus a half to each child would accomplish the same fairness in the 
correspondences between chocolate bars and children. This might be an important 
insight into understanding fractions. In the domain of natural numbers, a set with 3 
elements is equivalent to all sets with 3 elements and only to sets with 3 elements; 
in the domain of rational numbers, two quantities described by different numbers 
can be equivalent (e.g. 1/2, 2/4, 3/6 etc. are represented by different numbers but 
are equivalent). 

A third possible insight about quantities that can obtained from correspon-
dences is related to ordering of quantities: the children may realize that, the more 
children sharing, the less each one will get. This can be described in the context of 
division as knowing that there is an inverse relation between the divisor and the 
quotient. It was hypothesized earlier that children might achieve a similar insight 
about this inverse relation through the scheme of partitioning. However, there is a 
difference between the principles children would need to abstract from each of the 
schemes: in partitioning, they need to establish a with-in-quantity relation (the more 
parts, the smaller the parts) whereas in correspondence they need to establish a 
between-quantity relation (the more children, the less chocolate). It is an empirical 
matter to find out whether it is easier to achieve one of these insights than the 
other, or whether they pose the same obstacles to children. 

Finally, both partitioning and correspondences could help children under-
stand something about the equivalence between quantities, but the reasoning 
required to achieve this understanding differs across the two schemes of action. 
When setting chocolate bars in correspondence with the recipients, the children 
might be able to reason that, if there were twice as many chocolate bars and twice 
as many children, the shares would be equivalent, even though the dividend and the 
divisor are different. This may be relatively simpler than the com-parable reasoning 
in partitioning. In partitioning, understanding equivalence is based on inverse 
proportional reasoning (twice as many pieces means that each piece is half the size) 
whereas in contexts where children use the correspondence scheme, the reasoning 
is based on a direct proportion (twice as many chocolate bars and twice as many 
children means that everyone still gets the same). 

This exploratory analysis of how children might accomplish an understanding 
of equivalence and order of fractions when using partitioning or when using 
correspondences in division situations indicates that it may be fruitful to attend 
more to the difference between these schemes in division than hitherto. It is 
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possible that the scheme of correspondences could afford in some sense a 
smoother transition from natural to rational numbers, at least as far as under-
standing equivalence and order of quantities is concerned.  

In the second and third sections of this paper, a review of research about 
children’s understanding of correspondence and of partitioning is presented. The 
literature on these schemes of action is vast but this paper focuses on research that 
sheds light on whether it is possible to find continuities between children’s 
understanding of quantities that are represented by natural numbers and those that 
must be represented by rational numbers. For simplicity, the latter will be referred 
to simply as “fractional quantities”. 

Children’s use of the correspondence scheme  
in making judgements about quantities 

Piaget (1952) pioneered the study of how and when children use the correspon-
dence scheme to draw conclusions about quantities. In one of his many studies 
about children’s understanding of correspondences, Piaget (1952) asked the 
children to place one pink flower into each one of a set of vases; after removing the 
pink flowers, he asked the children to place a blue flower into each one of the same 
vases; then having set all the flowers aside, and leaving on the table only the vases, 
he asked the children to take from a box the exact number of straws required if 
they wanted to put one flower into each straw. Without counting, and only using 
correspondences, 5- and 6-year old children were able to make inferences about the 
equivalence between straws and flowers: by setting two straws in correspondence 
with each vase, they achieved an equivalent set. Piaget concluded that the children’s 
judgements were based on “multiplicative equivalences” (p. 219) established by the 
use of the correspondence scheme: the children reasoned that, if there is a 2-to-1 
correspondence between flowers and vases and a 2-to-1 correspondence between 
straws and vases, the number of flowers and straws must be the same. 

In Piaget’s study, the scheme of correspondence was used in a situation that 
involved ratio but not division. More recently, Frydman and Bryant (1988) carried 
out a series of studies where children established correspondences between sets in a 
division situation. The children were given a set of cubes, which were pretend 
sweets, to be shared fairly among different dolls. Children aged 4 could often carry 
out this sharing efficiently and fairly by using a one-for-you one-for-me type of 
procedure. After distributing the sweets, the children were confident that they did 
this sharing fairly and that both dolls had the same amount of sweets to eat. 
Frydman and Bryant asked the children to count the number of sweets that one 
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doll had and then deduce the number of sweets that the other doll had. About 40% 
of the 4-year-olds were able to make the inference that the second doll had the 
same number of sweets as the first one; this proportion increased with age. This 
result extends Piaget’s observations that children can make equivalence judgements 
not only in multiplication but also in division problems by using correspondences. 

These studies show that children can use the scheme of correspondences to 
make equivalence judgements in the domain of natural numbers, even if they have 
not counted the sets and are not using number labels as mediators of this 
equivalence judgement. Their findings were replicated in a number of studies by 
Davis and his colleagues (Davis, 1990; Davis & Hunting, 1990; Davis & Pepper, 
1992; Pitkethly & Hunting, 1996), who refer to this scheme of action as “dealing”. 
These authors have argued that this scheme is basic to children’s understanding of 
fractions (Davis & Pepper, 1992). They used a variety of situations, including 
redistribution when a new recipient comes, to study children’s ability to use 
correspondences to make inferences about equality. In redistribution situations 
many children thought that it was better to count after having carried out the 
distribution, in order to make sure that the amounts were the same (Davis & 
Pitkethly, 1990). Nevertheless, they concluded that children do use correspond-
ences in order to establish equivalences between quantities generated through a 
division. 

