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Preface 
Computer aided modeling and simulation of complex systems, using components from multi-
ple application domains, such as electrical, mechanical, hydraulic, control, etc., have in recent 
years witnessed a significant growth of interest. In the last decade, novel equation-based ob-
ject-oriented (EOO) modeling languages, (e.g. Modelica, gPROMS, and VHDL-AMS) based 
on a-causal modeling using equations have appeared. Using such languages, it has become 
possible to model complex systems covering multiple application domains at a high level of 
abstraction through reusable model components.  

The interest in EOO languages and tools is rapidly growing in the industry because of their 
increasing importance in modeling, simulation, and specification of complex systems. There 
exist several different EOO language communities today that grew out of different application 
areas (multi-body system dynamics, electronic circuit simulation, chemical process engineer-
ing). The members of these disparate communities rarely talk to each other in spite of the 
similarities of their modeling and simulation needs.  

The EOOLT workshop series aims at bringing these different communities together to dis-
cuss their common needs and goals as well as the algorithms and tools that best support them. 

Despite the fact that this is a new not very established workshop series, there was a good 
response to the call-for-papers. Thirteen papers were accepted to the workshop program out of 
fifteen submissions. All papers were subject to rather detailed reviews by the program com-
mittee, on the average four reviews per paper. The workshop program started with a welcome 
and introduction to the area of equation-based object-oriented languages, followed by the 
keynote talk by Hans Vangheluwe and paper presentations. Discussion sessions were held af-
ter presentations of each set of related papers. 

On behalf of the program committee, the Program Chairmen would like to thank all those 
who submitted papers to EOOLT'2008. Special thanks go to Loucas Louca who helped with 
the local on-site organization of the workshop. Many thanks go also to the program commit-
tee for reviewing the papers. The venue for EOOLT'2008 was Paphos, Cyprus, in conjunction 
with the ECOOP'2008 conference. 

 

Linköping, July 2008 
 

Peter Fritzson  
François Cellier  
David Broman  
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Multi-Paradigm Language Engineering and
Equation-Based Object-Oriented Languages

(keynote abstract)

Hans Vangheluwe

School of Computer Science, McGill University, Montréal, Canada
Hans.Vangheluwe@mcgill.ca

Abstract
Models are invariably used in Engineering (for design) and
Science (for analysis) to precisely describe structure as well
as behaviour of systems. Models may have components de-
scribed in different formalisms, and may span different lev-
els of abstraction. In addition, models are frequently trans-
formed into domains/formalisms where certain questions
can be easily answered. We introduce the term “multi-
paradigm modelling” to denote the interplay between
multi-abstraction modelling, multi-formalism modelling
and the modelling of model transformations.

The foundations of multi-paradigm modelling will be
presented. It will be shown how all aspects of multi-
paradigm modelling can be explicitly (meta-)modeled en-
abling the efficient synthesis of (possibly domain-specific)
multi-paradigm (visual) modelling environments. We have
implemented our ideas in the tool AToM3 (A Tool for
Multi-formalism and Meta Modelling) [3].

Over the last decade, Equation-based Object-Oriented
Languages (EOOLs) have proven to bring modelling closer
to the problem domain, away from the details of numerical
simulation of models. Thanks to Object-Oriented structur-
ing and encapsulation constructs, meaningful exchange and
re-use of models is greatly enhanced.

Different directions of future research, combining multi-
paradigm modelling concepts and techniques will be ex-
plored:

1. meta-modelling and model transformation for domain-
specific modelling as a layer on top of EOOLs;

2. on the one hand, the use of Triple Graph Grammars
(TGGs) to declaratively specify consistency relation-
ships between different models (views). On the other
hand, the use of EOOLs to complement Triple Graph
Grammars (TGGs) in an attempt to come up with a fully
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“declarative” description of consistency between mod-
els to support co-evolution of models;

3. the use of graph transformation languages describing
structural change to modularly ”weave in” variable
structure into non-dynamic-structure modelling lan-
guages.

Keywords Multi-Paradigm Modelling, Meta-Modelling,
Model Transformation, Equation-Based Object-Oriented
Languages, Consistency, Variable Structure

1. Multi-Paradigm Modelling
In this section, the foundations of Multi-Paradigm Mod-
elling (MPM) are presented starting from the notion of a
modelling language. This leads quite naturally to the con-
cept ofmeta-modellingas well as to the explicit modelling
of model transformations.

Models are anabstractionof reality. The structure and
behaviour of systems we wish to analyze or design can
be represented by models. These models, at variouslevels
of abstraction, are always described in someformalismor
modelling language. To “model” modelling languages and
ultimately synthesize (visual) modelling environments for
those languages, we will break down a modelling language
into its basic constituents [4]. The two main aspects of a
model are its syntax (how it is represented) on the one hand
and its semantics (what it means) on the other hand.

The syntax of modelling languages is traditionally par-
titioned into concrete syntaxand abstract syntax. In tex-
tual languages for example, the concrete syntax is made up
of sequences ofcharacterstaken from analphabet. These
characters are typically grouped intowordsor tokens. Cer-
tain sequences of words orsentencesare considered valid
(i.e., belong to the language). The (possibly infinite)setof
all valid sentences is said to make up the language.

For practical reasons, models are often stripped of ir-
relevant concrete syntax information during syntax check-
ing. This results in an “abstract” representation which cap-
tures the “essence” of the model. This is called theab-
stract syntax. Obviously, a single abstract syntax may be
represented using multiple concrete syntaxes. In program-
ming language compilers, abstract syntax of models (due to
the nature of programs) is typically represented inAbstract
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Syntax Trees(ASTs). In the context of general modelling,
where models are often graph-like, this representation can
be generalized toAbstract Syntax Graphs(ASGs).

Once the syntactic correctness of a model has been es-
tablished, its meaning must be specified. This meaning
must beuniqueandprecise. Meaning can be expressed by
specifying asemantic mapping functionwhich maps every
model in a language onto an element in asemantic domain.
For example, the meaning of a Causal Block Diagram (e.g.,
a Simulink diagram) can be specified by mapping onto an
Ordinary Differential Equation. For practical reasons, se-
mantic mapping is usually applied to the abstract rather
than to the concrete syntax of a model. Note that the seman-
tic domain is a modelling language in its own right which
needs to be properly modelled (and so on, recursively). In
practice, the semantic mapping function maps abstract syn-
tax onto abstract syntax.

To continue the introduction of meta-modelling and
model transformation concepts, languages will explictly
be represented as (possibly infinite) sets as shown in Fig-
ure 1. In the figure, insideness denotes the sub-set relation-
ship. The dots represent model which are elements of the
encompassing set(s).

As one can always, at some level of abstraction, repre-
sent a model as a graph structure, all models are shown as
elements of the set of all graphsGraph. Though this re-
striction is not necessary, it is commonly used as it allows
for the design, implementation and bootstrapping of (meta-
)modelling environments. As such, any modelling language
becomes a (possibly infinite) set of graphs. In the bottom
centre of Figure 1 is the abstract syntax setA. It is a set of
models stripped of their concrete syntax.

1.1 Meta-models

Meta-modelling is a heavily over-used term. Here, we will
use it to denote the explicit description (in the form of a fi-
nite model in an appropriate meta-modelling language) of
theAbstract Syntax set. Often, meta-modelling also cov-
ers a model of the concrete syntax. Semantics is however
not covered. In the figure, theAbstract Syntax set is de-
scribed by means of itsmeta-model. On the one hand, a
meta-model can be used tocheckwhether a general model
(a graph)belongs totheAbstract Syntax set. On the other
hand, one could, at least in principle, use a meta-model to
generateall elements of the language.

1.2 Concrete Syntax

A model in the Abstract Syntax set (see Figure 1) needs
at least one concrete syntax. This implies that a concrete
syntax mapping functionκ is needed.κ maps an abstract
syntax graph onto a concrete syntax model. Such a model
could be textual (e.g., an element of the set of all Strings),
or visual (e.g., an element of the set of all the 2D vector
drawings). Note that the set of concrete models can be
modelled in its own right.

1.3 Meaning

Finally, a modelm in the Abstract Syntax set (see Figure 1)
needs a unique and precise meaning. As previously dis-

cussed, this is achieved by providing a Semantic Domain
and a semantic mapping functionM. Rule-based Graph
Transformation formalisms are often used to specify se-
mantic mapping functions in particular and model transfor-
mations in general. Complex behaviour can be expressed
very intuitively with a few graphical rules. Furthermore,
Graph Grammar models can be analyzed and executed.

1.4 Formalism Transformation

In an attempt to mimimize accidental complexity [2], mod-
ellers often transform a model in one formalism to model
in another formalism, retaining salient properties.

2. Domain-specific Modelling
Domain- and formalism-specific modelling have the poten-
tial to greatly improve productivity as they [5].

• match the user’s mental model of the problem domain;

• maximally constrain the user (to the problem at hand,
through the checking of domain constraints) making the
language easier to learn and avoiding modelling errors
“by construction”;

• separate the domain-expert’s work from analysis and
transformation expert’s work.

• are able to exploit features inherent to a specific do-
main or formalism. This will for example enable spe-
cific analysis techniques or the synthesis of efficient
(simulation) code exploiting features of the specific do-
main.

The time required to construct domain/formalism-specific
modelling and simulation environments can however be
prohibitive. Thus, rather than using such specific environ-
ments, generic environments are typically used. Those are
necessarily a compromise. The above language engineering
techniques allow for rapid development of domain-specific
(visual) modelling environments with little effort if map-
ping onto a semantic domain (such as an EOOL) is done.

3. Consistency/Co-evolution of Model Views
In the development of complex systems, multiple views on
the system-to-be-built are often used. These views typi-
cally consist of models in different formalisms. Different
views usually pertain to various partial aspects of the over-
all system. In a multi-view approach, individual views are
(mostly) less complex than a single model describing all
aspects of the system. As such, multi-view modelling, like
modular, hierarchical modelling, simplifies model develop-
ment. Most importantly, it becomes possible for individual
experts on different aspects of a design to work in isolation
on individual views without being encumbered with other
aspects. These individual experts can work mostlyconcur-
rently, thereby considerably speeding up the development
process. This realization was the core of Concurrent En-
gineering. This approach does however have a cost associ-
ated with it. As individual view models evolve, inconsisten-
cies between different views are often introduced. Ensuring
consistency between different views requires periodic con-
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Figure 1. Modelling Languages as Sets

certed efforts from the model designers involved. In gen-
eral, the detection of inconsistencies and recovering from
them is a tedious, error-prone and manual process. Auto-
mated techniques can alleviate the problem. Here, we focus
on a representative sub-set of the problem: consistency be-
tween geometric (Computer-Aided Design – CAD) models
of a mechanical system, and the corresponding dynamics
simulation models. We have selected two particular but rep-
resentative modelling tools: SolidEdge for geometric mod-
elling [8], and Modelica [1] for dynamics and control sim-
ulation.

The core geometric entities are Assemblies. Solid-
Edge Assemblies are composed of other Assemblies, Parts
and Relationships. Relationships describe mechanical con-
straints between geometric features of two distinct parts,
and there can be many such relationships between parts.

On the dynamics side, to represent an equivalent struc-
ture in Modelica, we have a model which can be hierarchi-
cally composed of other models, bodies, relationships and
geometric features. This last type of model element is in-
troduced to have a counterpart to represent the geometric
information which is intrinsic to a SolidEdge part.

Associations (correpondences) that must exist between
SolidEdge and Modelica models are shown in a meta-
model triple in Figure 2. Note that this model isdeclarative
as it does not specify how and what to modify to correct
possible inconsistencies. Triple Graph Grammar theory [7]

introduced by Schür provides a procedure for automatically
deriving operational update transformations (in the form of
triple graph rewrite rules) from the declarative meta-model
[6]. If either the geometry or dynamics models change, the
association model can be used to determine what has been
added or deleted from either side.

On the other hand, the use of EOOLs to complement
Triple Graph Grammars (TGGs) in an attempt to come
up with a fully “declarative” description of consistency
between models to support co-evolution of models;

4. Modelling of Variable Structure
Various formalisms have been devised to describe the dis-
continuous change of the structure of systems. The rule-
based description of graph transformations is ideal to el-
egantly describe structural change. A rule’s left-hand-side
describes the conditions under which a state-event occurs.
In modelling languages for hybrid systems, crossing con-
ditions on variable values are used to specifywhena state-
event occurs. The handling of a state-event may introduce
discontinuous changes in the value of variables. The rule-
based approach adds detection of particular object configu-
rations to the low-level variable-value conditions. A rule’s
right-hand-side describes the handling of the state-event.
This may not only include variable value changes, but also
creation/destruction of entities and their interconnections.
A promising avenue for future research is the modular

3
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Figure 2. Relating SolidEdge and Modelica models

“weaving in” of rule-based variable structure description
language constructs into non-dynamic-structure modelling
languages such as EOOLs.
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Abstract
Large-scale systems increasingly consist of a mixture of
co-dependent software and hardware. The differing nature
of software and hardware means that they are often mod-
elled separately and with different approaches. This can
cause failures later in development during the integration
of software and hardware designs, due to incompatible
assumptions of software/hardware interactions. This pa-
per proposes a method of integrating the software engi-
neering approach, Behavior Engineering, with the math-
ematical modelling approach, Modelica, to address the
software/hardware integration problem. The environment
and hardware components are modelled in Modelica and
integrated with an executable software model designed
using Behavior Engineering. This allows the complete
system to be simulated and interactions between software
and hardware to be investigated early in development.

Keywords software-hardware codesign, large-scale sys-
tems, Behavior Engineering, Modelica.

1. Introduction
The increasingly co-dependent nature of software and
hardware in large-scale systems causes a software/hardware
integration problem. During the early stages of develop-
ment, the requirements used to develop a software specifi-
cation often lack the quantified or temporal information
that is necessary when focusing on software/hardware
integration. Also early on in development, the hardware
details must be specified, such as the requirements for the
sensors, actuators and architecture on which to deploy
the software. There is a risk of incompatibility if the
software and hardware specifications contain contradicting
assumptions about how integration will occur. Even if the
software and hardware specifications are compatible, it is
possible that a software/hardware combination with an
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alternative form of integration exists that would be more
advantageous.

One approach of evaluating software/hardware integra-
tion is to build prototypes of the software and hardware.
This approach allows software/hardware interactions to be
investigated, but also diverts attention away from the indi-
vidual modelling of the respective software and hardware
models. Investigating integration using software/hardware
prototypes also has the disadvantage of occurring later
in development, requiring decisions to have already been
made as to how integration will occur.

Addressing the issues involved with integrating software
and hardware models of systems earlier in development can
reduce the risk of incompatibilities between the software
and hardware specifications. Earlier investigation of soft-
ware/hardware interactions minimises changes that must be
made later in development when they are harder and more
expensive to fix. If the method of investigating integration
uses simulation of specifications, it allows many different
integration configurations to be evaluated to assist in find-
ing the best solution. The simulation of software/hardware
co-specifications uses abstract models of the software and
hardware to focus on timing of the interactions between
the hardware and software. Co-specification simulation is
used by many system design tools such as STATEMATE
and MATLAB [6].

The principle of separation of concerns advocates that
due to the differing nature of software and hardware,
different modelling techniques should be used. Software
modelling consists of capturing the required functionality,
and how the functionality can best be organised to facilitate
future reuse, extensibility, etc. Hardware modelling focuses
on interactions with the physical environment through sen-
sors and actuators which is best described mathematically.
Currently, UML is the dominant graphical modelling nota-
tion for software, whereas Modelica is the major equation-
based object-oriented (EOO) mathematical modelling lan-
guage for modelling complex physical systems.

Previous work in this area resulted in the ModelicaML
UML profile [15, 14] partly based on the SysML profile
[13]. ModelicaML combined the major UML diagrams
with Modelica graphic connection diagrams. However,
there are problems with this approach. The imprecise
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semantics and portability problems of UML create diffi-
culties for executable specifications. Moreover, there is no
well-defined process of precisely capturing and converting
informal software requirements into more formal represen-
tations that can be analysed and further transformed into
executable models.

Fortunately, the Behavior Engineering (BE) approach
(see Section 3) addresses several of these problems. BE is
a systems & software engineering approach of modelling
software-intensive systems that has precise requirements
capture. The behavioral view of BE has a formal se-
mantic described in process algebra. BE also supports
model-checking, simulation, and the code-generation of
executable models.

Thus, we propose an integrated approach, where BE is
used to model and capture requirements of the software
aspects of a product, whereas Modelica is used for high-
level modelling of the system’s environment and hard-
ware components. We consider the integration method
to be seamless, as the software and hardware models
are combined in an inconspicous way which allows both
formalisms to focus independently on their respective do-
mains. We also propose this method is suited to be applied
to large-scale systems, as both BE and Modelica have
been used independently to model large-scale systems
[16, 7]. This distinguishes this approach from co-design
approaches such as COSMOS[9] and Polis[2] which are
focused towards the more fine-grained software/hardware
interactions of embedded systems.

Adoption of an integrated approach to product/system
design should allow for a much more effective product
development process since a system can be analysed and
tested in all stages of development. The integration of BE
and Modelica models supports this through allowing dif-
ferent hardware/software configurations to be investigated,
such as:

• The periodic/aperiodic sampling of sensors and the
action of actuators on the physical environment can be
simulated to determine the effect on the software of the
system. This may also involve simulating the failure of
a sensor/actuator or errors in communication.

• The capabilities of the various combinations of hard-
ware and software platforms on which the software
could be deployed can be simulated by choosing pe-
riodic/aperiodic frequencies at which to allow interac-
tions between the Modelica and BE models.

• The hardware and software can be tested in different
simulated environments and scenarios.

In this paper we combine these two formalisms for the
first time, in a study of the integrated software/hardware
modelling of an Automated Train Protection (ATP) system.
BE is used to model the control software of the ATP
system, and Modelica is used to model physical compo-
nents like the train, the driver, actuators, sensors, etc. The
modelled ATP system is used to illustrate the benefits of
investigating the integration of software/hardware specifi-
cations early in development.

In Section 2 & 3 we first give some background on
Modelica and BE, before presenting the details of our
integration method in Section 4. The integration method
is then applied to a case study of the system modelling and
simulation of an ATP system in Section 5.

2. Modelica Background
Modelica [12, 17, 8] is an open standard for system
architecture and mathematical modelling. It is envisioned
as the major next generation language for modelling and
simulation of applications composed of complex physical
systems.

The equation-based, object-oriented, and component-
based properties allow easy reuse and configuration of
model components, without manual reprogramming in
contrast to today’s widespread technology, which is mostly
block/flow-oriented modelling or hand-programming.

The language allows defining models in a declarative
manner, modularly and hierarchically and combining of
various formalisms expressible in the more general Mod-
elica formalism.

A component may internally consist of other connected
components, i.e., as in Figure 1 showing hierarchical mod-
elling.

The multidomain capability of Modelica allows com-
bining of systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power or
process-oriented components within the same application
model. In brief, Modelica has improvements in several
important areas:

• Object-oriented mathematical modelling. This tech-
nique makes it possible to create model components,
which are employed to support hierarchical structuring,
reuse, and evolution of large and complex models
covering multiple technology domains.

• Physical modelling of multiple application domains.
Model components can correspond to physical objects
in the real world, in contrast to established techniques
that require conversion to “signal” blocks with fixed
input/output causality. That is, as opposed to block-
oriented modelling, the structure of a Modelica model
naturally corresponds to the structure of the physical
system.
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• Acausal modelling. Modelling is based on equations
instead of assignment statements as in traditional in-
put/output block abstractions. Direct use of equations
significantly increases re-usability of model compo-
nents, since components adapt to the data flow context
for which they are used.

Several tools support the Modelica specification, rang-
ing from open-source products such as OpenModelica [12],
to commercial products like Dymola [5] and MathModel-
ica [11].

3. Behavior Engineering Background
BE [3] is an integrated approach that supports the engineer-
ing of large-scale dependable software intensive systems
at both the systems engineering and software engineering
level. BE has been proven as a useful technique in require-
ments analysis of large-scale industry projects, detecting
defects at a rate approximately two to three times higher
than conventional techniques [16]. The BE approach uses
the Behavior Modelling Language (BML) and the Behavior
Modelling Process (BMP) to transform a system described
in natural language requirements to a design composed of
a set of integrated components.

3.1 The Behavior Modelling Language
The BML is a graphical, formal language consisting of
three tree-based views: Behavior Trees, Composition Trees
and Structure Trees1.

A Behavior Tree (BT) is a “formal, tree-like graphical
form that represents behavior of individual or networks
of entities which realize or change states, make decisions,
respond-to/cause events, and interact by exchanging infor-
mation and/or passing control.” [4]. The formal semantics
of BTs are described in the Behavior Tree Process Algebra
(BTPA) language [1]. BTPA supports simulation, formal
verification by model-checking and is a foundation for BT
execution. BTs can describe multiple threads of behavior.
Coordination is achieved using either message-passing
(events), shared variable blocking or synchronisation. A
summary of the BT notation is shown in Figure 2.

Composition Trees (CTs) contain the complete system
vocabulary, which is consistent with the vocabulary used in
BTs as they both originate from the same natural language
requirements. CTs are a tree of components arranged into
a compositional hierarchy using structural and functional
aggregation or specialisation relations. Each component in
the BT contains the complete set of states, attributes, events
and relations in which the component is responsible for.
CTs are an important tool in resolving defects not visible
in individual Requirement Behavior Trees, such as aliases.

3.2 The Behavior Modelling Process
The BMP is closely tied with the BML. The BMP consists
of a number of distinct stages: Translation, Integration, Re-
finement and Design. Each of these stages utilises the BML
to address the problems of scale, complexity and imperfect

1 Due to space restrictions Structure Trees will not be discussed

knowledge that arise when dealing with systems described
by a large number of natural language requirements.

Translation proceeds one requirement at a time, re-
sulting in a Requirement Behavior Tree (RBT) that is
created from the original natural language description. As
each RBT is translated, the Requirement Composition Tree
(RCT) should be updated to include any new information
such as additional components, states, etc. Also, in order to
ensure the translation process is as rigorous as possible, it is
important not to add or remove information but to capture
the intention that is expressed in the natural language
description.

Being able to deal with one requirement at a time,
localises the information that the modeller must absorb and
helps to control the complexity of modelling the system.
It also makes it possible for a team of translators to work
on modelling the system in parallel, using the RCT to
coordinate their work.

Two example RBTs are shown in Figure 4. Discussion
of the translation of an example RBT from the original
requirements is discussed in section 5.1.

Once all the requirements have been translated they are
integrated to form an Integrated Behavior Tree (IBT) which
can then be used to gain a holistic understanding of the
problem space. The process of integration itself also helps
to discover imprecise, conflicting and missing requirements
in the description of the system. This is because forming
the IBT is a fitness test for the requirements, if require-
ments cannot integrate it indicates there are problems with
the description of the system.

When the IBT has been completed, the integrated view
of the system’s behavior helps to detect further defects in
the original natural language requirements. Resolution of
these defects produces a specification of the system, known
as a Model Behavior Tree (MBT).

As the specification is still in the problem space, design
decisions must be made to move to the solution space.
The result is a Design Behavior Tree (DBT). Important
design decisions include determining the boundaries be-
tween the system and the environment and the system
and the components. The system-environment boundary
determines how the system described by the DBT interacts
with the environment, essentially determining the interface
of the system. The system-component boundary involves a
tradeoff between shifting complexity to either the DBT or
to the components.

An example DBT is shown in Figure 5. The design
decisions used to make this DBT are described in Section
5.1.

3.3 Executing a BE Model
BTs contain a description of the functionality of the system
which makes them the primary interest when discussing
executable models.

One approach to execute a BE model is to consider a
BT as a set of interconnected interleaved state machines.
Each component can be implemented by decomposing its
individual state machine and implementing it. The BT is
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Figure 2. Summary of the Core Elements of the Behavior Tree Notation

also implemented as a state machine which coordinates the
component state machines.

Another approach to execute a BE model is to con-
sider BTs as a model to describe multiple-threaded behav-
ior, making each BT node a process. This allows tradi-
tional process control schedulers consisting of New, Ready,
Blocked, Running, and Exit states to be applied to BTs.

For example, a state realisation node would take the
following path through the scheduler: New, Ready, Run-
ning, Exit. Moving from the Ready to Running State is
determined by a scheduling algorithm, ranging from simple
examples such as First In, First Out (FIFO) to more com-
plex priority-based schedulers. When a state realisation
node is in the running state any encapsulated computation
associated with the component’s state is executed. Upon

reaching Exit its child nodes are added to the scheduler in
the New state to continue execution.

Alternatively, a guard node would take the following
path through the scheduler: New, Blocked, Ready, Run-
ning, Exit. The guard node stays in the Blocked state
until a change in another thread of behavior causes its
condition to become true, upon which it changes to the
Ready state and progresses similarly to the state realisation
node. The scheduler also consists of more complex rules
for BT execution such as alternative branching and atomic
composition.

The benefit of the process control approach is that code
generation from a BT is easily automatable. All that is
required in addition to the automatable code generation is
a version of the scheduler for the platform on which the
executable BE model is deployed.
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when initial() then 
   startBT();
end when;

when condition2 then
   updateSensor(value)
end when;

when condition3 then
   state = pollActutator();
end when;

when condition1 then 
   cycleBT();
end when;

Figure 3. Interactions between Modelica and BE Models

4. Integrating Modelica & BE Models
Integration of Modelica and BE models occurs after the
models are compiled/code generated into C++ source files.
Integration between the Modelica model and BE model is
performed using Modelica external functions mapped to C
source code. The ‘C’ external functions are then linked to
the ‘C++’ implementation of the BE model. This method
of integration makes the Modelica model responsible for
managing all interactions with the BE model.

Figure 3 shows the integration of a Modelica model and
a BE model. There are three possible types of interaction:
starting/cycling the BT scheduler; adding an event to the
scheduler containing sensor information; or, polling the
scheduler for an actuator command. The initial() function
is used to start the execution of the BT. Boolean conditions
are then used to determine when to cycle the BT scheduler,
pass on sensor information or receive actuator commands.

If interactions are periodic, a boolean clock setup with
a sample function can be used to set the frequency with
which the interaction will occur. If the interaction should
occur based upon a physical event simulated in Modelica,
the event can change the boolean condition which will
initiate the interaction with the BE model. More complex
aperiodic, randomised, or interactions with losses in com-
munication or failures of components can also be simulated
using Modelica constructs. Failures of sensors, actuators
or the communication between them and the software can
be simulated by mearly not performing the interaction that
would normally occur.

This method of interaction ensures that the details of the
interactions that are simulated are documented as part of
Modelica model. It also allows many possible designs to be
simulated by considering how they will effect the timing of
the interactions between the physical and software systems.
For example, if the software is to be run on a multi-

threaded operating system, the boolean condition could
consist of a timing profile which emulates at what times
the BT scheduler will be executed. This timing profile
could be randomised to determine how the system operates
under different loads, or may just address one specific or
worst-case scenario. If more than one operating system
is being considered, a timing profile could be setup for
each operating system and multiple simulations peformed
to determine the differences, if any, on the system as a
whole.

5. Case Study: An Automated Train
Protection System

Most rail systems have some form of train protection
system that use track-side signals to indicate potentially
dangerous situations to the driver. The simplest train pro-
tection systems consist of signals with two states: green
to continue along the track and red to apply the brake to
stop the train. More sophisticated systems include detailed
information such as speed profiles for each section of the
track.

Accidents still occur using a train protection system
when a driver fails to notice or respond correctly to a signal.
To reduce the risk of these accidents, Automated Train
Protection (ATP) systems are used that automate the train’s
response to the track-side signals by sensing each signal
and monitoring the driver’s reaction. If the driver fails to
act appropriately, the ATP system takes control of the train
and responds as required.

The ATP system used for this paper has three track-side
signals: proceed, caution and danger. When the ATP system
receives a caution signal, it monitors the driver’s behavior
to ensure the train’s speed is being reduced. If the driver
fails to decrease the train’s speed after a caution signal or
the ATP system receives a danger signal then the train’s
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Figure 4. Example Requirement Behavior Trees of the
ATP System

brakes are applied. The complete requirements of the ATP
system can be found in Table 1. The requirements of the
ATP system have been used previously in related work to
demonstrate composition of components using exogenous
connnectors [10].

Section 5.1 discusses the construction of the BE model
of the ATP system from the requirements and Section 5.2
discusses the Modelica model of the ATP systems physical
components and environment.

5.1 ATP - Behavior Engineering Model
Figure 4 shows two example RBTs of the ATP system.
Consider the RBT of requirement 6 (RBT6) with reference
to the system requirements. The first two nodes show
the ATP controller receiving a value and a condition to
determine if the value is a caution signal. The second
node has a ‘+’ in the tag to indicate this behavior is

implied from the requirements as they do not explicitly
state it is necessary to check the signal is a caution signal.
The next node shows that the Alarm is enabled, and
captures that there is a relation between the Alarm and the
Driver’s Cab. Relations should be read as questions that
can be asked of the primary behavior, which the associated
relational behavior answers. For example, “Where is the
Alarm enabled? Within the Driver’s Cab”. Capturing the
information about the Driver’s Cab ensures that the original
intent of the requirements is not removed. The next BT
node assumes that it is implied that the ATP Controller
observes whether the speed of the train is decreasing.
The final two BT nodes of RBT6 describe the relation
between the ATP Controller and the Braking System, and
the Braking System realising the activated state.

During integration of the RBTs of the ATP system the
following problems were found:

• Conflicting Behavior (R7-R8). After the Braking Sys-
tem is activated, R7 states that a proceed signal disables
the Alarm whereas R8 states all sensor input is ignored
until the ATP Controller is reset.

• Conflicting Behavior (R7-R9). After the Braking Sys-
tem is activated, R7 states that a proceed signal disables
the alarm whereas R8 states that the Reset Mechanism
deactivates the Train’s Brakes and disables the Alarm.

• Missing Behavior (R6). What should the ATP Controller
do if the Train’s speed is observed to be decreasing?

• Missing Behavior. What should the ATP Controller do
if an undefined signal is returned to the ATP Controller?

Each of these problems would need to be resolved with
the client to ensure that the system behaves as is desired.
However for the purposes of this case study the following
assumptions were made:

• R8 and R9 were given priority over R7. That is, a
proceed signal can only disable the Alarm after the
Alarm has been enabled but prior to the Brakes being
activated. After the Brakes have been activated all
sensor input is ignored until the ATP Controller is reset.
Also, resetting the ATP Controller after the Brakes
have been activated causes the Train’s Brakes to be
deactivated and disables the Alarm.

• If the ATP Controller observes the train’s speed to
be decreasing then: if a danger signal is received the
Brakes are immediately activated; or, if a proceed signal
is received the Alarm is disabled. However, if the
train’s speed increases before either of these signals are
received then the ATP Controller should activate the
Train’s Braking System.

Figure 5 shows the DBT of the ATP system resulting
from design decisions made to the MBT. A (M) in the tag
shows the nodes of the DBT where interaction occurs with
the Modelica model. The following design decisions were
made to the MBT:
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Figure 5. Design Behavior Tree of ATP system
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• Train, Signal, the individual Sensors, Driver’s Cab,
Reset Mechanism, and Noise components are outside
the boundaries of the DBT.

• A Speedometer component is required to receive the
train’s speed and store the previous speed value so that
changes in the speed of the train may be determined.

• Alternative branching and atomic composition was
added to ensure appropriate threaded behavior. Atomic
composition is required for when the speedometer
component’s speed value is updated. This is because
for a small period of time the current speed equals
the previous speed causing the prevSpeed<=speed
guard to evaluate to true, regardless of the new speed
value. Alternative branching ensures that once one of
the mutually exclusive branches has been taken (e.g.
value=0), none of the other branches can be executed
(e.g. value=1, ELSE).

5.2 ATP - Modelica Model
The Modelica model describes the physical components
that make up the environment in which the ATP system
will operate. It consists of components such as the Train,
the Driver, the Train Track, and the Sensors of the track-
side signals. Figure 6 shows the component diagram of
the Modelica model. The Driver component is responsible
for controlling the Train’s speed and resetting the ATP
system. The Train component simulates its velocity and
position on the Track based upon its mass, maximum
acceleration power and maximum brake force. The Train
Track provides the signal sensors with the signal value
at the signal position. The signal sensors then simulate
the presence of noise, occasionally misreading a signal
value. The sensor values, Train speed and driver reset are
all provided to the ATP controller which in turn provides
whether to apply the Train’s Brakes. A simplified version
of the Modelica textual model of the ATP environment is
shown in Figure 7.