Correa, Nunes, and Bryant (1998) extended these studies by showing that 
children can make inferences about quantities resulting from a division not only 
when the divisors are the same but also when they are different. In order to 
circumvent the possibility that children feel the need to count the sets after division 
because they think that they could have made a mistake in sharing, Bryant and his 
colleagues did not ask the children to do the sharing: the sweets were shared by the 
experimenter, outside the children’s view, after the children had seen that the 
number of sweets to be shared was the same.  

There were two conditions in this study: same dividend and same divisor 
versus same dividend and different divisors. In the same dividend and same divisor 
condition, the children should be able to conclude for the equivalence between the 
sets; in the same dividend and different divisor condition, the children should 
conclude that the more recipients there are, the fewer sweets they receive.  

About two thirds of the 5-year-olds, the vast majority of the 6-year-olds, and 
all the 7-year-olds concluded that the recipients had equivalent shares when the 
dividend and the divisor were the same. Equivalence was easier than the inverse 
relation between divisor and quotient: 34%, 53% and 81% of the children in these 
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three age levels, respectively, were able to conclude that the more recipients there 
are, the smaller each one’s share will be. Correa (1994) also found that children’s 
success in making these inferences improved if they solved these problems after 
practising sharing sweets between dolls; this indicates that thinking about how to 
establish correspondences improves their ability to make inferences about the 
relations between the quantities resulting from sharing. 

In all the previous studies, the dividend was composed of discrete quantities 
and was larger than the divisor. The next question to consider is whether children 
can make similar judgements about equivalence when the situations involve 
continuous quantities and the dividend is smaller than the divisor: that is, when 
children have to think about fractional quantities.  

Kornilaki and Nunes (2005) investigated this possibility by comparing 
children’s inferences in division situations that involved discrete quantities and 
dividends larger than the divisors, and also situations that involved continuous 
quantities and dividends smaller than the divisors. In the discrete quantities tasks, 
the children were shown one set of small toy fish to be distributed fairly among a 
group of white cats and another set of fish to be distributed to a group of brown 
cats; the number of fish was always greater than the number of cats. In the 
continuous quantities tasks, the dividend was made up of fish-cakes, to be 
distributed fairly among the cats: the number of cakes was always smaller than the 
number of cats, and varied between 1 and 3 cakes, whereas the number of cats to 
receive a portion in each group varied between 2 and 9. Following the paradigm 
devised by Correa, Nunes, and Bryant (1998), the children were neither asked to 
distribute the fish nor to partition the fish cakes. They were asked whether, after a 
fair distribution in each group, each cat in one group would receive the same 
amount to eat as each cat in the other group. Empson, Junk, Dominguez, & Turner 
(2005) have stressed that  

 
the depiction of equal shares of, for example, sevenths in a part–whole representation is 
not a necessary step to understanding the fraction 1/7 (for contrasting views, see Charles 
and Nason, 2000; Lamon, 1996; Pothier and Sawada, 1983). What is necessary, however, is 
understanding that 1/7 is the amount one gets when 1 is divided into 7 same-sized parts 
(Empson, Junk, Dominguez, & Turner, 2005).  

 

In some trials, the number of fish (dividend) and cats (divisor) was the same; in 
other cases, the dividend was the same but the divisor was different. So in the first 
type of trials the children were asked about equivalence after sharing and in the 
other set the children were asked to order the quantities obtained after sharing. 
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There were 16 trials with discrete quantities and 24 trials with continuous quanti-
ties; this large number of trials allowed the researchers to establish whether the 
children were performing above chance. 

The majority of the children succeeded in all the items where the dividend and 
the divisor were the same: 62% of the 5-year-olds, 84% of the 6-year-olds and all 
the 7-year-olds answered all the questions correctly. When the dividend was the 
same and the divisors differed, the rate of success was 31%, 50% and 81%, 
respectively, for the three age levels. There was no difference in the level of success 
attained by the children with discrete versus continuous quantities. 

In almost all the items, the children explained their answers by referring to the 
type of relation between the dividends and the divisors: same divisor, same share 
or, with different divisors, the more cats receiving a share, the smaller their share. 
The use of numbers as an explanation for why the recipients’ shares would be the 
same or not was observed in 6% of answers by the 7-year-olds when the quantities 
were discrete and less often than this by the younger children. Attempts to use 
numbers to speak about the shares in the continuous quantities trials were 
practically inexistent (3% of the 7-year-olds explanations). Thus the analysis of 
justifications supports the idea that the children were reasoning about relations 
rather than using counting when they made their judgments of equivalence or 
ordered the quantities that would be obtained after division. 

This study replicated previous findings that young children can use cor-
respondences to make inferences about equivalences and also added new evidence 
relevant to children’s understanding of fractional quantities: many young children 
who have never been taught about fractions used correspondences to order 
fractional quantities. They did so successfully when the division would have 
resulted in unitary fractions and also when the dividend was greater than 1 and the 
results would not be a unitary fraction (e.g. 2 cakes to be shared by 3, 4 or 5 cats).  

Young children are notoriously bad at partitioning continuous quantities into 
equal shares (see, for example, Hierbert & Tonnessen, 1978; Hunting & Sharpley, 
1988a, 1988b; Miller, 1984; Piaget, Inhelder, & Szeminska, 1960), so Kornilaki and 
Nunes concluded that their inference making abilities must have been ahead of 
their procedural skills for partitioning and most likely stemmed from the 
knowledge about relations between the dividend and the divisor gained in the 
context of discrete quantities. 

Recently Mamede (2006) replicated the results of children’s ability to make 
inferences about asymmetrical relations in sharing situations in the context of 
fractional quantities. She worked with Portuguese children in their first year in 
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school, who had received no school instruction about fractions. Their perfor-
mance was only slightly weaker than that of English children: 55% of the 6-year-
olds and 71% of the 7-year-olds were able to make the inference that the larger the 
divisor, the smaller the share that each recipient would receive. 

These studies strongly suggest that children can learn principles about how the 
dividend and the divisor are related from experiences with sharing when they 
establish correspondences between the two domains of measures, the shared 
quantities and the recipients. They suggest that a relatively smooth transition from 
natural numbers to rational numbers is possible when children use 
correspondences to understand the relations between quantities. This argument is 
central to Streefland’s (1987; 1993; 1997) hypothesis about what is the best starting 
point for teaching fractions to children and has been advanced by others also 
(Davis & Pepper, 1992; Kieren, 1983; Vergnaud, 1983). 

These studies tell an encouraging story about children’s understanding of the 
logic of division even when the dividend is smaller than the divisor, but there is one 
further point that should be considered in the transition between natural and 
rational numbers. In the domain of rational numbers there is an infinite set of 
equivalences (e.g. 1/2 = 2/4 = 3/6 etc.) and in the studies described previously the 
children were only asked to make equivalence judgements when the dividend and 
the divisor were the same. Can they still make the inference of equivalence in 
sharing situations when the dividend and the divisor are different across situations, 
but the dividend-divisor ratio is the same?  

Nunes, Bryant, Pretzlik, Bell, Evans and Wade (2007) asked English children, 
aged between 7.5 and 10 years, who were in their 4th and 5th years in school, to 
make comparisons between the shares that would be received by children in 
sharing situations where the dividend and divisor were different but their ratio was 
the same. Previous research (see, for example, Behr, Harel, Post, & Lesh, 1992; 
Kerslake, 1986) shows that children in these age levels have difficulty with the 
equivalence of fractions. The children in this study had received some instruction 
on fractions: they had been taught about halves and quarters in problems about 
partitioning. They had only been taught about one pair of equivalent fractions: they 
were taught that one half is the same as two quarters. In the correspondence item 
in this study, the children were presented with two pictures: in the first, a group of 
4 girls was going to share fairly one pie; in the second, a group of 8 boys was going 
to share fairly 2 pies that were exactly the same as the pie that the girls had. The 
question was whether each girl would receive the same share as each boy. The 
overall rate of correct responses was 73% (78% in Year 4 and 70% in Year 5; this 
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difference was not significant). This is an encouraging result: the children had only 
been taught about halves and quarters; nevertheless, they were able to attain a high 
rate of correct responses for fractional quantities that could be represented as 1/4 
and 2/8. 

The studies reviewed so far asked the children about quantities resulting from 
division and always included two domains of measures, thus engaging the children’s 
correspondence reasoning. However, they did not involve asking the children to 
represent these quantities through fractions. The final study reviewed here is a brief 
teaching study (Nunes, Bryant, Pretzlik, Evans, Wade, & Bell, 2008), where the 
children were taught to represent fractions in the context of two domains of 
measures, shared quantities and recipients, and were asked about the equivalence 
between fractions. The types of arguments that children produced to justify the 
equivalence of fractions were then analyzed and compared to the insights that we 
hypothesized would emerge in the context of sharing from the use of the 
correspondence scheme. Brief teaching studies are of great value in research 
because they allow the researchers to know what under-standings children can 
construct if they are given a specific type of guidance in the interaction with an 
adult (Cooney, Grouws, & Jones, 1988; Steffe & Tzur, 1994; Tzur, 1999; Yackel, 
Cobb, Wood, Wheatley, & Merkel, 1990) and because of their ecological validity: 
children spend much of their time in school trying to use what they have been 
taught to solve mathematics problems. Because this study has only been published 
in a summary form (Nunes, Bryant, Pretzlik, & Hurry, 2006), some detail is 
presented here. 

The children (N=62) were in the age range from 7.5 to 10 years, in the 4th or 
5th year in school. As those in the previous study, they had only been taught about 
half and quarters and the equivalence between half and two quarters. They worked 
with a researcher outside the classroom in small groups (12 groups of between 4 
and 6 children, depending on the class size) and were asked to solve each problem 
first individually, and then to discuss their answers in the group. The sessions were 
audio- and video-recorded. The children’s arguments were transcribed verbatim; the 
information from the video-tapes was later coordinated with the transcripts in 
order to help the researchers understand the children’s arguments. 

This study used tasks from Streefland (1991). The children solved two of his 
sharing tasks on the first day and an equivalence task on the second day of the 
teaching study.  The tasks were presented in booklets with pictures, where the 
children also wrote their answers. The tasks used on the first day were: 
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1. Six girls are going to share a packet of biscuits. The packet is closed; we 
don’t know how many biscuits are in the packet. (a) If each girl received one 
biscuit and there were no biscuits left, how many biscuits were in the packet? 
(b) If each girl received a half biscuit and there were no biscuits left, how 
many biscuits were in the packet? (c) If some more girls join the group, what 
will happen when the biscuits are shared? Do the girls now receive more or 
less each than the six girls did? 

2. Four children will be sharing 3 chocolates. (a) Will each one be able to get 
one bar of chocolate? (b) Will each one be able to get at least a half bar of 
chocolate? (c) How would you share the chocolate? (The booklets con-
tained a picture with three chocolate bars and four children and the children 
were asked to show how they would share the chocolate bars.) Write what 
fraction each one gets. 