5.3 Integration of the Modelica and BE Models
Simulating the integrated Modelica/BE models provides
plots which graphically show the interactions between
software and hardware in reference to time. This allows

Signal Sensors

Driver
desiredSpeed, reset

Train Tracks
signalPosition, signalValue

ATP System
(BE Model)

Train
position, speed

signalPosition,
signalValue

sensor values

speed

reset

apply brake

desired
speed

Figure 6. Component diagram of the Modelica ATP
Environment model

the investigation and documentation of scenarios in a clear
way. The types of scenarios that can be investigated are:

• The frequency of the execution of the BE model rela-
tive to the Modelica model simulates the performance
capabilities of the hardware platform on which the BE
model will be deployed.

• The sampling frequency/response time of sensors and
actuators can be simulated by the frequency of interac-
tion between the Modelica model and the BE model.

• The system can be tested with different Trains, Drivers,
Train Tracks, etc.

Figure 8 shows four example simulations of the inte-
grated model of the ATP System. All the simulations are
performed with a train model based on a British Rail Class
57 diesel locomotive, which has a mass of 120 tonnes, a
maximum speed of 120.7 km/h, a maximum brake force of
80 tonnes and a power at rail of 1860 kW with an assumed
80% efficiency due to losses in pressure and friction.

The train’s braking time of two seconds is due to its low
velocity (approximately 45km/h) and small weight due to
the absence of carriages. The same train operating at 100
km/h would take approximately eight seconds to brake,
and at 200 km/h would take 32 seconds. The addition of
carriages would further increase the time the train would
take to brake to a complete stop. These braking times
highlight the need to test software-hardware integration
under numerous circumstances.

The simulations performed on this case study show
the ATP system operating with the same configuration of
sensors, actuators and hardware platform. The change that
is tested is the driver’s response to the signals on the track,
the results of which now ensures that the ATP system
is functioning as specified by the requirements. Further
simulations could now be performed to investigate the
ATP system operating both in different scenarios and also
the suitability of different sensors, actuators and hardware
platforms.

6. Conclusion
This paper investigates the software/hardware integration
problem caused by the increasing codependancy of soft-
ware and hardware in large-scale systems. An integrated
approach is described, which integrates separate software
and hardware models to aid the investigation of soft-
ware/hardware interaction through simulation. An ATP
system is used as a case study to describe both separate
software/hardware modelling with BE and Modelica and
software/hardware integration and investigation. This inte-
grated approach allows various software/hardware interac-
tions to be investigated such as software execution speed,
sensor sampling frequencies, and actuator response times.
It also provides a graphical and documentable output of the
investigation the behavior of the software and hardware in
different scenarios.
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// External Functions included here

model Track
discrete Integer currentSignalValue "Value of Last Signal displayed to Driver/ATP System";
parameter Real[:] signalPosition "Positions of Signals on the Track";
parameter Integer[:] signalValue "Values of Signals on the Track";

equation
// Determine current signal value

end Track;

model Train
Real s, v, m, maxSpeed, maxBrakeForce, maxAccelerationPower, maxAccelerationForce;
parameter Real accPowerEff = 0.80 "Engine Efficiency in %";

equation
maxAccelerationPower/accPowerEff = maxAccelerationForce*v;

end Train;

record Driver
Real desiredAcceleration;
parameter Real[:] desiredSpeed;
parameter Real[:] position;

end Driver;

model Main
// Define track, train, driver parameters

parameter Real[10] sensor1 = {0,0,1,2,0,0,2,2,0,0} "Sensor1 value at signalPosition";
Real sensor1Reading "Current Sensor1 reading";
// Similar for Sensor 2 & 3

Real fa, fd, doBrake(start=0), minAccelerationForce, desiredAccelerationForce;
discrete Boolean clock1, clock2, ...;
// Define clock frequencies

equation
when initial() then startBT(0); end when;
when clock1 then cycleBT(0); end when;
when clock2 then doBrake = if (train1.v >= 0) then getBrake(0) else 0;
// if driver reset’s ATP send message
// if signal changes send new sensor values

fa = if doBrake>0 then 0
elseif // ensure not over maximum Acceleration force
else desiredAccelerationForce;
fd = if doBrake>0 then train1.maxBrakeForce else 0;

a = (fa-fd)/train1.m;
der(v) = a;
der(track1.s) = train1.v;
// if train passing signal then update sensors
// determine driver’s desired acceleration (a = (desiredSpeed - train1.v)/ (2*distance))

end Main;

Figure 7. Simplified Textual Modelica model of the ATP Environment
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(a) Driver ignores caution signal and increases speed, brakes are activated
(b) Driver sees caution signal and reduces speed but then increases speed, brakes are activated
(c) Danger signal, brakes are activated regardless of driver already decreasing speed
(d) Danger signal, brakes are activated, ATP is reset and brakes are deactivated

Figure 8. Simulation of the ATP System

Requirement Description
R1 The ATP system is located on board the train. It involves a central controller and five boundary subsystems

that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2 The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying to the train driver.

R3 In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range 0 to 3, where 0, 1 and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between
the signal and the sensor.

R4 The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

R5 If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.

R6 If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab.
Furthermore, once the alarm has been enabled, if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7 In the case of a danger signal being returned to the ATP controller, the braking system is immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently
returned to the ATP controller.

R8 Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

R9 If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system
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Abstract

The Modelica community has long pursued the vision of
Integrated Whole Product Modelling. This implies the abil-
ity to integrate best practice modelling languages and tech-
niques. With ModelicaML a first step towards an open inte-
gration within the sphere of the Eclipse Modelling Frame-
work exists. This paper argues for a development direction
of ModelicaML that creates a small core with well-defined
semantics, instead of the current version that is based on an
extension of SysML. To this end, modelling standards and
their practicabilities are discussed and exemplified through
a usage scenario.

Keywords EMF, UML, ModelicaML, design

1. Introduction

Modeling in general and object-oriented modeling in par-
ticular have shown themselves to be useful tools on a soft-
ware engineer’s workbench. With ever more software be-
ing produced for increasingly complicated application ar-
eas, adequate semantics and languages gain in importance.
The term Model is heavily overloaded, even in software
engineering. In general, a model is a purpose-built abstrac-
tion of something. It exhibits properties that are essential to
the abstraction and can hence be treated like the modelled
object with regards to those properties.

Very often, a model is used as for simulation. Here, we
take ’simulation’ to mean an experiment carried out on a
model, as opposed to the modelled subject itself [11]. For
example, the sentence “a heart is an open book” defines
a model for human emotional behaviour that may imply a
certain mode of access, changeability, etc. As the heart is
not a book, the model can only be used to make predictions
for the intended purpose, i.e. to explain human emotional
behaviour. This model will fail as a simulation of biolog-
ical behaviour. The example also shows that the frame of
reference or school of thought defines the allowable shapes

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

of a model and the predictions it will make. In the exam-
ple, whatever our mind expects of an open book, we will
ascribe to the emotional behaviour of the heart. People will
differ in their expectation of the structure and behaviour of
books. Hence their mental simulations of the behaviour of
the human heart will differ.

While the contemplation of human emotions based on
such private mental models is useful and enjoyable, sys-
tems engineering is a collaborative task, involving a lot of
interaction. The communication about the subject has to be
adequate for this use. If we communicate about systems
in order to build them effciently, safely and correctly, our
school of thought or language to express our models needs
to be unambiguously standardised. It also needs to practi-
cally usable, which implies terseness and focus on the task
at hand.

In this spirit this paper proposes a refactoring of the
ModelicaML modelling language that is used to fashion en-
gineering models based on the Modelica language in order
to simulate them. We propose that in order to expose Mod-
elica in models, a specific object-oriented approach known
as Meta-modeling should be used to create the interface.
This involves both creation of visual editors, and storage
facilities. We will introduce Meta-Modelling and the asso-
ciated Meta-Object Facilities as we go along.

The rest of the paper is structured as follows: Section 2
provides an overview of the current version of Modeli-
caML. Section 3 explains MOF and metamodelling in
broad terms. Section 4 describes metamodelling in more
detail and argues for a specific product as the basis of Mod-
elicaML. Section 5 gives reasons why certain parts of the
current version of ModelicaML should be removed. Sec-
tion 6 describes how ModelicaML can be used to model an
engineering problem and predict relevant properties. Sec-
tion 7 summarizes the recommendations.

2. Overview of ModelicaML

The current version of ModelicaML is a customisation
or profile of SysML, which in turn is a customisation or
profile of UML.

In industrial practice, the term profile is taken to mean
an alteration of an existing modelling language, that is tran-
sitively related to UML through through profiling; Modeli-
caML is a profile of SysML, which is a profile of UML.
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Every alteration step can affect the semantics or the visual
representation of concepts. They can narrow, refine, extend
and change concepts of the profiled source language. Effec-
tively, the term profile only means that the new language is
somehow related to UML, in order to increase its popular-
ity. As a result, there are no technically standardised means
to capture this wider notion of profiles. The stricter notion
of profiles is discussed in Subsection 5.5.

With respect to SysML, ModelicaML reuses, extends
and provides several new diagrams. The ModelicaML dia-
gram overview is shown in Figure 1. Diagrams are grouped
into four categories: Structure, Behavior, Simulation and
Requirement. The ModelicaML profile is presented in [1],
[29], and [30]. The most important properties of the Mod-
elicaML profile are the following:

• The ModelicaML profile supports modeling with all
Modelica constructs and properties i.e. restricted classes,
equations, generics, variables, etc.

• Using ModelicaML diagrams it is possible to describe
most of the aspects of a system being designed and thus
support system development process phases such as re-
quirements analysis, design, implementation, verifica-
tion, validation and integration.

• The profile supports mathematical modeling with equa-
tions since equations specify behavior of a system. Al-
gorithm sections are also supported.

• Simulation diagrams are introduced to model and docu-
ment simulation parameters and simulation results in a
consistent and usable way.

• The ModelicaML meta-model is consistent with SysML
in order to provide SysML-to-ModelicaML conversion.

The current version of ModelicaML is based on SysML,
which in turn is promoted as a variant of UML. This pa-
per proposes that the next revision of ModelicaML should
be reduced and made independent of SysML and UML. To
support this argument, we give an introduction to the rele-
vant technologies and then turn to a usage example.

3. Why expose Modelica through MOF?

This section of the paper proposes that Modelica should be
represented through MOF (Meta Object Facility) for all its
technical external representation, because MOF is easy to

 

Figure 7. ModelicaML diagram overview. 

6. The ModelicaML UML profile  

Before we present the Eclipse integration, we briefly de-
scribe the ModelicaML profile. 

With respect to SysML, ModelicaML reuses, extends 
and provides several new diagrams. The ModelicaML dia-
gram overview is shown in Figure 79. Diagrams are 
grouped into four categories: Structure, Behavior, Simula-
tion and Requirement. The ModelicaML profile is presented 
in [8], [14], and [15]. The most important properties of the 
ModelicaML profile are the following:  
• The ModelicaML profile supports modeling with all 

Modelica constructs and properties i.e. restricted 
classes, equations, generics, variables, etc. 

• Using ModelicaML diagrams it is possible to describe 
most of the aspects of a system being designed and thus 
support system development process phases such as re-
quirements analysis, design, implementation, verifica-
tion, validation and integration. 

• The profile supports mathematical modeling with equa-
tions since equations specify behavior of a system. Al-
gorithm sections are also supported. 

• Simulation diagrams are introduced to model and 
document simulation parameters and simulation results 
in a consistent and usable way. 

• The ModelicaML meta-model is consistent with 
SysML in order to provide SysML-to-ModelicaML 
conversion. 

6.1. Modelica Class Diagrams in ModelicaML 

Modelica uses restricted classes such as class, model, 
block, connector, function and record to describe a system. 
Modelica classes have essentially the same semantics as 
SysML blocks specified in [4] and provide a general-
purpose capability to model systems as hierarchies of 
modular components. ModelicaML extends SysML blocks 
by defining features which are relevant or unique to Mode-
lica. 

The purpose of the Modelica Class Diagram is to show 
features of Modelica classes and relationships between 
classes. Additional kind of dependencies and associations 
between model elements may also be shown in a Modelica 
Class Diagram. For example, behavior description con-
structs – equations, may be associated with particular 
Modelica Classes. Each class definition is adorned with a 
stereotype name that indicates the class type it represents. 
The ModelicaML Class Definition has several compart-
ments to group its features: parameters, parts, variables. 
Some compartments are visible by default; some are op-
tional and may be shown on ModelicaML Class Diagram 
with the help of a tool. Property signatures follow the Mod-
elica textual syntax and not the SysML original syntax, re-
used from UML. A ModelicaML/SysML tool may allow 
users to choose between UML or Modelica style textual 
signature presentation. 

The ModelicaML Internal Class Diagram is based on the 
SysML Internal Block Diagram. The Modelica Class Dia-
gram defines Modelica classes and relation-ships between 
classes, like generalizations, association and dependencies, 
whereas a ModelicaML Internal Class Diagram shows the 
internal structure of a class in terms of parts and connec-
tions. The ModelicaML Internal Class Diagram is similar to 
the Modelica connection diagram, which presents parts in a 
graphical (icon) form. An example Modelica model pre-
sented as an Internal Class diagram is shown in Figure 811. 

Usually Modelica models are presented graphically via 
Modelica connection diagrams (Figure 811, bottom). Such 
diagrams are created by the modeler using a graphic con-
nection editor by connecting together components from 
available libraries. Since both diagram types are used to 
compose models and serve the same purpose, we briefly 
compare the Modelica connection diagram to the Modeli-
caML Internal Class Diagram. The main advantage of the 
Modelica connection diagram over the Internal Class Dia-
gram is that it has better visual comprehension as compo-
nents are shown via domain-specific icons known to appli-
cation modelers. Another advantage is that Modelica library 
developers are able to predefine connector locations on an 
icon, which are related to the semantics of the component.  

Figure 1. ModelicaML diagram overview.

understand, and hence to integrate and is backed by solid
technology.

The MOF is a technical framework built on the assump-
tion that engineering languages can be described well in
the ontological terms that underlie object orientation: The
world consists of complex objects with primitive attributes.
These belong to homogenous classes. The class may be re-
lated through an is-a relationship (sub-classing), an is-part-
of relationship (aggregation), or via simple association. The
latter two may be constrained by cardinalities.

With this tenant, every engineering language can be de-
scribed as a class diagram. Figure 2 shows such a diagram
for a database. An instance of this meta-model, would be a
model for a database. Some details of the diagram read like
this: ForeignKey, Column, Table and Key are all ModelEle-
ments and hence have the attributes ‘name’ and ‘kind’. A
Table is made up of ForeignKeys, Columns and Keys. A
ForeignKey is associated with a Key. The API generated
by a MOF service would allow to create the four mentioned
elements and to set their relationships.

Essentially, MOF can be thought of as a standard for
defining the cores of domain-specific software engineer-
ing tools, much like SQL is a standard for defining cores
of relational databases. With MOF, schemas are compiled
and the resulting machinery provides a low-volume storage
facility and a rich API-based interface. We will describe
MOF in more detail in the next section.

MOF combines the natural ‘ontological’ way of describ-
ing a technical area with a powerful generator framework
which reduces the cost of building and maintaining a do-
main specific modeling tool. The ontological description
can be represented in diagrams, which is easier to under-
stand than the code of a hand-written modelling tool. In
MOF the model-handling code of the tool is generated
directly from the diagrams, which avoids errors and te-
dious manual translation work. For this reason we argue,
that Modelica should primarily be exposed through a MOF
metamodel for integration with other software engineering
tools; This metamodel should be used in the future as its
external representation for tool integration purposes.

4. Why should EMF be Modelica’s MOF?

This section of the paper proposes that ModelicaML should
be based on the MOF variant provided by the Eclipse Mod-
elling Framework, EMF. Before we unfold the argument
for this proposition, we will need to inspect MOF in greater
detail, as the previous section only presented MOF in fairly
abstract terms. This section will provide a bit more detail
about the history and practicabilities of MOF. Like SQL,
all MOF variants are basically similar, but differ in detail.
Hence tools connected to and data defined based on dif-
ferent versions of a MOF variant, say MOF 1.2 and MOF
1.4, are incompatible if one assumes the use of all expres-
sive features. Traditionally the dependencies of MOF are
shown as a pyramid, as seen in Figure 3. Normally, this
pyramid has three levels. For this paper, we have added a
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Figure 2. Example of a simple database metamodel. (INRIA)

fourth level as a means to explain the versioning problems
that MOF suffers from.

4.1 Philosophy, Standards and Products

At the top of the stack at meta-level four (M4) we find
the idea that was introduced in the previous section: ob-
ject orientation is good for presenting domain-specific lan-
guages. This level does not have an equivalent in software.
It is purely philosophical and we will call it the philosophy
level.