 

After these tasks had been completed, the researcher told the children that they 
were going to practice writing fractions that they had not yet learned in school. The 
children were asked to write “half” with numerical symbols; this they knew already. 
The researcher then asked the children to explain why there was a number 1 above 
the line, a number 2 below the line, and a line between the numbers (for a 
discussion of children’s interpretation of fraction symbols in this situation, see 
Charles & Nason, 2000, and Empson, Junk, Dominguez, & Turner, 2005). 
Working from the children’s responses, the researcher guided them to the 
realization this symbol can be interpreted as “1 chocolate bar divided by 2 
children” and that the line indicates a division. The children were then asked: if 
there is 1 chocolate bar to be shared among 4 children, what fraction will they 
receive? This was a known notation but we wanted the children to reinterpret it as 
“1 divided by 4”, and not just think about the symbol as meaning “1 piece out of 
4”, which was their initial interpretation, based on the instruction that they received 
in the context of partitioning. Then, without showing the children any pictures, the 
researcher asked them to write what fraction of a chocolate bar children would 
receive if they had: 

 

1. 1 chocolate bar shared by 3 children; 

2. 1 chocolate bar shared by 5 children; 

3. 2 chocolate bars  shared by 5 children. 
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The equivalence task, presented on the second day was: 

1. Six children went to a pizzeria and ordered 2 pizzas to share between them. 
The waiter brought one first and said they could start on it because it would 
take time for the next one to come. (a) How much will each one get from 
the first pizza that the waiter brought? Write the fraction that shows this.  
(b) How much will each one get from the second pizza? Write your answer. 
(c) If you add the two pieces together, what fraction of a pizza will each one 
get? You can write a plus sign between the first fraction and the second 
fraction, and write the answer for the share each one gets in the end. (d) If 
the two pizzas came at the same time, how could they share it differently? (e) 
Are these fractions (the ones that the children wrote for answers c and d) 
equivalent? 

 

According to the hypotheses presented in the previous section, we would expect 
children to develop some insights into rational numbers by thinking about different 
ways of sharing the same amount. It was expected that they might realize: (1) that it 
is possible to divide a smaller number by a larger number; (2) that different 
fractions might represent the same amount; (3) that twice as many things to be 
divided and twice as many recipients would result in equivalent amounts; and that 
(4) the larger the divisor, the smaller the quotient. This latter idea can not be 
explored in the context of a problem about equivalent fractions. 

The children’s explanations for why they thought that the fractions were or 
were not equivalent provided evidence for all the three insights that we anticipated, 
and more, as described below. 

 

It is possible to divide a smaller number by a larger number. 

There was no difficulty among the students in attempting to divide 1 pizza among 
6 children. In response to part a of the equivalence problem, all children wrote at 
least one fraction correctly (some children wrote more than one fraction for the 
same answer, always correctly).  

In response to part c, when the children were asked how they could share the 
2 pizzas if both pizzas came at the same time and what fraction would each one 
receive, some children answered 1/3 and others answered 2/12 from each pizza, 
giving a total share of 4/12. The latter children, instead of sharing 1 pizza among 3 
girls, decided to cut each pizza in 12 parts: i.e. they cut the sixths in half. This led to 
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a discussion of the different answers even before the researcher actually presented 
them with the question regarding the equivalence of the different fractions. 

 

Different fractions can represent the same amount. 

This insight was expressed in all groups. For example, one child said that “They’re 
the same amount of people, the same amount of pizzas, and that means the same 
amount of fractions. It doesn’t matter how you cut it.” Another child said: 
“Because it wouldn’t really matter when they shared it, they’d get that [3 girls would 
get 1 pizza], and then they’d get that [3 girls would get the other pizza], and then it 
would be the same.” Another child said: “It’s the same amount of pizza. They 
might be different fractions but the same amount [this child had offered 4/12 as an 
alternative to 2/6].” Another child said: “Erm, well basically just the time doesn’t 
make much difference, the main thing is the number of things.” 

 

A dividend twice as large and a divisor twice as large result in equivalent 
amounts. 

This principle was expressed in 11 of the 12 groups. For example, one child said: 
“It’s half the girls and half the pizzas; three is a half of six and one is a half of two.” 
Another child said: “If they have two pizzas, then they could give the first pizza to 
three girls and then the next one to an-other three girls. (…) If they all get one 
piece of that each, and they get the same amount, they all get the same amount”.  

So all three ideas we thought that could appear in this context were expressed 
by the children. But two other principles, which we did not expect to observe in 
this correspondence problem, were also enunciated by the children. 

 

The number of parts and size of parts are inversely proportional. 

This principle was enunciated in eight of the 12 groups. For example, one child 
who cut the pizzas the second time around in 12 parts each said: “Because it’s 
double the one of that [total number of pieces] and it’s double the one of that 
[number of pieces for each], they cut it twice and each is half the size; they will be 
the same”. Another child said: “because 1 sixth and 1 sixth is actually a different 
way in fractions [from 1 third] and it doubled [the number of pieces] to make it [the 
size of the piece] littler, and halving [the number of pieces] makes it [the size of the 
piece] bigger, so I halved it and it became 1 third”. 
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The fractions show the same part-whole relation. 

This reasoning, which we had not expected to emerge from the use of the 
correspondence scheme, was enunciated in only one group (out of 12), initially by 
one child, but was then reiterated by a second child in her own terms. The first 
child said: “You need three two sixths to make six [he shows the 6 pieces marked 
on one pizza], and you need three one thirds to make three (shows the 3 pieces 
marked on one pizza). [He then wrote the computation presented in Figure 1 and 
said] “There’s two sixths, add two sixths three times to make six sixths. With one 
third, you need to add one third three times to make three thirds.” Note that he 
does not write “6/6” or “3/3” but he expresses this verbally. It is not his reasoning, 
but his notation, that is at fault. He does not seem to have any doubts that 6/6 and 
3/3 are equivalent wholes: he assumes this in his argument. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 1. A child’s written production to show that 2/6 three times makes. 