Inspired by this philosophy, developers create imple-
mentations of MOF services. Some of the implementation
guidelines they adopt are shared in the technical standards
of the OMG. However, these standards have never substan-
tially guaranteed exchangeability of services or interchange
of artefacts and are thus omitted from the diagram [32, 12].
The OMG is a vendor-based organization. Modelling tools,
including MOF implementations, were and are high-price
margin software and hence vendors are not interested in in-
teroperability in order to achieve customer lock-in. This is
reflected in the nature of the OMG standards, which usu-
ally exclude concrete technical detail. Hence, standards in
the OMG sense are not standards in a product compliance
sense, rather guidelines and inspiration for implementation.
In order to submit a standard, a vendor has to show an im-
plementation, but that implementation is not required to
work together with reference implementations of related
standards. We will call this meta-level three the product

level, rather than the standards level. The differences be-
tween the implementations usually result in incompatible
storage formats, incompatible primitive data types, and in-
compatible event models of APIs. Thus, A MOF imple-
mentation from IBM, from SUN and from SAP would
likely be incompatible in these respects.

With the help of a MOF product, software architects
can express the domain-specific languages (DSLs) in meta-
models. This level is known as the meta-level two, and
we will call it the language level. The meta-models of the
DSLs are expressed using the features and semantics of a
particular MOF implementation that is in turn defined at
the product level. Consequently, DSLs cannot generally be
exchanged among MOF services.

Once an API has been generated from a metamodel with
the help of a MOF product, it can be dressed up with a user
interface and serve as a modelling tool for an engineer who
is familiar with the corresponding DSL. Following the ex-
ample above, we could now write the graphic interface to a
database design tool. The engineer can now model an engi-
neering problem – the design of a particular database, e.g.
for a library - and store and retrieve that model from disk.
The well-formedness conditions that have been defined for
the engineering language in form of the constraints on the
languages class schema help the engineer to design a cor-
rect model by vetoing models that cannot have an equiva-
lent in the practice of that engineering domain. Following
the example, the engineer could not store a model with a
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column that was not part of a table, because the composi-
tion relationship enforces this behavior. This level is known
as meta-level one and we will call it the model level.

If the engineering language actually describes physical
artefacts, then a model can have a correspondence in the
real world. For example, for the model of a car, one could
point to an actual car in the parking lot. Or alternatively, for
the modelling of a non-physical, but still existing, software
library, one could identify and point to a software library
installed inside an actual computer. This meta-level zero is
also known as the real-world level. It is often represented
in literature, but is actually an artifact of the underlying
philosophy of class-based thinking, which implies instanti-
ation.

Figure 3 aims to summarize the four levels by giving ex-
amples of popular models1 at different levels. The original
MOF was developed more then ten years ago for server-
side use, but recent developments in the last five years have
made its desktop use ubiquitously feasible. The Eclipse
Modeling Framework (EMF) is the most recent and ar-
guably most popular variant of MOFand is well-integrated
with the Eclipse IDE.

4.2 EMF Offers Generated User Interfaces

In addition to the manipulation and storage API generated
by all MOF products, EMF provides a library for interac-
tive manipulation that plugs directly into the Eclipse IDE.
This substantially reduces on the time it takes to create
an interactive graphical editor for a specific DSL. For this
reason the current implementation of ModelicaML already
uses EMF as its basis.

In addition, EMF offers a related facilities knowns as
the Graphic Modelling Framework (GMF). GMF allows
the definition of diagrammatic editors in a model-based
fashion. In other words, the tool-designer creates a model
of how the diagram editor should look for a specific DSL,
and the generator builds the diagrammatic interface. For
our example, Tables could be defined as being shown as
boxes, Attributes as text lines within the boxes and Keys as
arrows pointing among the Attributes.

4.3 EMF has the largest base of reusable editors

As a result the number of (graphical) editors built on EMF
is far greater than that of any previous MOF product. This
also affects the availability of developers that can create
Modelica integrations, if ModelicaML is based on the same
platform.

4.4 EMF has the most Models

Because there are more EMF-based tools in actual use, the
number of models transitively defined based on EMF via
different meta-models also outnumbers those in any other

1 The diagram also clarifies why different versions of the popular model-
ing language UML cannot actually be exchanged, leading to a breakup in
the space of artefacts. The next section will treat UML in more detail.

MOF product. The atlantic EMF model zoo is a great exam-
ple of this http://www.eclipse.org/gmt/am3/
zoos/atlanticZoo/ We hence have a good base of
engineering models that could be connected to Modelica
models.

4.5 EMF can Glue Large (Meta-) Models easily

In addition to this, the architecture of EMF contains a de-
sign feature that resolves an issue that plagued previous
MOF products. How do you integrate elements of two
pre-existing meta-models? The OMG MOF standards do
not address this issue, as it is seen as a technicality. Ear-
lier MOF products required the meta-models to be loaded
and all references resolved before models could be created.
This practically limited the use of large combined models;
EMF is lazy and knows the concept of a proxy, which only
resolves if necessary. EMF also introduces a mapping be-
tween external resources and the model contents based on
the concept of a Uniform Resource Identifier (URI). Ex-
ploiting this EMF can glue heterogenous models: A model
stored in several files appears as one structure to the user of
the model interface API. In this way, existing model files
can be linked to new model files that reference them. This
simplifies version control, as it avoids duplicate storage of
data.

4.6 Other MOF Versions Do not Offer as much MDA

The critical mass of EMF use has fostered the growth of
general facilities for the manipulation of models. For ex-
ample, given a model of a building’s floor plan and a model
of a wiring plan for buildings, it would be feasible to derive
a partial wiring plan from the floor plan. This model trans-
formation could be written as a special-purpose Java pro-
gram using nested iteration loops, but maintenance effort of
this solution would be high. In databases, the maintenance
problem has led to the development of SQL-DML, where
the desired manipulation to the table entries are declara-
tively expressed by referencing the defined table structure.
Within the MOF philosophy a generalizing approach can
be adopted to create a general purpose model transforma-
tion language that allows to express the desired manipula-
tion of instance models with reference to their asscoiated
meta-models.

With such general facilities at hand the development
of specialised engineering tools turns from a program-
ming task into the art of defining a set interrelated models,
their relationships and connecting model transformations
and their visualizations. This idea of small interrelated
models is at the heart of the Model-Driven Architecture
(MDA) [15, 35]. However, general facilities are expensive
tools to build, so the practice of MDA is strongly linked to
EMF and its critical mass.

For the reasons presented, we see EMF as the best basis
for the representation and integration of Modelica models.
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Figure 3. Four layer metamodel pyramid.

5. Why should ModelicaML not be UML?

When people talk about modeling in the context of soft-
ware engineering they very quickly turn to talk about the
Unified Modeling Language (UML). What they usually
mean, is the language of class diagrams which only ac-
counts for a very small part of the of the UML. UML
comprises a number of modeling languages; It was con-
ceived as a vehicle for the reuse of object-oriented mod-
els and a commercially-motivated merging approach to
the three competing OO-modeling philosophies of Booch,
Rumbaugh and Jacobsen. UML has been very successful
in unifying the different graphical notations of these lan-
guages; Today’s software engineers will always represent
class is a rectangle with three partitions: name, attributes
and methods.

In the following subsections we will present a number
of arguments why ModelicaML should not reuse UML, but
rather be a small well-defined core.

5.1 UML Standard Models are not Available,
Exchangeable or Reusable

UML was conceived independently of MOF. Consequently
UML tools were not built on any MOF core. They were
implemented directly ad hoc. As a result, the semantics,
the file formats and the APIs of the model manipulation
facilities all became different. Since the tools themselves
were expensive and specialized, there was little incentive
for third parties to produce extensions that would allow the
use of models for any purpose in the further development
process. Hence the models were cut off from the rest of the
development process and remained artifacts of documen-
tation, typically created in the initial phases of projects.
Consequently, errors found in later phases of projects were
not fed back into the models and the quality of the models
remained low. Finally, due to the high cost of their cre-
ation, models were treated as expensive intellectual prop-
erty and hence not made available outside companies using
UML. Although UML’s inventors used class diagrams to
describe UML’s semantics, and this approach allowed the

use of MOF products for the implementation of UML tools,
most UML tools are still custom-built; Low availability,
exchangeability, and reuse is hence typical for UML tools
these days. The tool list available at http://galaxy.
andromda.org/docs/case-tools.html gives a
good impression of this situation. While an exchange of
UML models is defined in a standard called XMI, this
standard only exchanges the model data, but not the cor-
responding diagrams, and the document format varies by
UML version and MOF product. Consequently, the ex-
change of data among tools is almost impossible. We
want ModelicaML models to be easily exchangeable and
reusable; So these properties of UML are undesirable and
a reason not to base ModelicaML on UML.

5.2 UML is too Big

UML is the result of a merger of three modelling ap-
proaches, combining their diagram techniques and mod-
elling concepts. Even at the start UML was already a
sizable specification. From version 1.3, the first OMG-
authorized release, to the current version 2.1 the size of
the specification has expanded almost fourfold to over
2000 pages. Figure 4 shows this development. As a result
of its substantial size, the UML standards are very hard
to implement. Developers simply get lost in the text that
mixes models, semi-formal specification in Object Con-
straint Language (OCL) and informal text descriptions.
Very often, developers implement the bits they think they
understand, and ignore the rest.

5.3 UML is not defined for EMF

None of the UML standards released through the OMG ref-
erence EMF as the underlying MOF version. For UML2.0
an implementation for MOF exists, but it is not officially
endorsed as compliant with the standard. Instead, the cur-
rent version of UML is defined against a sub-standard of
the MOF 2.0 standard known as Complete MOF (CMOF).
CMOF has a number of complex features [2]. To this date,
the author knows of no working implementations of CMOF
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Figure 142 - Extension Mechanisms
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Figure 2.1: Extension Mechanisms
[OMG04, p. 340]

Applicability/Tools The UML standard in all versions underlines the importance of tools in the
adoption of the language. While the landscape of tools is constantly changing, most tools
focus on static-structure diagrams as present in one of the first versions of the UML. Tools
that try to adhere closely to OMG standards are usually based on the first version of UML.
This is due to the fact that the technical OMG standards, on which UML builds, have also
been revised, in the second version, demanding new infrastructure implementations. For the
first version variants of UML, implementations of the underlying infrastructure are mature
and available.

The UML version 2.0 warrants a seperate discussion, because it represents a significant change
in the structure of UML. In terms of total pages it is more then twice as large as its predecessors,
and more than three times as large, if the underlying infrastructure standards Meta-Object Facility
(MOF) and XML Metadata Interchange (XMI) are taken into account. This increase in size affects
the ease with which the standard is understood, used and implemented. The impact on the ease
of use is reflected both in metrics of the metamodel[MSZ+04] and in qualitative reports of expert
users[FGDTS06].

Implementation of UML 2 is further complicated by the fact that it is based on a revision of
the MOF standard, which describes its infrastructure. The MOF standard is now subdivided into
Essential MOF (EMOF) and Complete MOF (CMOF), leading to a heterogeneous infrastructure
for the UML, that has internal consistency problems[Ste04]. UML 2 is described in terms of the
more complex CMOF, for which no complete and reusable implementation is available at the
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Figure 4. UML Version Development: size of the standard in pages and chapters.

or implementations of UML based on such a MOF variant.
If ModelicaML is based on EMF, it cannot be based on the
current specification version of UML at the same time.

5.4 UML is Semantically Unsound

Further, the UML standards shy away from defining several
important technological matters, which would be necessary
to make UML models reusable and exchangeable. For ex-
ample, the standards do not successfully define what a valid
UML model is, and at what point a UML tool would need
to assert such validity. There is no test suite and no clearing
house. The precise UML group, a think-tank of computer
scientists, has worked for ten years on defining the precise
meaning and consistency of UML and has yet to deliver
a joint and clear statement. As Modelica requires precise
semantics, it would suffer from problems of inconsistency
and ambiguity, whenever a UML model was to be reused.

5.5 UML’s Profiles are a Problem

The UML contains a mechanism known as “Profile”. Pro-
files were originally defined as a mechanism to constrain
the relatively weak semantics of UML through the applica-
tion of a constraint language at the level of the UML meta-
model. Unfortunately the Profile concept is often misused,
in that additional semantics are added that are not necessar-
ily compatible with UML.

According to the original definition of a profile as a con-
strained UML subset, the predicates of that constraint lan-
guage would be evaluated against the content of a model. If
a predicate was violated, the modeller would be provided
with appropriate feedback. It is important to note, that this
approach does not change the UML meta-models at all. For
this reason, profiles are called light weight meta-model ex-
tensions. Hence the technical application of a profile im-
plies that an OCL interpreter is present in every UML tool
that can use a profile. The authors to this date know of no
tool that satisfies this requirement. Consequently, anything
called a profile is either relying on a proprietary tool ex-
tension, or it is a mere paper artifact, that does not actually
support portable modeling.

The next problem with profiles is the desire of certain
UML users to change, rather than to constrain, the meta-
models of the UML. In other words, these users, often aca-
demics, want something that looks like UML, but is seman-

tically incompatible with the UML metamodel . The profile
becomes as a means of advertising one’s own modelling
language under the sales label of the UML. The UML stan-
dard version 2.0 vaguely describes mechanisms to alter the
meta-model via a profile. There has been little interest in
investigation or treatment of the resulting problems, as the
mere size of UML 2.0 defeats a complete implementation
in a tool anyway. During the closing panel of the last UML
conference, the experts agreed that no tool was ever going
to implement the UML 2.0 completely.

Today, profiles are mostly perceived as a means to de-
scribe visual alterations to UML diagram types. This use
of profiles is even further removed from practical portable
modeling, as there is no standardized algorithm that de-
scribes the allowable graphical renderings of a UML model
in diagrams. Hence, there is also no portable amendment
interface to this rendering algorithm. If profile-based alter-
ations to rendering would be portable, they would need to
be standardized parameters to the well-defined rendering
algorithm. Hence even the use of amended diagram fea-
tures is either proprietary or a suggestion on the manual
use of drawing tools.

If ModelicaML was based on UML, it would need to
implement a correct UML infrastructure including the ill-
defined profile mechanism. This effort seems to be unjus-
tified for the ModelicaML project, which aims at effective
technical integration.

5.6 UML‘s Sublanguages are a Problem

In addition to the meta-model, the UML standard also in-
cludes two additional languages. The previously mentioned
Object Constraint Language is used to define predicates
against class diagrams and for pre- and post-conditions of
methods. The Action Language is a slightly abstracted im-
perative language intended for a more precise description
of behavior of systems. In order to be a sub-language of
UML, ModelicaML would need to implement these other
two languages as well. Both languages have little to do with
Modelica’s philosophy of equation-oriented modelling.

5.7 UML’s children are not UML

Because standard-based UML is practically unmanageable
in a tool for the reasons outlined above, vendors have begun
to offer tools that offer reduced domain-specific languages
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with well-defined syntaxes that are shown in diagram types
resembling those of the UML. For the embedded systems
domain, these are primarily class diagrams, sequence dia-
grams and state charts. In order to describe constraints and
state transitions, the tools are often augmented with a tex-
tual constraint and action language.

Executable UML (xtUML) is such a sub-language. It
revives and implements the OO-methodology of Shlaer-
Mellor. This methodology was the fourth important con-
tender at the time of UML’s inception. However, it did not
find its way into the commercial UML venture. xtUML
is seeing increasing use in industry as a specification lan-
guage. For example it is used for the specification of em-
bedded controller software at Saab Bofors Dynamics AB
(SB). Other UML sublanguages for system design are
SysUML (Boeing, Saab) and RealTimeUML (RTUml) (Er-
icsson).

It is important to understand that none of these UML-
named languages are actually UML since they are not
based on CMOF or MOF. Their metamodels differ from
that of the UML, and their models would not be inter-
changeable with standard-compliant UML tools or prod-
ucts, if these existed. They are proprietary engineering lan-
guages, branded “UML” for sales purposes. Apart from this
misnomer, they can be used well for systems engineering
and in collaboration with Modelica.

The current version of ModelicaML is based on SysML.
As with any UML derivative, the metamodel of SysML
is very large and contains a number of concepts that do
not have a correspondence in Modelica. These elements
do not form the focus of Modelica. They are superflu-
ous and hence should not be part of ModelicaML. If they
were kept, they would need to be fully expressed in dia-
grams, and their associated well-formedness rules from the
SysML standard would need to be enforced. Further, the
semantics of Modelica and SysML differ in some core ar-
eas. There, the SysML metamodel was altered to support
Modelica semantics. As a result, standard SysML cannot
be imported or exported from ModelicaML. Also, names
of meta classes are all taken from SysML, even though
the concepts may carry different names in Modelica. Con-
sequently, there is a semantic mismatch and a long-time
Modelica user will not easily find familiar concepts in the
ModelicaML API, because they carry SysML names.