 

To summarize: this brief teaching experiment was carried out to elicit discussions 
between the children in situations where they could use the correspondence 
scheme in division. The first set of problems, in which they are asked about sharing 
discrete quantities, created a background for the children to use this scheme of 
action. We then helped them to construct an interpretation for written fractions 
where the numerator is the dividend, the denominator is the divisor, and the line 
indicates the operation of division. This interpretation did not replace their original 
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interpretation of number of parts taken from the whole; the two meanings 
coexisted and appeared in the children’s arguments as they explained their answers. 
In the subsequent problems, where the quantity to be shared was continuous and 
the dividend was smaller than the divisor, the children had the opportunity to 
explore the different ways in which continuous quantities can be shared. They were 
not asked to actually partition the pizzas, and some made marks on the pizzas 
whereas others did not. Figure 2 presents an example of a drawing that contains 
some marks for possible partition but not all the marks: the most salient feature of 
the child’s drawing is the use of correspondences. When the pizzas were divided 
into thirds, the dots inside the pizzas were used to represent the recipients. The 
scheme of correspondence played a major role in the children’s reasoning. 
Sometimes the correspondences were carried out mentally and expressed verbally 
and sometimes the children used drawings and gestures which indicated the 
correspondences. 

 
 

 

 

 

 

 

 

 

 

 

Figure 2. A child’s drawing used to discuss the equivalence between 2/6 and 1/3. 

 

Other researchers have identified children’s use of correspondences to solve 
problems that involve fractions, although they did not necessarily use this label in 
describing the children’s answers. Empson (1999), for example, presented the 
following problem to children aged about 6 to 7-years (first graders in the USA): 4 
children got 3 pancakes to share; how many pancakes are needed for 12 children in 
order for the children to have the same amount of pancake as the first group? She 
observed that three children solved this problem by partitioning and three solved it 
by placing 3 pancakes in correspondence to each group of 4 children. Similar 
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strategies were reported when children solved another problem that involved 2 
candy bars shared among 3 children. 

Kieren (1993) also documented the use of correspondences as a basis for 
children’s judgments when they compared fractions. In his problem, the fractions 
were not equivalent: there were 7 recipients and 4 items in Group A and 4 
recipients and 2 items in Group B. The children were asked how much each 
recipient would get in each group and whether the recipients in both groups would 
get the same amount. Kieren presents a drawing by an 8-year-old, where the items 
are partitioned in half and the correspondences between the halves and the 
recipients are shown; in Group A, a line without a recipient shows that there is an 
extra half in that group and the child argues that for the amounts to be the same 
there should be one more person in Group A. Kieren termed this solution 
“corresponding or ‘ratiolike’ thinking” (p. 54).  

 

Conclusion 
Children can use the scheme of correspondences to: 

 

• Establish equivalences between sets that have the same ratio to a refe-
rence set (Piaget, 1952). 

• Re-distribute things after having carried out one distribution (Davis and 
colleagues). 

• To reason about equivalences resulting from division both when the 
dividend is larger or smaller than the divisor (Bryant and colleagues; 
Empson, 1999; Nunes and colleagues). 

• To order fractional quantities (Kieren, 1993; Kornilaki & Nunes, 2005; 
Mamede, 2007).  

 

All these studies were carried out with children up to the age of 10 years and 
showed positive results. This stands in clear contrast to the literature on children’s 
difficulties with fractions and prompts the question of whether the difficulties 
might stem from the use of partitioning as the starting point for the teaching of 
fractions (see also Lamon, 1996; Streefland, 1987). The next section examines the 
development of children’s partitioning action and its connection with children’s 
concepts of fractions. 
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Children’s use of the scheme of partitioning  
in making judgements about quantities 

The scheme of partitioning has been named also subdivision and dissection 
(Pothier & Sawada, 1983), and is consistently defined as the process of dividing a 
whole into parts. This process is not understood as the activity of cutting 
something into parts in any old way but as a process that must be guided from the 
outset by the aim of obtaining a predetermined number of equal parts. 

Piaget, Inhelder and Szeminska (1960) pioneered the study of the connection 
between partitioning and fractions. They spelled out a number of ideas, which they 
thought were necessary for children to develop an understanding of fractions, and 
analysed them in partitioning tasks. The motivation for partitioning was sharing a 
cake between a number of recipients, but the task was itself one of partitioning. 
They suggested that “the notion of fraction depends on two fundamental relations: 
the relation of part to whole (…) and the relation of part to part” (p. 309).  Piaget 
and colleagues identified a number of insights that children need to achieve in 
order to understand fractions: 

 

1. The whole must be conceived as divisible, an idea that children under the 
age of about 2 seem not to attain. 

2. The number of parts to be achieved is determined from the outset. 

3. The parts must exhaust the whole (i.e. there should be no second round of 
partitioning and no remainders). 

4. The number of cuts and the number of parts are related (e.g. if you want to 
divide something in 2 parts, you should use only 1 cut). 

5. All the parts should be equal; 

6. Each part can be seen as a whole in itself, nested into the whole but also 
susceptible to further division. 

7. The whole remains invariant and is equal to the sum of the parts. 

 

Piaget and colleagues observed that children rarely achieved correct partitioning 
before the age of about 6. A major strategy in carrying out successful partitioning 
was the use of successive divisions in two: so children are able to succeed in 
dividing a whole into fourths before they can succeed with thirds. Successive 
halving helped the children with some fractions: dividing something into 8ths is 
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easier this way. However, it interfered with success in other fractions: some 
children attempting to divide a whole into fifths end up with sixths, by dividing the 
whole first in halves and then subdividing each half into three parts.  

Piaget and colleagues also investigated whether children understood the 
seventh criterion for a true concept of fraction, i.e. the conservation of the whole. 
This conservation, they argued, would require the children to understand that each 
piece could not be counted simply as one piece, but had to be understood in its 
relation to the whole. Some children failed to understand this, and argued that if 
someone ate a cake cut into 1/2 + 2/4 and a second person ate a cake cut into 4/4, 
the second one would eat more because he had four parts and the first one only 
had three. Although these children would recognise that if the pieces were put 
together in each case they would form one whole cake, they still maintained that 
4/4 was more than 1/2 + 2/4. Finally, they also observed that children did not 
have to achieve the highest level of development in the scheme of partitioning in 
order to understand the conservation of the whole. 

Children’s difficulties with partitioning continuous wholes into equal parts 
have been confirmed many times with pre-schoolers and children in their first years 
in school (e.g. Hiebert & Tonnessen, 1978, and Hunting & Sharpley, 1988b 
observed that children often did not anticipate the number of cuts and did not cut 
the whole extensively). These studies also extended our knowledge about children’s 
expertise in partitioning. For example, Pothier & Sawada (1983) and Lamon (1996) 
proposed more detailed schemes for the analysis of the development of 
partitioning schemes and other researchers (Hiebert & Tonnessen, 1978; Hunting 
& Sharpley, 1988; Miller, 1984; Novillis, 1976) showed that the difficulty of 
partitioning discrete and continuous quantities is not the same, as hypothesized by 
Piaget. Children can use a procedure for partitioning discrete quantities that is not 
applicable to continuous quantities: they can “deal out” the discrete quantities but 
not the continuous ones. Thus they perform significantly better with the former 
than the latter, and the smooth transition from discrete to continuous quantities 
observed with the correspondence scheme is not replicated with the partitioning 
scheme.  

These studies present a less positive picture of the insights into rational 
numbers afforded by the scheme of partitioning than by the correspondence 
scheme. However, the focus of the studies was on the scheme of partitioning per se; 
the question investigated here is whether partitioning can promote the under-
standing of equivalence and ordering of fractions, as hypothesized in the first 
section of this paper.  
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Many studies investigated children’s understanding of equivalence of fractions 
in partitioning contexts (e.g. Behr, Lesh, Post, & Silver, 1983; Behr, Wachsmuth, 
Post, & Lesh, 1984; Larson, 1980; Kerslake, 1986), but differences in the methods 
used in these studies render the comparisons between partitioning and 
correspondence studies ambiguous. For example, if the studies start with a 
representation of the fractions, rather than a problem about quantities, they cannot 
be compared to the studies reviewed in the previous section, which asked the 
children to think about quantities without necessarily using fractional 
representation. Thus only studies that use methods comparable to those used in the 
correspondence investigations reported earlier on were selected for discussion. 

Kamii and Clark (1995) presented children with identical rectangles and cut 
them into fractions using different cuts. For example, one rectangle was cut 
horizontally in half and the second was cut across a diagonal. The children had the 
opportunity to verify that the rectangles were the same size and that the two parts 
from each rectangle were the same in size. They asked the children: if these were 
chocolate cakes, and the researcher ate a part cut from the first rectangle and the 
child ate a part cut from the second, would they eat the same amount? This method 
is highly comparable to the studies by Kornilaki and Nunes (2005) and by Mamede 
(2007), where the children do not have to carry out the actions, so their difficulty 
with partitioning does not influence their judgements. They also use similarly 
motivated contexts, ending in the question of whether recipients would eat the 
same amount. However, the question posed by Kamii and Clark draws on the 
child’s understanding of partitioning and the relations between the parts of the two 
wholes because each whole corresponds to a single recipient.  

The children in Kamii’s study were considerably older than those in the 
correspondence studies: they were in the fifth or sixth year in school 
(approximately 11 and 12 years). Both groups of children had been taught about 
equivalent fractions. In spite of having received instruction, the children’s rate of 
success was rather low: only 44% of the fifth graders and 51% of the sixth graders 
reasoned that they would eat the same amount of chocolate because these were 
halves of identical wholes. 

Kamii and Clark then showed the children two identical wholes, cut one in 
fourths using a horizontal and a vertical cut, and the other in eighths, using 
horizontal cuts only. They discarded one fourth from the first “chocolate cake”, 
leaving 3/4 to be eaten, and asked the children to take the same amount from the 
other cake, which had been cut into eighths, for themselves. The percentage of 
correct answers was this time even lower: 13% of the fifth graders and 32% of the 
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sixth graders correctly identified the number of eighths required to take the same 
amount as 3/4.  

Recently, we (Nunes & Bryant, 2005) included a similar question about halves 
in a survey of English children’s knowledge of fractions. The children in our study 
were in their fourth and fifth year in school. The children were shown pictures of a 
boy and a girl and two identical rectangular areas, the “chocolate cakes”. The boy 
cut his cake along the diagonal and the girl cut hers horizontally. The children were 
asked to indicate whether they ate the same amount of cake and, if not, to mark the 
child who ate more. Our results were more positive than Kamii and Clark’s: 55% of 
the fourth graders and 80% of the fifth graders answered correctly. However, these 
results are weak by comparison to children’s rate of correct responses when the 
problem draws on their understanding of correspondences. In the Kornilaki and 
Nunes study, 100% of the 7-year-olds (third graders) realized that same dividend 
and same divisor results in equivalent shares. 