It seems advisable that the next version of ModelicaML
should be defined via a meta-model that is as small as pos-
sible and independent of that of SysML or UML. Such con-
solidation will also help to improve quality, as the same
amount of maintenance time will be applied to fewer arte-
facts and less code.

6. Usage Scenario and Proposal

The previous sections have outlined the next generation of
ModelicaML as the integration interface of Modelica re-
garding EMF-based tools and IDEs. The revised Modeli-
caML will be based on EMF, but it will be smaller, and

independent of SysML, UML and its children. What can
we do with such an interface? How can it help Modelica to
collaborate with other engineering languages?

The following sections examine a hypothetical scenario
of collaboration between modelling tools using xtUML and
Modelica. xtUML and Modelica have different strengths ,
and we will highlight these differences first. The rest of
the section sketches a scenario around a real application of
xtUML present at Saab Bofors.

6.1 xtUML and Modelica

xtUML describes state transitions of a model in the way
most software engineers find natural: The state of the sys-
tem is changed by explicitly defined actions and kept con-
sistent by declarative constraints that should never be vio-
lated during its existence. Modelica on the other hand, due
to its origin as a simulation framework, describes the be-
havior of a system’s parts through equations. Apart from
this, Modelica and xtUML know the same concepts of lo-
cal attributes, generalization and aggregation, as they exist
in all other object-oriented languages.

Summarily, xtUML is a language used to explicitly de-
scribe and drive the behavior of a system, Modelica is a
language to implicitly describe and observe the behavior
of a system. xtUML’s strength is construction, Modelica’s
strength is analysis. Of course, both languages can be used
in the respective other domain, but they will be less natu-
ral. For example, Modelica can also be used for expressing
algorithmic or block-based controller code.

6.2 Missile Control at Saab-Bofors

Concretely, Saab-Bofors uses xtUML to describe the pro-
grams that drive the control of anti-aircraft missiles. The
process is a typical application of MDA. It begins with a
set of models related through model transformations and
kept sound by validation procedures. Saab-Bofors uses an
xtUML tool called Bridgepoint to create its models of the
anti-aircraft missile software, validate it and to generate
ADA program code that can be compiled into object-code
that can be linked into an executable. The approach is
special because software is flexibly apportioned to pro-
grammable hardware or controller software. The artifact
flow is shown in an informal diagram in Figure 5.

6.3 Testing using Modelica

As stated above, Modelica is very useful for simulation.
Testing of engineerng systems regularly involves building
simulations of complex reactive environments of systems
to explore system behaviour in different scenarios [34].
Among other things Modelica has been used in the past to
simulate aerodynamic behavior of military aircraft. Model-
ica is special in comparison with other simulation systems,
because Modelica can blend physical, electrical and elec-
tronic characteristics of a system seamlessly. So, Modelica
lends itself well to designing and simulating the functions

23



2007-02-07

SAAB BOFORS DYNAMICS10
UNCLASSIFIED

© 2007 Saab Bofors Dynamics AB
eriwe/RTDA Erik Wedin

Manual Implementation

Specifications
(Text, Pictures, Models, …)

High-Level
Language

(Ada95, C, …)

System

Abstraction in System Development – The Next Step
Integrated Software/Electronics/System Development

Object Code

Assembly
Code

Netlist
File

Programming
File

Compiler

Assembler

Synthesizer

Placer &
Router

Processor
Programmable
Logic Device

High-Level
Language
(VHDL, …)

Model Compiler

Executable & Translatable
Specifications

(Models)

Manual ImplementationModel Compiler      

Figure 5. Model-Driven Process at Saab-Bofors. [36]

of a robotic arm, including torque, step motors, sensors,
and control.

The following subsection describe three strategies for
using Modelica with an engineering language like xtUML:
Simulation of the environment, co-simulation of the subject-
under-test, generation of simulation parameters, and imple-
mentation.

6.3.1 Linking Modelica to xtUML as an Environment

To integrate Modelica with a different modelling technique,
the integration has to be modelled and rendered to exe-
cutable code. Figure 6 shows one example of how xtUML
and Modelica would collaborate: Bridgepoint is an Eclipse-
based product, which is also internally built on EMF. As
a result, its metamodels can be exported and referenced
as part of other metamodels, implicitly making the data
in the xtUML model available by navigation from other
models. On the other side, a Modelica model of the envi-
ronment of the missiles processor is prepared. This model
only uses standard Modelica features. Its description uses
the efficient diagrammatic features that Modelica users are
familiar with. As is customary with Modelica, the model
is translated into C code, which can also be compiled into
object code for linking. Now, the features of the two soft-
ware components have to interface. This connection infor-
mation is encoded in a link-model that references features
in the xtUML model and relates them to the correspond-
ing features in the Modelica model. Now, a source code
for the overall simulation can be generated, using this ref-
erential information. The source code is translated and the
object codes of the environment simulator and missile con-
trol logic tied in. The resulting binary can then be run and
will produce a simulation with good performance charac-
teristics, due to the compilation of the code, as opposed to
model interpretation. This approach can be extended for the

special case of hardware-software splitting by providing a
Modelica model of the programmable logic in addition to
the processor model.

6.3.2 Modelica as Co-Simulator

In the previous scenario Modelica is used exclusively to
describe the environment. However, Modelica could also
be used to produce a specification of the expected test re-
sponse: A sort of test oracle. This is also known as a peer
model. A peer model is a model, that describes the SUT
by different modelling means, in order to validate the be-
haviour. In the case of a peer model of Modelica for an
xtUML component, the Modelica component describes the
expected behaviour of the xtUML component in mathemat-
ical terms. The peer model can be used to check margins
of error on the behaviour of the component, while going
through the scenarios.

6.3.3 Modelica as Scenario Generator

Scenario coverage and test driving can be another target of
Modelica modelling. This involves fashioning a model to
describe what scenario initialisation data should be created
and in which order the simulations should be run. In this
context, Modelica is used to create mathematical models
of the variant parameters.

6.3.4 Modelica as Implementation

Finally, Modelica could be used to provide implementa-
tions for components of interest. Modelica’s semantics pro-
vide good clarity for all mathematical interactions, and its
flow concepts allow natural modelling of component con-
nections. This makes Modelica useful for the definition of
components that resemble filters, pipes and streams. The
Modelica standard is open and technically well-defined. As
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a consequence, model compilers can be written with con-
fidence. For the Saab-Bofors scenario, part of the code for
the driver application could be modelled in an imperative
xtUML style, another part could be modelled in a reactive
fashion in Modelica. The resulting object-codes could sub-
sequently be linked and executed.

7. Summary and Outlook

In this paper we have reasoned about the further develop-
ment strategy for ModelicaML and its core metamodel. We
have argued that EMF is the the most effective choice as the
implementation framework, but have discarded the use of
full UML and its descendants and profiles for practical rea-
sons. Instead, we have proposed an architecture based on a
direct reflection of Modelica with a small footprint. Finally
we have discussed four integration strategies in the context
of the motivating example of the Saab-Bofors model-based
workbench.

We will bring these considerations into the Modelica
community as a basis for further discussion towards the
standardization of the higher-level Modelica tooling and
integration interface.
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Abstract 

Current equation-based modeling languages are often 

confronted with tasks that partly diverge from the original 

intended application area. This results out of an increasing 

diversity of modeling aspects. This paper briefly describes 

the needs and the current handling of multi-aspect 

modeling in different modeling languages with a strong 

emphasis on Modelica. Furthermore a small number of 

language constructs is suggested that enable a better 

integration of multiple aspects into the main-language. An 

exemplary implementation of these improvements is 

provided within the framework of Sol, a derivative 

language of Modelica. 

Keywords     language-design, object-oriented modeling 

1. Motivation 

Contemporary equation-based modeling languages are 

mostly embedded in graphical modeling environments 

and simulators that feature various types of data-

representation. Let that be for instance a 3D-visualization 

or a sound module. Consequently the corresponding 

models are accompanied by a lot of information that 

describes abundantly more than the actual physical model. 

This information belongs to other aspects, such as the 

modeling of the iconographic representation in the 

schematic editor or the preference of certain numerical 

simulation techniques. Hence, a contemporary modeler 

has to cope with many multiple aspects.  

In many modeling languages such kind of information 

is stored outside the actual modeling files, often in 

proprietary form that is not part of any standard. But in 

Modelica [6], one of the most important and powerful 

EOO-languages, the situation has developed in a different 

way. Although the language has been designed primarily 

on the basis of equations, the model-files may also 

contain information that is not directly related to the 

algebraic part. Within the framework of Modelica, the 

most important aspects could be categorized as follows: 

• Physical modeling: The modeling of the physical 

processes that are based on differential-algebraic 

equations (DAEs). This modeling-aspect is also 

denoted as the primary aspect. 

• System hints: The supply of hints or information for 

the simulation-system. This concerns for example 

hints for the selection of state-variables or start values 

for the initialization problem. 

• 3D Visualization: Description of corresponding 3D-

entities that enable a visualization of the models. 

• GUI-Representation: Description of an icono-

graphic representation for the graphical user-interface 

(GUI) of the modeling environment. 

• Documentation: Additional documentation that 

addresses to potential users or developers. 

We will use this classification for further analysis, since it 

covers most of the typical applications fairly well. 

Nevertheless, this classification of modeling aspects is of 

course arbitrary, like any other would be. 

Let us analyze the distribution of these aspects with 

respect to the amount of code that is needed for them. 

Figure 1 presents the corresponding pie-charts of three 

exemplary models of the Modelica standard library. These 

are the “FixedTranslation” component for the MultiBody-

library, the PMOS model of the electrical package and the 

“Pump and Valve” model in the Thermal library. The first 

two of them represent single components; the latter one is 

a closed example system. 

In the first step of data-retrieval, all unnecessary 

formatting has been removed from the textual model-files. 

For each of these models, the remaining content has then 

been manually categorized according to the classification 

presented above. The ratio of each aspect is determined 

by counting the number of characters that have been used 

to model the corresponding aspect. 

The results reveal that the weight of the primary aspect 

cannot be stated to be generally predominant. The 

distribution varies drastically from model to model. It 

varies from only 14% to 53% for these examples. 

 Yet one shall be careful by doing an interpretation of 

the pie-charts in figure 1. The weight of an aspect just 

expresses the amount of modeling code with respect to 

the complete model. This does not necessarily correlate 

with the invested effort of the modeler and even less it 

does correlate with the overall importance of an aspect. It 

needs to be considered that code for the GUI-

representation is mostly computer-generated code that 

naturally tends to be lengthy. On the other hand side, the 

code that belongs to the primary aspect of equation-based 

modeling is often surprisingly short. This is due to the 

fact that this represents the primary strength of Modelica. 

The language is optimized to those concerns and enables 
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Figure 1. Code-Distribution of aspects in Modelica-models 

 

convenient and precise formulations. Unfortunately, this 

can hardly be said about the other aspects in our 

classification. 

The discussion about the Modelica and other EOO-

language is often constrained to its primary aspect of 

physical modeling.  But in typical models of the Modelica 

standard-library this primary aspect often covers less than 

25% of the complete modeling code. Any meaningful 

interpretation of figure 1 reveals that the disregard on 

other modeling aspects is most likely inappropriate -    

especially when we are concerned with language design. 

For any modeling language that owns the ambition to 

offer a comprehensive modeling-tool, the ability to cope 

with multiple aspects has become a definite prerequisite. 

It is the aim of this paper to improve modeling 

languages with respect to these concerns. To this end, we 

will suggest certain language constructs that we have 

implemented in our own modeling language: Sol. The 

application of these constructs will be demonstrated by a 

small set of examples. But first of all, let us take a look at 

the current language constructs in Modelica and other 

modeling languages. 

2. Current handling of multiple aspects 

2.1 Situation in VHDL-AMS, Spice, gPROMS, Chi 

The need for multiple aspects originates primarily from 

industrial applications. Hence this topic is often not 

concerned for languages that have a strong academic 

appeal. One example for such a language is Chi [3]. For 

the sake of simplicity and clarity, this language is very 

formal and maintains its focus on the primary modeling 

aspect. 

In contrast, languages like SPICE3 [9] or VHDL-AMS 

[1,10] and Verilog-AMS[12] are widely used in industry. 

Unlike Modelica, these languages do typically not 

integrate graphical information into their models. The 

associated information that describes the schematic 

diagram and the model icons is often separately stored, 

often in a proprietary format. For instance, the 

commercial product Simplorer [11] generates its own 

proprietary files for the model-icons. The corresponding 

VHDL-code does not relate to these files. 

However, different solutions are possible: both AMS-

languages contain a syntax-definition for attributes. These 

can be used to store arbitrary information that relate to 

certain model-items. Since there is only a small-number 

of predefined attributes (as unit descriptors, for instance), 

most of the attributes will have to be specified by the 

corresponding processing tools.   

Furthermore these two languages and SPICE3 own an 

extensive set of predefined keywords. This way it is 

possible to define output variables or to configure 

simulation parameters. The situation is similar in 

ABACUSS II [5], which is the predecessor to gPROMS 

[2]. This language offers a set of predefined sections that 

address certain aspects of typical simulation run like 

initialization or output. 

2.2 Multiple aspects in Modelica 

The Modelica language definition contains also a number 

of keywords that enable the modeler to describe certain 

aspects of his model. For instance, the attributes 

stateSelect or fixed represent system-hints for the 

simulator. In contrast to other modeling languages, 

Modelica introduced the concept of annotations. These 

items are placed within the definitions of models or the 

declarations of members and contain content that directly 

relates on them. Annotations are widely used within the 

framework of Modelica. The example below presents an 

annotation that describes the position, size and orientation 

of the capacitor icon in a graphic diagram window. 
 

Capacitor C1(C=c1) “Main Capacitor“ 

annotation (extent=[50,-30; 70,-10], 

rotation=270); 
 

Example 1. Use of an annotation in Modelica. 

Since annotations are placed alongside the main modeling 

code, they inflate the textual description and tend to spoil 

the overall clarity and beauty. A lot of annotations contain 

also computer-generated code that hardly will be 

interesting for a human reader. Thus, typical Modelica-
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editors mostly hide annotations and make them only 

visible at specific demand of the user. However, this 

selection of code-visibility comes with a price. First it 

reduces the convenience of textual editing, since cut, copy 

and paste operations may involve hidden annotations. 

Second, the selection of visibility happens on a syntactical 

level not on a semantic level.   

Storing data for GUI-representation or other specific 

hints and information has been initially a minor topic in 

the design process of Modelica. Still, there was a 

compelling need for it. To meet these urgent 

requirements, the Modelica community decided to 

introduce the concept of annotations into the modeling 

language. Already the first language definition of 

Modelica contained the concept of annotations and also 

presented some applications for GUI-representation and 

documentation. The corresponding annotations have been 

used as a quasi-standard despite the fact that they only 

have been weakly documented. Annotations served also 

as an official back-door entrance to non-official, 

proprietary functionalities. Since it happens frequently in 

software engineering that certain things just grow 

unexpectedly, many further annotations have been 

introduced meanwhile. Nowadays, annotations contain a 

lot of crucial content that revealed to be almost 

indispensable for the generation of effective portable 

code. Therefore it is no surprise that just recently a large 

set of annotations had to be officially included in version 

3 of the Modelica language definition [8]. This way, what 

started out as a small, local and semi-proprietary solution, 

became now a large part in the official Modelica standard. 

To store the information that belongs to certain aspects, 

different approaches are used in Modelica and often more 

than one language-tool is involved. The following list 

provides a brief overview on the current mixture of data-

representation: 

• The physics of a model is described by DAEs and is 

naturally placed in the main Modelica model. 

• Hints or information for the simulation-system are 

mostly also part of the main Modelica language but 

some of them have to be included in special 

annotations. 

• Information that is used by the GUI is mostly 

included in annotations. But the GUI uses also uses 

information from textual descriptions that are part of 

the main-language. 

• The description of 3D-visualization is done by 

dummy-models within main-Modelica code. 

• Documentation may be extracted from the textual 

descriptions that accompany declarations and 

definitions, but further documentation shall be 

provided by integrating HTML-code as a text-string 

into a special annotation.  Other annotations store 

information about the author and the library version. 

2.3 Downfalls of the current situation 

Obviously, this fuzzy mixture of writings and language 

constructs reveals the lack of a clear, conceptual 

approach. As nice as the idea of annotations appears in 

the first moment, it also incorporates a number of 

problematic insufficiencies. 