Mamede (2007) carried out a direct comparison between children’s use of the 
correspondence and the partitioning scheme in solving equivalence and order 
problems with fractional quantities. In this well-controlled study, she used story 
problems involving chocolates and children, similar pictures and mathematically 
identical questions; the division scheme relevant to the situation was the only 
variable distinguishing the problems. In correspondence problems, for example, 
she asked the children: in this party, three girls are going to share fairly one 
chocolate cake; in this other party, six boys are going to share fairly two chocolate 
cakes. The children were asked to decide whether each boy would eat more than 
each girl, each girl would eat more than each boy, or whether they would have the 
same amount to eat. In the partitioning problems, she asked the children: this girl 
and this boy have identical chocolate cakes; the cakes are too big to eat at once so 
the girl cuts her cake into 3 identical parts and eats one and the boy cuts his cake 
into 6 identical parts and eats 2. The children were asked whether the girl and the 
boy ate the same amount or whether one ate more than the other. The children 
(age range 6 to 7) were Portuguese and in their first year in school; they had 
received no instruction about fractions.  

In the correspondence questions, 35% of the 6-year-olds’ and 49% of the 7-
year-olds responses were correct; in the partitioning questions, 10% of the answers 
of children in both age levels were correct. These highly significant differences 
suggest that the use of correspondence reasoning supports children’s 
understanding of equivalence between fractions whereas partitioning did not seem 
to afford the same insights. 
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Finally, it is important to compare students’ arguments for the equivalence and 
order of quantities represented by fractions in teaching studies where partitioning is 
used as the basis for teaching. Many teaching studies that aim at promoting 
students’ understanding of fractions through partitioning have been reported in the 
literature (e.g., Behr, Wachsmuth, Post, & Lesh, 1984; Brousseau, Brousseau, & 
Warfield, 2004; 2007; Empson, 1999; Kerslake, 1986; Olive & Steffe, 2002; Olive & 
Vomvoridi, 2006; Saenz-Ludlow, 1994; Steffe, 2002). In most of these, students’ 
difficulties with partitioning are circumvented either by using pre-divided materials 
(e.g. Behr, Wachsmuth, Post, & Lesh, 1984) or by using computer tools where the 
computer carries out the division as instructed by the student (e.g. Olive & Steffe, 
2002; Olive & Vomvoridi, 2006).  

Many studies combine partitioning with correspondence during instruction, 
either because the researchers do not use this distinction (e.g. Saenz-Ludlow, 1994) 
or because they wish to construct instruction that combines both schemes in order 
to achieve a better instructional program (e.g. Brousseau, Brousseau, & Warfield, 
2004; 2007).  

Two studies which analyzed student’s arguments focus the instruction on 
partitioning. The first was carried out by Berhr, Wachsmuth, Post, and Lesh (1984), 
who used manipulatives of different types during instruction but also taught the 
students how to use algorithms (division of the denominator by the numerator to 
find a ratio) to check on the equivalence of fractions. Behr et al. provided a detailed 
analysis of children’s arguments regarding the ordering of fractions. In summary, 
they report the following insights after instruction. 

 

• When ordering fractions with the same numerator and different denominators, 
students seem to be able to argue that there is an inverse relation between the 
number of parts into which the whole was cut and the size of the parts. This ar-
gument appears either with explicit reference to the numerator ("there are two 
pieces in each, but the pieces in two fifths are smaller.” p. 328) or without it 
(“the bigger the number is, the smaller the pieces get.” p. 328). 

• A third fraction can be used as a reference point when two fractions are com-
pared: three ninths is less than three sixths because “three ninths is … less than 
half and three sixths is one half” (p. 328). It is not clear how the students had 
learned that 3/6 and 1/2 are equivalent but they can use this knowledge to solve 
another comparison. 

 44 



Understanding rational numbers  

• Students used the ratio algorithm to verify whether the fractions were equiva-
lent: 3/5 is not equivalent to 6/8 because “if they were equal, three goes into 
six, but five doesn't go into eight.” (p. 331). 

• Students learned to use the manipulative materials in order to carry out percep-
tual comparisons: 6/8 equals 3/4 because "I started with four parts. Then I did-
n't have to change the size of the paper at all. I just folded it, and then I got 
eight.” (p. 331). 

 

Behr et al. report that, after 18 weeks of instruction, a large proportion of the 
students (27%) continued to use the manipulatives in order to carry our perceptual 
comparisons; the same proportion (27%) used a third fraction as a reference point 
and a similar proportion (23%) used the ratio algorithm that they had been taught 
to compare fractions.  

Finally, there is no evidence that the students were able to understand that the 
number of parts and size of parts could compensate for each other precisely in a 
proportional manner; for example, in the comparison between 6/8 and 3/4 the 
students could have argued that there are twice as many parts in when the whole 
was cut into 8 parts in comparison with cutting into 4 parts, so you need to take 
twice as many (6) in order to have the same amount.  

In conclusion, students seemed to develop some insight into the inverse 
relation between the divisor and the quantity but this only helped them when the 
dividend was kept constant: they could not extend this understanding to other 
situations where the numerator and the denominator differed. 

The second set of studies which focused on partitioning was carried out by 
Steffe and his colleagues (Olive & Steffe, 2002; Olive & Vomvoridi, 2006; Steffe, 
2002). Because the aim of much of the instruction was to help the children learn to 
label fractions or compose fractions that would be appropriate for the label, it is 
not possible to extract from their reports the children’s arguments for equivalence 
of fractions.  

However, one of the protocols (Olive & Steffe, 2002) provides evidence for 
the student’s difficulty with improper fractions, which we thought might result 
from the use of partitioning as the basis for the concept of fractions. The 
researcher asked Joe to make a stick 6/5 long. Joe said that he could not because 
there are only five of them. After prompting, Joe physically adds one more fifth to 
the five already used, but it is not clear whether this physical action convinces him 
that 6/5 is mathematically appropriate. In a subsequent example, where Joe labels a 
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stick made with 9 sticks that had been defined as “one seventh” of an original stick 
9/7, but according to the researchers “an important perturbation” remains. Joe 
later counts 8 of a stick that had been labeled “one seventh” but doesn’t use the 
label “eight sevenths”. When the researcher proposes this label, he questions it: 
“How can it be EIGHT sevenths?” (Olive & Steffe, 2002, p. 426). He later refused 
to make a stick that is 10/7, even though the procedure is physically possible. 
Subsequently, on another day, Joe’s reaction to another improper fraction is: “I still 
don’t understand how you could do it. How can a fraction be bigger than itself? (Olive & 
Steffe, 2002, p. 428). 

According to the researchers, Joe only sees that improper fractions are 
acceptable when they presented a problem where pizzas were to be shared by 
people. When 12 friends ordered 2 slices each of pizzas cut into 8 slices, Joe 
realized immediately that more than one pizza would be required; the traditional 
partitioning situation, where one whole is divided into equal parts, was transformed 
into a less usual one, where two wholes are required but the size of the part 
remains fixed. 

This example illustrates that students have difficulty with improper fractions 
in the context of partitioning but can overcome this by thinking of more than one 
whole. 

Conclusion 
Partitioning, defined as the action of cutting a whole into a predetermined number 
of equal parts, shows a slower developmental process than correspondence. In 
order for children to succeed, they need to anticipate the solution so that the right 
number of cuts produces the right number of equal parts and exhausts the whole. 
Its accomplishment, however, does not seem to produce immediate insights into 
equivalence and order of fractional quantities. Apparently, many children do not 
see it as necessary that halves from two identical wholes are equivalent, even if they 
have been taught about the equivalence of fractions in school.  

In order to use this scheme of action as the basis for learning about fractions, 
teaching schemes and researchers rely on pre-cut wholes or computer tools to 
avoid the difficulties of accurate partitioning. Students can develop insight into the 
inverse relation between the number of parts and the size of the parts through the 
partitioning scheme but there is no evidence that they realize that if you cut a whole 
in twice as many parts each one will be half in size. Finally, improper fractions seem 
to cause uneasiness to students who have developed their conception of fractions 
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in the context of partitioning; it is important to be aware of this uneasiness if this is 
the scheme chosen in order to teach fractions. 

 

Final remarks and educational implications 
The analysis presented in this paper starts from the assumption that children learn 
mathematical concepts from their schemes of action and the reflections about these 
that are afforded by the schemes themselves and by social interaction, with teachers 
or peers. Two types of action schemes that can be used in division situations were 
distinguished: partitioning, which involves dividing a whole into equal parts, and 
correspondence situations, where two quantities (or measures) are involved, a 
quantity to be shared and a number of recipients of the shares. The development of 
these action schemes differs: children as young as 5 or 6 years in age are quite good 
at establishing correspondences to produce equal shares whereas they experience 
much difficulty in partitioning continuous quantities. 

The affordances of these two schemes of action were explored, and it was 
hypothesized that these differ. For example, in correspondence situations, children 
could achieve some insight into the equivalence of fractions where the dividend 
and the divisor differ by thinking that, if there are twice as many things to be 
shared and twice as many recipients, then each one’s share is the same. In 
partitioning, children could achieve an understanding of equivalence by realizing 
that the number of parts and the size of the parts compensate for each other: if a 
whole is cut into twice as many parts, the size of each part will be halved. The 
evidence currently available from children’s arguments and strategies when they are 
learning about fractions using either of these action schemes shows that children 
using the correspondence scheme can develop some understanding of equivalence 
in the way it was hypothesized but those learning to use partitioning did not 
produce the anticipated arguments.  

Research reviewed here shows that it is possible for some children to reason 
about quantities that would be represented by fractions without knowing how to 
represent them. This was established unambiguously by Kornilaki and Nunes 
(2005) and by Mamede (2007), who demonstrated that children who had not yet 
been taught about fractions and could not represent fractional quantities 
numerically (see Mamede, 2007) could nevertheless establish the order and 
equivalence of quantities that would be generated when a certain number of cakes 
was shared between a larger number of recipients.  

 47



 Terezinha Nunes 

These findings have important implications for education. First, we know that 
children can reason about quantities that are represented by natural numbers 
without having to count the elements; now we also know that they can reason 
about quantities that would be represented by fractions without knowing fractional 
representation. This means that schools could be working towards developing the 
children’s quantitative reasoning before, or at the same time as, they are taught 
fractional representations. Currently the most usual practice, in the U.K. at any rate, 
is to focus initially on representations and only later to promote the students’ 
reasoning about order and equivalence of fractions.  

Second, the practice of anchoring children’s fraction concepts on partitioning 
must be reconsidered. This scheme develops more slowly than the scheme of 
correspondences and seems to afford less insight into relations between fractional 
quantities. 

Third, teachers might profit from being aware of children’s own arguments 
for the equivalence and order of fractions when they use these two action schemes. 
Educational practice seems to be to teach children algorithms that represent these 
insights without necessarily anchoring them in the children’s understanding of 
quantities: for example, children might be asked to double the numerator and the 
denominator successively and thus construct a number of equivalent fractions. 
However, successful learning of this procedure is not the same as developing an 
insight into why it works. If a teacher knows the students’ arguments for such 
equivalences in correspondence situation, the teacher can help the students express 
this insight numerically and perhaps arrive at the algorithm. 

 Finally, the analysis presented here opens the way for a fresh research agenda 
in the teaching and learning of fractions. The source for the new research questions 
is the idea that children can achieve insights into relations between fractional 
quantities before knowing how to represent them. It is possible to envisage a 
research agenda that would not be about children’s misconceptions about fractions 
as much of the work in the past has been, but about children’s possibilities of 
success with fractions when teaching starts from thinking about quantities rather 
than from learning fractional representations. 
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