The major drawback is that only pre-thought 

functionalities are applicable. The modeler has no means 

to define annotation by its own or to adapt given 

constructs to his personal demands. Furthermore, syntax 

and semantics of each annotation needs to be defined in 

the language definition. Since there is always a demand 

for new functionalities, the number of annotations will 

continue to increase. This leads to a foreseeable inflation 

of the Modelica language definition. 

2.4 Lack of expressiveness 

These downfalls originate from a lack of expressiveness 

in the original Modelica language. Whenever one is 

concerned with language design [7], it is important to 

repetitively ask some fundamental questions. How can it 

be that a language so powerful to state highly complicated 

DAE-systems is unable to describe a rectangle belonging 

to an iconographic representation? Why do we need 

annotations at all? 

These questions are clearly justified and point to the 

fact that the development scope of the Modelica language 

might have been too narrowly focused on the equation 

based part. Therefore, extension that would have been of 

great help in other domains, have been left out: 

1. There is no suitable language construct that enables 

the declaration of an interface to an environment that 

corresponds to a certain aspect. 

2. Instances of objects cannot be declared anonymously 

within a model.  

3. The language provides no tool for the user that 

enables him or her to group statements into semantic 

entities. 

4. The language offers no means to refer on other 

(named) objects. Neither statically nor dynamically. 

By removing these four lacks, we will demonstrate that 

the use of annotations can be completely avoided and that 

the declarative modeling of multiple aspects can be 

handled in a conceptually clear and concise manner. The 

following section will discuss this in more detail and 

provide corresponding examples. 

3. Multi-aspect modeling in Sol 

Sol is a language primarily conceived for research 

purposes. It owns a relatively simple grammar (see 

appendix) that is similar to Modelica. Its major aim is to 

enable the future handling of variable-structure systems. 

To this end, a number of fundamental concepts had to be 

revised and new tools had to be introduced into the 

language. The methods that finally have become available 
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suit also a better modeling of multiple aspects. These 

methods and their application shall now be presented. 

3.1 Starting from an example 

In prior publications on Sol [13,14] the “Machine” 

model has been introduced as standard example. It 

contains a simple structural change and consists of an 

engine that drives a flywheel. In the middle there is a 

simple gear box. Two versions of an engine are available: 

The first model Engine1 applies a constant torque. In 

the second model Engine2, the torque is dependent on 

the positional state, roughly emulating a piston-engine. 

Our intention is to use the latter, more detailed model at 

the machine’s start and to switch to the simpler, former 

model as soon as the wheel’s inertia starts to flatten out 

the fluctuation of the torque. This exchange of the engine-

model represents a simple structural change on run-time. 
 

model Machine 

implementation: 

  static Mechanics.FlyWheel F{inertia<<1}; 

  static Mechanics.Gear G{ratio<<1.8}; 

  dynamic Mechanics.Engine2 E {meanT<<10}; 

 

  connection c1(a << G.f2, b << F.f); 

  connection c2(a << E.f, b << G.f1);  

  when F.w > 40 then   

    E <- Mechanics.Engine1{meanT << 10};  

  end; 

end Machine; 

Example 2. Simple machine model in Sol. 

The first three lines of the implementation declare the 

three components of the machine: fly-wheel, gear-box and 

the engine. The code for the corresponding connections 

immediately follows. The third component that represents 

the engine is declared dynamically. This means that the 

binding of the corresponding identifier to its instance is 

not fixed and a new instance can be assigned at an event. 

This is exactly what happens in the following declaration 

of the when-clause. A new engine of compatible type is 

declared and transmitted to the identifier E. The old 

engine-model is thereby implicitly removed and the 

corresponding equations are automatically updated.  

This model contains the physics part only.  We now 

want to add other aspects to the model. We would like to 

add a small documentation and to specify the simulation 

parameters. Furthermore we want to add information 

about model’s graphical representation in a potential, 

graphical user-interface. The following sub-sections will 

present the necessary means and their step by step 

application. 

3.2 Environment packages and models 

Many modeling aspects refer to an external environment 

that is supposed to process the exposed information. This 

environment may be the GUI of the modeling 

environment or a simulator program. Therefore it needs to 

be specified how a model can address a potential 

environment. To this end, Sol features environment 

packages and models that enable to define an appropriate 

interface. Let us take a look at an example: 

environment package Documentation 

 

 model Author 

 interface: 

  parameter string name; 

 end Author; 

  

 model Version 

 interface:  

  parameter string v;  

 end Version; 

  

 model ExternalDoc 

 interface:  

  parameter string fname;  

 end ExternalDoc; 

   

end Documentation 

Example 3. Environment package. 

This example consists in a package that contains models 

which can be used to store relevant information for the 

documentation of arbitrary models. The keyword 

environment does specify that the models of the 

corresponding package address the environment and are 

therefore not self-contained. They merely offer an 

interface instead. The actual implementation and 

semantics of the package remains to be specified by the 

environment itself. 

It is important to see that stipulating the semantics 

would be a misleading and even futile approach. Different 

environments will inevitable have to feature different 

interpretations of the data. For instance, a pure simulator 

will complete ignore the “Documention” models whereas 

a modeling editor may choose to generate an HTML-code 

out of it. Nevertheless it is very meaningful to specify a 

uniform interface within the language. This provides the 

modeler with an overview of the available functionalities. 

Furthermore the modeler may choose to customize the 

interface for its personal demands using the available 

object-oriented means of the Sol-language. 

3.3 Anonymous Declaration 

The language Sol enables the modeler to anonymously 

declare models anywhere in the implementation. The 

parameters can be accessed by curly brackets whereas 

certain variable members of the model’s interface are 

accessible by round brackets. This way, the modeler can 

address its environment in a convenient way just by 

declaring anonymous models of the corresponding 

package. An application of this methodology is presented 

below in example 4 for the Machine model. 

Anonymous declarations are an important element of 

Sol, since they enable the modeler to create new instances 

on the fly, for example at the execution of an event. This 

is very helpful for variable-structure systems. However, 

within the context of multi-aspect modeling, anonymous 

declarations serve primarily convenience. It is of course 

possible to assign names to each of the documentation 

items. They can be declared with an identifier like any 

other model, but this is mostly superfluous and would 

lead to bulky formulations. 

30



 
model Machine 

implementation: 

  […] 

  when F.w > 40 then   

    E <- Mechanics.Engine1{meanT << 10 };  

  end; 

 

  Documentation.Author{name<<"DirkZimmer"}; 

  Documentation.Version{v << "1.0"); 

  Documentation.ExternalDoc 

  {fname<<"MachineDoc.html"}; 

 
end Machine; 

Example 4. Use of anonymous declarations. 

3.4 Model sections 

Sol has been extended by the option for the modeler to 

define sections using an arbitrary package name. Sections 

incorporate three advantages: One, code can be structured 

into semantic entities. Two, sections add convenience, 

since the sub-models of the corresponding package can 

now be directly accessed. Three, section enable an 

intuitive control of visibility. A modern text editor may 

now hide uninteresting sections. The user may then be 

enabled to toggle the visibility according to its current 

interests. This way, the visibility is controlled by semantic 

criteria and not by syntactical or technical terms. 
 
model Machine 

implementation: 

  […] 

  when F.w > 40 then   

    E <- Mechanics.Engine1{meanT << 10 };  

  end; 

 

  section Documentation: 

    Author{name << "Dirk Zimmer"}; 

    Version{v << "1.0"}; 

    ExternalDoc{fname<<"MachineDoc.html"}; 

  end; 

 

  section Simulator: 

    IntegrationTime{t << 10.0};  

    IntegrationMethod{method<<"euler",  

    step << "fixed", value << 0.01}; 

  end;  

 

end Machine; 

Example 5. Sections. 

The documentation part of the machine model has now 

been wrapped within a section. A second section 

addresses another environment called “Simulator” and 

shows an exemplary specification of some simulation 

parameters. Both sections could be hidden by an editor if 

the user has no interest in their content. 

3.5 Referencing of model-instances 

The provided methods so far, are fully sufficient for 

simple application cases. The proper implementation of a 

GUI-representation is yet a more complex task that 

demands a more elaborate solution.  

In the classic GUI-framework for object-oriented 

modeling, each model owns an icon and has a diagram 

window that depicts its composition from sub-models. 

Figure 2 displays the aspired diagram of the exemplary 

machine-model that contains the icons of its three sub-

models. The connections are represented by single lines. 

The following paragraphs outline one possible solution in 

Sol. 

 

Engine Gear Flywheel  
Figure 2. The diagram representation. 

The problem is that many models will own GUI-

information but only the information of certain model-

instances shall be acquired. This originates in the need for 

language constructs that enable hierarchical or even 

mutual referencing between model-instances. Sol meets 

these requirements by giving model-instances a first-class 

status [4]. This means that model-instances cannot only 

be declared anonymously but also these instances can be 

transmitted to other members or even to parameters.   

This capability had already been applied in example 2 

to model the structural change of the engine.  The 

statement 
 

E <- Mechanics.Engine1{meanT << 10}; 

declares anonymously an instance of the model 

“Engine1” and then transmits this instance to the dynamic 

member E. Hence the binding of the identifier to its 

instance gets re-determined which causes a structural 

change.  

A similar pattern will occur in our solution for the 

GUI-design. Let us take a look at the corresponding 

environment-package. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Structure of the “Graphics” package. 

 

Figure 3 gives a structural overview of the environment-

package Graphics. This package provides rudimentary 

tools for the design of model-icons and diagrams. These 

are represented by models for rectangles, ellipses and 

lines. The package contains also a Canvas model that 

enables drawings on a local canvas. Furthermore the 

package contains a partial model GraphicModel that 

serves as template for all models that support a graphical 

GUI-representation. It defines two sub-models: one for 

• environment package Graphics 

o model Line 

o model Rectangle 

o model Ellipse 

o model Canvas 

� model Line 

� model Rectangle 

� model Ellipse 

o model GraphicModel 
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the icon-representation and one for the diagram 

representation. Models that own a graphical 

representation are then supposed to inherit this template 

model. Please note that the icon has a canvas model as 

parameter. 

 
model GraphicModel 

interface: 

 model Icon 

 interface: 

  parameter Canvas c; 

 end Icon; 

   

 model Diagram 

 end Diagram; 

   

end GraphicModel; 

Example 6. A template for graphical models. 

 

A graphical modeling environment may now elect to 

instantiate one of these sub-models. This will cause 

further instantiations of models belonging to the 

“Graphics”-package that provide the graphical 

environment with the necessary information. Below we 

present an exemplary icon model for our engine that 

corresponds to the icon in Figure 2.  

 
model Engine2 extends Interfaces.OneFlange;

  //that extends GraphicalModel 

interface: 

 

  parameter Real meanT; 

   

  redefine model Icon 

  implementation: 

 c.Ellipse(sx<<0.0,sy<<0.2, 

                 dx<<0.6,dy<<0.8); 

   c.Rectangle(sx<<0.9,sy<<0.45, 

                   dx<<1.0,dy<<0.55); 

   c.Line(sx<<0.3,sy<<0.3, 

              dx<<0.9,dy<<0.5); 

  end Icon; 

 
implementation: 

 
  […] 

 
end Engine2; 

Example 7. An implementation of an icon 

 

The icon of example 7 “paints” on a local canvas that is 

specified by the corresponding parameter c. The 

transmission of this parameter is demonstrated in 

Example 8 that represents the whole diagram of figure 2. 

This model declares the icons of its sub-models and 

creates a local canvas for each of them by an anonymous 

declaration. The two connections c1 and c2 also own a 

Line-model for their graphical representation. 

 

model Machine  

  extends Graphics.GraphicalModel; 

interface: 

 

  redefine model Diagram 

  implementation: 

  section Graphics: 

    F.Icon{c<<Canvas{x<<10,y<<10, 

              w<<10,h<<10}}; 

    G.Icon{c<<Canvas{x<<30,y<<10, 

                     w<<10,h<<10}}; 

    E.Icon{c<<Canvas{x<<50,y<<10, 

                     w<<10,h<<10}}; 

    c1.Line(sx<<20,sy<<15, 

            dx<<30,dy<<15); 

    c2.Line(sx<<40,sy<<15, 

     dx<<50,dy<<15); 

    c.Rectangle(0,0,70,30); 

  end; 

  end Diagram; 

 
implementation: 

 
  […] 

 

  section Documentation: 

  […] 

 

  section Simulator: 

  […] 

 

end Machine; 

Example 8. An implementation of a diagram 
 

The “GraphicalModel” involves another key-concept of 

Sol. The language enables the modeler to define models 

also as member-models in the interface section. When 

instantiated, these models belong to their corresponding 

instance and are therefore not independent. This means 

that the Diagram or Icon model always refer to their 

corresponding super-instance. Consequently, they also 

have access to all the relevant parameters and can adapt. 

Please note, that the resulting GUI-models are 

potentially much more powerful than their annotation- 

based counterparts in Modelica. All the modeling power 

of Sol is now also available for the graphical models. For 

instance, only a minimal effort is needed to make the look 

of an icon adapt to the values of a model-parameter. No 

further language construct would be required. A model 

could even feature “active” icons that display the current 

system-state and hence enable a partial animation of the 

system within the diagram-window. Even the structural 

change of the machine-model could be made visible in the 

diagram during the simulation. Such extensions (if desired 

or not) become now feasible and demonstrate the 

flexibility of this approach. 

However, the provided examples are merely a 

suggestion and represent just one possible and convenient 

solution within the framework of Sol.  There are also 

many other language constructs that would lead to 

feasible or even more general solutions. Many of them 

could easily be integrated into equation-based languages. 

Some of them are featured in Sol. With respect to 

Modelica, this is unfortunately not the case yet. 
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4. Conclusion 

Handling complexity in a convenient manner and 

organizing modeling knowledge in a proper form have 

always been primary motivations for the design of 

modeling languages. The introduction of object-oriented 

mechanism has yield to a remarkable success and 

drastically simplified the modeling of complex systems. 

Object-orientation essentially enabled the modeler to 

break models into different levels of abstraction. Hence, 

the knowledge could be organized with respect to depth. 

However, certain models combine many different 

aspects that have to be linked together at a top level. Here 

the knowledge needs to be organized with respect to 

breadth. For those tasks, current mechanisms in EOO-

languages are underdeveloped.  

This paper focuses on four conceptual language 

constructs for EOO-languages that in combination 

drastically increase the ability to deal with multiple 

aspects. These are: 

1. Environment-packages that enable the aspect-

specific declaration of interfaces. 

2. Anonymous declarations of model instances. 

3. Sections can be used to form semantic entities and 

control visibility. 

4. Referencing mechanisms between model-instances. 

(In Sol, these mechanisms are provided by giving 

model-instances a first class status and enabling so-

called member-models.) 

The proposed constructs have been implemented in our 

experimental language Sol and their application is 

demonstrated by a set of corresponding examples. The 

resulting advantages of this approach are manifold: 

• The methods how to address a potential environment 

are made available within the language. The modeler 

may browse through the provided functionalities like 

she or he is used to do it for standard libraries. 

• The existing object-oriented mechanisms can be 

applied on these environment-models. Hence the 

modeler can customize the interface for its personal 

demands and is not constrained to a predefined 

solution.  

• Anonymous declarations enable a convenient usage 

of these models, anywhere in the implementation. 

The resulting statements are naturally readable and 

integrate nicely into the primary, equation-based part. 

• User-defined sections help to organize the model and 

offer an excellent way to filter for certain modeling 

aspects. Uninteresting information may consequently 

be hidden without hindering the editing of the code. 

The filtering criteria are not based on syntax 

anymore, there are based on semantic entities that 

have been formed by the modelers themselves. 

Furthermore sections enable a clear separation of 

computer generated modeling code. 

 

• The embedment into an existing object-oriented 

framework enables a uniform approach for a wider 

range of modeling aspects. Furthermore, it increases 

the interoperability between these aspects. 

However, the most important conclusion is that the ability 

of the language to help and to extend itself by its own 

means has been drastically improved with respect to other 

languages like Modelica. Further development is now 

possible within the language does not require a constant 

update and growth of the language definition.  

Appendix 

The following listing of rules in extended Backus-Naur 

form (EBNF) presents an updated version of the core 

grammar for the Sol modeling language. The rules are 

ordered in a top-down manner listing the high-level 

constructs first and breaking them down into simpler 

ones. Non-terminal symbols start with a capital letter and 

are written in bold. Terminal symbols are written in small 

letters. Special terminal operator signs are marked by 

quotation-marks. Rules may wrap over several lines.  

The inserted modifications concern solely the 

modeling of multiple aspects. With respect to a prior 

version of the grammar [13], the changes are minor and 

concern only 3 rules: ModelSpec, Statement and Section. 

 
 

Listing 1: EBNF-Grammar of Sol 

 
Model = ModelSpec Id Header  
  [Interface] [Implemen] end Id ";" 
ModelSpec = [redefine | partial | environment]   

    (model | package | connector | record)  
 
Header  =  {Extension} {Define} {Model} 
Extension  =  extends Designator ";" 
Define  =  define (Const | Designator) as Id ";" 
 
Interface  =  interface ":" {(IDecl | ParDecl) ";"} {Model}     
ParDecl = parameter Decl 
IDecl =  [redelcare]  LinkSpec [IOSpec] [CSpec] Decl 
ConSpec = potential | flow  
IOSpec  =  in | out 
 
Implemen =  implementation ":" StmtList 
StmtList =  [Statement {";" Statement }] 
Statement  =  [ Section | Condition | Event |  
    Declaration | Relation ] 
 
Section = section Designator ":" StmtList end [section] 
Condition =  if Expression then StmtList ElseCond 
ElseCond  =  (else Condition) | ([else then StmtList] end [if])  
Event =  when Expression then StmtList  ElseEvent 
ElseEvent  =  (else Event)|([else then StmtList] end [when]  
Declaration = [redeclare] LinkSpec Decl 
LinkSpec  =  static | dynamic 
Decl  =  Designator Id [ParList] 
 
Relation  =  Expression Rhs 
Rhs  =  ("=" | "<<" | "<-")  Expression 
 
ParList  =  "{" [Designator Rhs {"," Designator Rhs }]  "}" 
InList  = "(" [Designator Rhs {"," Designator Rhs }]  ")" 
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Expression = Comparis {(and|or) Comparis }  
Comparis  = Term [("<"|"<="|"=="|"<>"|">="|">")Term]  
Term  =  Product {( "+" | "-" ) Product }  
Product  =  Power { ("*" | "/")  Power } 
Power =  SElement {"^" SElement }  
SElement =  [ "+" | "-" | not ] Element 
Element  =  Const | Designator [InList] [ParList]  
  | "(" Expression ")"   
 
Designator  = Id {"." Id } 
Id  =  Letter {Digit | Letter} 
Const =  Number | Text | true | false 
Number  =  ["+"|"-"] Digit { Digit }  
  ["." {Digit }] [e ["+"|"-"] Digit { Digit }]  
Text =  "\"" {any character} "\""  
Letter  =  "a" | ... | "z" | "A" | ... | "Z" | "_" 
Digit =  "0" | ... | "9" 
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Abstract
After 20 years since their birth, equation-oriented and
object-oriented modelling techniques and tools are now
mature, as far as solving simulation problems is concerned.
Conversely, there is still much to be done in order to pro-
vide more direct support for the design of advanced, model-
based control systems, starting from object-oriented plant
models. Following a brief review of the current state of
the art in this field, the paper presents some proposals for
future developments: open model exchange formats, auto-
matic model-order reduction techniques, automatic deriva-
tion of simplified transfer functions, automatic derivation
of LFT models, automatic generation of inverse models for
robotic systems, and support for nonlinear model predictive
control.

Keywords Control system design, symbolic manipula-
tion, model order reduction, CACSD.

1. Introduction
Control system engineering requires to master the dynam-
ics of plants which are in general complex, interacting,
multi-physics and multi-disciplinary. This explains why
object-oriented modelling (OOM) and a-causal, equation-
based, object-oriented languages (EOOL) always had a
very strong connection with control system design. It is
by no means accidental that much pioneering work in the
OOM field was carried out within systems and control
departments and research groups: consider, for example,
the Omola language and the associated OmSim simula-
tion environment, developed at the Department of Auto-
matic Control of Lund Technical University [29, 30, 4], or
the MOSES environment developed at the Dipartimento di
Elettronica of Politecnico di Milano [26, 9]. During the ’90,
OOM was considered a very promising tool for Computer
Aided Control System Design (CACSD), and there was a

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

lot of activity in this field, which eventually culminated in
the development of the Modelica Language [32].

At the beginning of that decade, papers appeared on the
subject in the IEEE’s Control Systems Magazine [31, 10],
which discussed the potential of OOM for control sys-
tem design. Reading those papers in retrospect shows that
some of the promises where actually met or even exceeded:
OOM is now a mature field, both from a theoretical side
and from the point of view of available simulation tools.
On the other hand, much work still has to be done on
two fronts. The first one, which has a more “political”
nature, is spreading the OOM culture among in the con-
trol engineering community, which is still largely domi-
nated by block-oriented modelling, and by the (mis)use of
Matlab/Simulink for physical systems modelling; this chal-
lenge is of paramount importance, but it out of the scope
of this paper. The second one, instead, is to develop tools
which allow to use EOOL models and tools not only for
simulation, but also for the design of advanced control sys-
tems. The availability of such tools is crucial in order to
narrow the gap between the large body of highly sophis-
ticated control theory developed during the last 20 years,
and the application of this theory to real-life cases, beyond
textbook-sized examples. This is the topic of the present
paper.

Given the background and the past experience of the
authors, the discussion might be biased towards the Mod-
elica language and related tools. However, strictly object-
oriented features such as inheritance, encapsulation and hi-
erarchical composition do not play any significant role in
the analysis and proposals made within this paper, which
essentially focuses on transformations of flattened models.
On the contrary, the discussion is relevant for any equation-
based modelling language, provided that it is a-causal and it
allows symbolic manipulation of the equations by the com-
piler.

The paper is structured as follows: Section 2 gives a
high-level view of the modelling activities required for con-
trol system design, while the following Section 3 discusses
how currently available tools can help the control engineer
in his/her task, with particular reference to Modelica tools.
Sections 4 and 5, which are the core of the paper, pro-
pose several research and development directions to sub-
stantially increase the level of support to the control en-
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gineer, willing to apply advanced control theory to real-life
problems. Section 6 concludes the paper with final remarks.

2. The role of mathematical models in
control system design

The design of control systems always requires some knowl-
edge about the dynamic behaviour of the plant under con-
trol. When the plant design is mature and well-known,
and the control system design is based on Proportional-
Integral-Derivative (PID) controllers, the latter is often
based on past experience and possibly on some empirical
measurements. In this case, which covers the vast majority
of installed industrial controllers, no (explicit) dynamical
modelling is needed.

On the other hand, in an increasing number of cases, the
performance of the control system is becoming a key com-
petitive factor for the success of innovative, high-tech sys-
tems. To name a few examples, consider high-performance
mechatronic systems (such as robots), vehicles enhanced
by active integrated stability, suspension, and braking con-
trol, aerospace system, advanced energy conversion sys-
tems. All these cases possess at least one of the following
features, which call for some kind of mathematical mod-
elling for the design of the control system:

• closed-loop performance critically depends on the dy-
namic behaviour, which is not well-known in advance;

• the system is complex, made of many closely interact-
ing subsystems, so that the behaviour of the whole sys-
tem is more than just the sum of its parts;

• advanced control systems are required to obtain com-
petitive performance, and these in turn depend on ex-
plicit mathematical models for their design;

• the system is very expensive and/or safety critical, re-
quiring extensive validation of good control perfor-
mance by simulation.

In most of these cases, two different classes of mathemati-
cal models are derived: compact models for control design
and detailed models for system simulation.

2.1 Compact models for control design
Models belonging to this class are directly used for con-
troller design, and are usually formulated in state-space
form:

ẋ(t) = f(x(t), u(t), p, t)
y(t) = g(x(t), u(t), p, t) (1)

where x is the vector of state variables, u is the vector of
system inputs (control variables and disturbances), y is the
vector of system outputs, p is the vector of parameters, and
t is the continuous time. A special case is that of linear,
time-invariant models (LTI), which can be described as:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t) (2)

or, equivalently, as a transfer function:

G(s) = C(sI −A)−1B +D. (3)

In many cases, the dynamics of systems in the form (1) is
approximated by (2) via linearization around some equilib-
rium point. There is also a vast body of advanced control
techniques which are based on discrete-time models:

x(k + 1) = f(x(k), u(k), p, k)
y(k) = g(x(k), u(k), p, k) (4)

where the integer time step k usually corresponds to the
sampling time Ts of a digital control system. Many tech-
niques are available to transform (1) into (4).

These models must capture the fundamental dynamics
which is relevant for control system performance, while
remaining as simple as possible: most advanced control
design techniques start to become intractable for systems
of order greater than about ten. If the models are simple
enough, it is also sometimes possible to express the de-
pendence of key dynamic features (such as, e.g., the natu-
ral frequency and damping coefficient of an oscillating dy-
namics) from plant design data. This can be very important
to assess the impact of physical system design decisions
on controller performance. For example, if the natural fre-
quency of the first mode of oscillation limits the controller
bandwidth, and it is found that this frequency mainly de-
pends on the stiffness of a certain mechanical component,
then it might be reasonable to change the mechanical de-
sign of that component in order to improve the overall per-
formance.

In order to derive such simple models, it is usually
necessary to introduce many, sometimes drastic, simplify-
ing assumptions: all those phenomena that only marginally
affect the equilibrium values and/or the control-relevant
dynamics of the system are neglected. This activity re-
quires highly skilled and experienced modellers, with a
good knowledge of control design techniques, as well as
of domain-specific strategies for model simplification.

2.2 Detailed models for system simulation
At the other end of the modelling spectrum, detailed sim-
ulation models can be found. Although it is always neces-
sary to make reasonable modelling assumptions (a model
is always a focused and limited description of the physi-
cal world), simulation models can include a lot more detail
and second-order effects, since modern CPUs and simula-
tion environments can easily handle complex systems with
(tens of) thousands of variables. It is well-known that OOM
methodologies and EOOLs provide very good support for
the development of such models, thanks to equation-based
modelling, a-causal physical ports, aggregation and inher-
itance. If the OOM model does not contain discrete vari-
ables and events, then it is basically equivalent to the set of
DAEs:

F (x(t), ẋ(t), u(t), y(t), p, t) = 0 (5)

Many EOOLs and tools also allow to describe hybrid sys-
tems, with discrete variables, conditional equations or ex-
pressions, and events. For example, see [7, 8] and refer-
ences therein for hybrid system descriptions based on hy-
brid automata, or the Modelica language specification [41],
in particular Appendix C. Although hybrid system control
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is an interesting and emerging field, for the sake of concise-
ness this paper will focus on purely continuous-time phys-
ical models, with application to the design of continuous-
time or sampled-time control systems.

These larger, more detailed models play a double role,
with respect to those described in the previous sub-section.
On one hand they allow to check how good (or crude) the
compact models is, compared to a more detailed descrip-
tion, thus helping to develop good compact models. On
the other hand, they allow to check the closed-loop perfor-
mance of the controlled system, once a controller design is
available. It is in fact well-known that validating the closed-
loop performance using the same simplified model that was
used for control system design is not a sound practice; con-
versely, validation performed with a more detailed model is
usually deemed a good indicator of the control system per-
formance, whenever experimental validation is not possible
for some reason.

3. Overview of current CACSD practice
with EOOLs

As of today, the practising control engineer already gets
much support from EOOL-based tools for his/her control
system design activities.

3.1 Support to control system synthesis
A typical starting point for the design of the control system
is the analysis of the linearized dynamics of the plant,
around one (or more) steady-state operating conditions.
If the EOOL tool only supports simulation, then one can
run open-loop simulations of the plant model, subject to
step or to, e.g., pseudo-random binary sequence inputs,
and then reconstruct the dynamics by system identification
procedures.

A more direct approach, supported by many tools, is to
directly compute the A,B,C,D matrices of the linearized
system around specified equilibrium points, using symbolic
and/or numerical techniques. The result is usually a high-
order linear system, which can then be reduced to a low-
order system by standard techniques for linear model order
reduction, such as, e.g., balanced truncation.

A non-trivial issue with both approaches is the compu-
tation of the equilibrium point (what is sometimes called
DC analysis in the field of electrical circuit simulation). In
a typical setting, the desired steady-state values of the out-
puts ȳ are known, and the tool must solve the steady-state
initialization problem for the system (5):

F (x̄, 0, ū, ȳ, p, 0) = 0 (6)

in order to find out the corresponding equilibrium values
of the inputs ū and of the states x̄. This problem can be
numerically challenging, because it often requires solving
large systems of coupled nonlinear equations by iterative
methods, which might fail if the iteration variables are not
properly initialized. Currently available OOM tools (and,
in particular, Modelica tools) are still far from providing
general robust solutions to this problem. A sub-optimal
approach to find equilibrium points is to initialize system

(5) by giving tentative initial values to the state variables
(which makes the initialization problem easier to solve)
and then to simulate it until it reaches a steady state. If the
system is asymptotically stable and the inputs ū are known,
this is relatively straightforward; otherwise, it is necessary
to add suitable feedback controllers to drive the outputs to
the desired values ȳ and/or to stabilize the system. In both
cases, the simulation of this initialization transient might
fail for numerical reasons before reaching the steady state,
due to a bad choice of the initial states.

3.2 Closed-loop performance assessment by
simulation

Regardless of the actual design methodology, once the con-
troller has been set up, an OOM tool can be used to run
closed-loop simulations, including both the plant and the
controller model. Many OOM tools provide model export
facilities, which allow to connect an OO plant model with
only causal external connectors (actuator inputs and sensor
outputs) to a causal controller model in a causal simulation
environment. From a mathematical point of view, this cor-
responds to reformulating (5) in state space form (1), by
means of analytical and/or numerical transformations.

3.3 Development of simplified models
The object-oriented approach, and in particular replaceable
components, allows to define and manage families of mod-
els of the same plant with different levels of complexity,
by providing more or less detailed implementations of the
same abstract interfaces. For example, consider a heat ex-
changer model: the abstract interface has four fluid connec-
tors, two for the hot fluid inlet and outlet, and two for the
cold fluid inlet and outlet. The corresponding implementa-
tion might range from a very simple static model based on
log-mean temperatures, with a few algebraic equations, up
to a very detailed finite volume model using nonlinear fluid
properties and empirical correlations for heat transfer, and
with dozens of state variables and a few hundred algebraic
equations.

This feature of OOM allows to develop simulation mod-
els with different degrees of detail (and CPU load) through-
out the entire life of an engineering project, from prelimi-
nary design down to commissioning and personnel train-
ing, within a coherent framework. However, this activity is
based on manual work by the modeller, who needs to de-
velop the different implementations explicitly. Moreover, it
is often not easy to obtain compact models such as (1), be-
cause this requires to apply simplifications that may not fit
well the abstract component boundaries.

3.4 Generation of real-time simulation code
An important step in the development of embedded control
systems is Hardware-In-the-Loop simulation (HIL), where
the real control hardware is tested by connecting it to a real-
time simulator, instead of the real plant. Many currently
available EOOL-based tools support automatic generation
of efficient real time code starting from fairly large simu-
lation models in the form (5). A common strategy for this
purpose is to apply inline integration [12, 11] to (5), i.e. to
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substitute the derivatives with their approximation formu-
lae (e.g. Euler’s formula), and then solve the system using
all available numerical and symbolic techniques.

In order to provide real-time code which is fast enough,
it is usually important to reduce the model complexity with
respect to off-line simulation models - this can be done by
following the approach sketched in Section 3.3.

3.5 Optimization
Some EOOL and tools support some kind of optimization,
which might be useful for control system design. For ex-
ample, the gPROMS language [6] has allowed to declare
mixed-integer nonlinear optimization problems for a long
time. More recently, extensions to the Modelica language
were proposed to formulate optimization problems [2].

3.6 Future perspectives
It is the authors’ view that EOOL-based tools should sup-
port advanced control system design problems in a much
more direct way, by making extensive use of control-
oriented symbolic manipulation techniques. Ideally, it
would be good if the control engineer could develop a de-
tailed simulation model by using object oriented tools and
re-usable model libraries, then automatically obtain sim-
plified, compact models which are already formulated as
required by the specific control technique. The availability
of such tools might promote the application of advanced,
model-based techniques that are currently limited by the
model development process.

Being aware that this is a very long-term goal, which
might even require some kind of artificial intelligence,
some first steps in this direction are discussed in the fol-
lowing sections, with particular reference to the Modelica
language and Modelica compliant tools.

4. Basic enabling technologies
The advanced, control-oriented features of future EOOL
tools need some basic enabling technologies and method-
ologies to build upon. These are briefly discussed in this
section.

4.1 Open standards for model and data exchange
Advanced applications of OOM to control system design
will most likely require to use different specialized tools
in a coordinated fashion, rather than relying on one-fits-
all comprehensive software tools. In fact, during the last
decades, the number and the quality of simulation, design
and analysis tools has increased enormously: there is plenty
of open and closed source software for the simulation of
physical systems, control synthesis, data analysis, test, val-
idation, personnel training via a graphical user interface,
etc. Some of these tools are developed for specific pur-
poses, while other are more general in scope (e.g., sym-
bolic manipulation tools, differential equation solvers, data
analysis packages). Unfortunately, all this software devel-
opment activity did not follow any standardisation process,
leading to a great diversity in the representation of the in-
formation. The definition of standard interfaces will be use-
ful for the information exchange between different applica-

tions; as a consequence, by providing a representation for
all the stages of the model manipulation (starting from the
translation, going to the flattening, to the model order re-
duction and so forth) it will be possible to make all the ap-
plications interact at different levels, thus combining posi-
tive effects from different applications and obtaining better
results.

Exchange formats for model equations and for simula-
tion data should probably be based on the XML language,
for several reasons:

• the tree structure of XML documents easily allows to
represent complex data structures, including symbolic
representations of equations;

• XML documents can be read with standard text-editors
and browsers, thus avoiding all the problem usually
raised by obscure, ad-hoc binary formats;

• there exists a large base of software (open source and
commercial) for the handling of XML files;

• by re-using this existing software, it is quite straight-
forward to translate an XML document representing a
mathematical model into any other equation-based lan-
guage, and vice-versa;

• binary XML formats can be used to reduce the verbosity
of XML documents and the cost of parsing them;

• there exist some languages (e.g. DTD and XSD) to
formally specify the structure of the information the
XML file must contain.

Such standard interfaces for flattened Modelica models
and their corresponding simulation data are currently being
investigated at Politecnico di Milano using the OpenMod-
elica compiler [16, 1] as a host EOOL environment, and
symbolic manipulation tools such as Mathematica, Maple
or Maxima as target environments. If the model is purely
continuous-time, i. e., it is equivalent to the DAE (5), then
MathML [42] on one side, and ModelicaXML [35] on the
other side might constitute good starting points. If hybrid
models are considered, one may consider all the languages
developed for the description of hybrid automata in re-
cent years [8], even though the class of hybrid systems
which can be described in Modelica with when statements
is larger than just hybrid automata.

4.2 Model Order Reduction
Another key enabling technology is represented by mixed
numerical-symbolic Model Order Reduction (MOR) tech-
niques. These have already been successfully applied to the
analysis of electrical circuit models, which are based on
DAE models such as (5), see [40, 17], and are currently
available in commercial tools such as Analog Insydes [13].
The MOR strategies are based on the clever application of
three fundamental steps:

• specify an allowed error bound, e.g. in terms of per-
centage error of certain steady-state output values cor-
responding to given constant inputs, or in terms of max-
imum deviation of some outputs from a reference tra-
jectory obtained with given input signals, or in terms
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of maximum error of small-signal frequency responses
around a certain operating point and within a given fre-
quency interval;

• derive a ranking of all terms in all equations, expressing
how much each term has a significant effect on the
required modelling accuracy;

• remove all terms in ascending order, until the specified
error bound is reached.

Other MOR techniques exist to reduce large linear sys-
tems, based on concepts such as modal analysis and pro-
jection methods; see [38] for a comprehensive overview.

The application of such MOR tools and techniques, pos-
sibly with extended functionality and algorithms, looks
very promising not only for the simplification of electrical
circuit models, but also for the order reduction of generic,
nonlinear DAE models, obtained from the flattening of
generic EOOL models. This kind of techniques should al-
low to automatically obtain approximated compact models
such as (1), starting from much more detailed simulation
models, by formulating specific approximation bounds in
control-relevant terms (e.g., percentage errors of steady-
state output values, norm-bounded additive or multiplica-
tive errors of weighted transfer functions, or `∞-norm er-
rors of output transients in response to specified input sig-
nals). Given the ever-increasing computation power that
can be expected by Moore’s law, the future of these tech-
niques for CACSD applications definitely appears bright.

4.3 Reliable steady-state initialization and static
model inversion

A reliable support to the control engineer’s activity requires
to improve the techniques to solve the steady-state equa-
tions (6), which are usually the starting point for any kind
of analysis, including MOR. As pointed out earlier, solv-
ing (6) requires iterative methods which might fail if not
properly initialized. Troubleshooting can be very frustrat-
ing and time-consuming, and calls for experts of both sim-
ulation methods and domain-specific models. This is not
acceptable in the envisioned framework, which is based on
automatic manipulation by EOOL tools.

One option, which is currently being investigated at Po-
litecnico, is to introduce extensions to the Modelica lan-
guage to support homotopy methods, in a way similar to
the approach followed by the SPICE circuit simulation pro-
gram. The basic idea is that each model has two versions:
the “easy” one, for which it is easier to find a steady-
state solutions, and the “true” version, which is the model
to be actually used for simulation. The two models share
the same variables, but use different equations. The system
model obtained by the aggregation of the “easy” models is
represented by

Fe(x, ẋ, y, u, p, t) = 0, (7)

while the aggregation of the “true” models leads to

Ft(x, ẋ, y, u, p, t) = 0, (8)

The idea is now to first solve the initialization problem
for (7), which should not give rise to significant numerical

problems. The solution to this simplified problem consti-
tutes the first guess for a new problem:

(1−α)Fe(x̄, 0, ū, ȳ, p, 0) +αFt(x̄, 0, ū, ȳ, p, 0) = 0, (9)

which will be solved by varying α from 0 to 1 in small
steps, eventually finding the steady-state solution of system
(8). In general, this approach should help to reduce (and
hopefully eliminate) the need to manually set initial guess
values for iteration variables of initialization problems.

5. New functionalities for control system
design

5.1 Simplified symbolic transfer functions
In many interesting cases, the performance of the control
system is limited by the dynamic behaviour of the con-
trolled plant. For example, poorly damped oscillations can
limit the bandwidth of motion control systems, as well as
non-minimum phase behaviour. The control engineer can
gain a lot of useful insight from approximated transfer
functions, where the dependence of the critical dynamic
features from a few physical parameters is clearly visible.
For instance, the natural frequency of a pair of complex
poles in a mechanical system might depend mainly on the
stiffness and on the mass of a certain physical component,
or, the time constant of a right-half-plan zero in a fluid sys-
tem might depend on the fluid velocity in a certain point.

This is a first case where automatic MOR techniques
could prove extremely useful. Ideally, the user should spec-
ify the steady-state operating point, the relevant inputs and
outputs, and some frequency-weighted error bounds, and
get low-order approximated transfer functions of the lin-
earized system, with approximated but explicit dependence
of the transfer function features (gains, poles and zeros)
from the physical model parameters. A suitable combina-
tion of EOOL tools (equipped with model import/export
interfaces) with existing MOR tools like Analog Insydes
[13] could provide very interesting results in this direction
without too much effort.

5.2 Automatic derivation of LFT models
Once a model has been reduced to a low-order state-space
form by the combined application of symbolic MOR tech-
niques and clever model simplifications as explained in
Section 3.3, it might be useful to automatically bring them
in the form required for advanced control system design,
using symbolic manipulation tools. Modern control theory
provides methods and tools in order to deal with design
problems in which stability and performance have to be
guaranteed also in the presence of model uncertainty, both
for regulation around a specified operating point and for
gain scheduled control system design.

Most of the existing control design literature assumes
that the plant model is given in the form of a Linear Frac-
tional Transformation (LFT) (see, e.g., [46, 27]), a mod-
elling paradigm which is currently an active research topic
in the control engineering and system identification com-
munities. In the robust control framework LFT models con-
sist of a feedback interconnection between a nominal LTI
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plant and a (usually norm-bounded) operator which rep-
resents model uncertainties, e. g., poorly known or time-
varying parameters, nonlinearities, etc. A generic such LFT
interconnection is depicted in Figure 1, where the nominal
plant is denoted with P and the uncertainty block is de-
noted with ∆. Note that this representation is extremely
general, and by no means limited to uncertain LTI systems;
in fact, it is possible to describe any nonlinear DAE system
by putting all the nonlinear functions in the ∆ block and
by providing an LTI model with direct feedthrough terms
to describe the algebraic equations.

LFT models can be used for the design of robust and
gain scheduling controllers, but they can also serve as a
basis for structured model identification techniques, where
the uncertain parameters that appear in the feedback blocks
are estimated based on input/output data sequences.

The process of extracting uncertain parameters from the
design model of the system to be controlled is a highly
complex one. Symbolic techniques play a very important
role in this process: the main use for such techniques is
to find, via suitable pre-processing steps, equivalent rep-
resentations of rationally dependent parametric matrices,
which automatically lead to lower-order LFT representa-
tions. Tools already exist to perform this task [27].

The LFT modelling problem in its simplest form is as-
sociated with the problem of designing a controller for op-
eration near a nominal operating point for the system. The
problem is then formulated on a local linearised represen-
tation of the plant to be controlled and is familiarly termed
“pulling out the ∆s”, i.e., it consists of manually or sym-
bolically manipulating the linearised equations in order to
separate the nominal part of the plant from the uncertain
one, arranging them in a suitable feedback interconnection.
This reformulation of the plant model lies at the vary basis
of modern robust control theory and is currently supported
by a number of different symbolic manipulation tools. A
recent overview of the state-of-the-art in this research area
can be found in [18]. As an example, consider a time-
invariant, nonlinear state-space system in the form

ẋ(t) = f(x(t), u(t), p)
y(t) = g(x(t), u(t), p), (10)

where p denotes a vector of uncertain parameters, and as-
sume that the equilibrium condition x̄, ū, ȳ, which solves
the steady-state equations

0 = f(x̄, ū, p)
ȳ = g(x̄, ū, p) (11)

P

∆

u
u
u
u

u y

Figure 1. Block diagram of the typical LFT interconnec-
tion adopted in the robust control framework.

is available. Defining now the deviation variables

δx(t) = x(t)− x̄ (12)
δu(t) = u(t)− ū (13)
δy(t) = y(t)− ȳ, (14)

it is possible to approximate the dynamics of (10) with a
the following linear, parameter-dependent system

˙δx(t) = A(p)δx+B(p)δu
δy(t) = C(p)δx+D(p)δu

, (15)

where the four matricesA,B,C,D are the Jacobians of the
two functions f and g:

A(p) =
∂f

∂x
, B(p) = ∂f

∂u

C(p) =
∂g

∂x
, D(p) = ∂g

∂u .

Under suitable assumptions (such as that the state space
matrices are polynomial or rational functions of the ele-
ments of p, see, e.g., [46]) it is possible to transform the
system description (15) into an LFT representation (see,
again, Figure 1). As mentioned previously, converting (15)
into an LFT with a ∆ block of minimum dimension is a
non-trivial symbolic manipulation problem.

An even more challenging formulation of the LFT mod-
elling problem is the one of simultaneously representing in
LFT form all the linearisations of interest for control pur-
poses of the given nonlinear plant. Indeed, in many control
engineering applications a single control system must be
designed to guarantee the satisfactory closed-loop opera-
tion of a given plant in many different operating conditions
in the presence of parametric and possibly non parametric
uncertainty. The gain scheduling approach to the problem,
which has been part of the engineering practice for decades,
can be roughly summarised as follows: find one or more
scheduling variables α which can completely parametrise
the operating space of interest (e.g., the flight envelope in
the case of aircraft control) for the system to be controlled;
define a parametric family of linearised models for the plant
associated with the set of operating points of interest; fi-
nally, design a parametric controller which can both en-
sure the desired control objectives in each operating point
and an acceptable behaviour during (slow) transients be-
tween one operating condition and the other. Many design
techniques are now available for this problem (see, e.g.,
[5, 22, 37]), which can be reliably solved, provided that
a suitable model in parameter-dependent form has been de-
rived for the system to be controlled. The goal here would
be to arrive at a representation of the dynamics of the non-
linear system in the form depicted in Figure 2, which is
usually denoted as an LPV-LFT system, where the LPV
acronym stands for Linear Parameter-Varying. The model
structure now includes two feedback interconnections: the
block ∆(p) takes into account the presence of the uncertain
parameter vector p, while the block Θ(α) models the effect
of the varying operating point, parametrised by the vector
of time-varying parameters α.
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The state-of-the-art of modelling for gain scheduling
can be briefly summarised by defining two classes of mod-
elling approaches: analytical methods based on the avail-
ability of (relatively) reliable nonlinear equations for the
dynamics of the plant, from which suitable control-oriented
representations can be derived (see, e.g., [28] and the ref-
erences therein); experimental methods based entirely on
identification, i.e., aiming at deriving LPV models for the
plant directly from input/output data (see, among many
others, [21, 45, 23]). The methods belonging to the first
class aim at developing LPV models for the plant to be
controlled by resorting to, broadly speaking, suitable ex-
tensions of the familiar notion of linearisation, developed
in order to take into account off-equilibrium operation of
the system. As far as experimental methods are concerned,
most LPV identification techniques are based on the as-
sumption that the identification procedure can rely on one
global identification experiment in which both the control
input and the scheduling variables are (persistently) excited
in a simultaneous way. This assumption may not be a rea-
sonable one in many applications, in which it would be
desirable to try and derive a parameter-dependent model
on the basis of local experiments only, i.e., experiments in
which the scheduling variable is held constant and only the
control input is excited. Such a viewpoint has been consid-
ered in [43, 34, 23], where numerical procedures for the
construction of parametric models for gain scheduling on
the basis of local experiments and for the interpolation of
local controllers have been proposed.

To our best knowledge the only documented attempt at
deriving control-oriented LFT models automatically from
a nonlinear simulator is presented in [44], where the fo-
cus was on the automatic generation of LFT models for
aerospace applications. Much remains to be done. An
EOOL-based CACSD tool dealing with the generation of
control-oriented LFT models should allow to specify some
error bounds for the system approximation (with respect to
steady-state, transient, and frequency response), the choice
of input, output and scheduling variables, and the choice of
parameters to include in the LFT representation. Based on
that, it should be able to automatically compute the struc-
ture of the interconnections defined in Figures 1 and 2 for
the robust and gain-scheduling control design problems,
respectively, the state-space matrices of the nominal part P
of the model (either as analytical expressions, if possible,
or at least as algorithms for their computation) and analyt-

P

Θ(α)

∆(p)

u
u
u
u

u y

Figure 2. Block diagram of the typical LFT interconnec-
tion adopted in the robust LPV control framework.

ical or algorithmic representations of the feedback blocks
Θ(α) and ∆(p). Finally, it is apparent from the short liter-
ature review presented above that currently only physical
and black-box modelling methods are available, while no
general purpose CACSD tools capable of combining first
principles models and experimental data in a single control-
oriented model seem to exist. The convergence of the two
modelling approaches both in terms of methods and tools
would be a very desirable outcome of the research in this
field.

5.3 Automatic computation of inverse models for
robotic systems

The design of controllers for non-redundant robotic ma-
nipulators with N degrees of freedom usually starts from
the equations of motion obtained from the Euler-Lagrange
equations [39]:

B(q)q̈ +H(q, q̇)q̇ + g(q) = τ (16)
yp = K(q) (17)

yv =
∂K

∂q
q̇, (18)

where q is the N -element vector of Lagrangian coordi-
nates, which usually correspond to the rotation angles of
the actuator motors, q̇ is the vector of the corresponding
generalized velocities, yp describes the position and ori-
entation vector of the end effector, yv contains the corre-
sponding generalized velocities, τ is the vector of general-
ized applied forces corresponding to each degree of free-
dom (usually the torques applied by rotating actuators),
B(q) is the inertia matrix,H(q, q̇) is the matrix correspond-
ing to the centripetal, Coriolis, and viscous friction forces,
while the vector g(q) accounts for the effects of the gravi-
tational field; all vectors have dimension N .

The classical approach to write (16) requires to compute
the so-called direct kinematics (DK), i.e. how the values of
q and q̇ translate into the position and motion of the robot’s
end effector, then to compute the Lagrange function, i.e. the
difference between kinetic and potential energy, and apply
the Euler-Lagrange equations. This can be done manually,
or using one of the specialized tools available for this task.
Equations (16)-(18) can then be used as a basis for both
controller design and system simulation.

Within an OOM approach, it is possible to save much
time by developing an object-oriented model using an
EOOL, e.g. using the Modelica MultiBody library [33].
Due to the kinematic constraints imposed by the joints, the
original flattened model corresponds to an index-3 DAE,

F (x, ẋ, y, u) = 0, (19)

which is mathematically equivalent to the Lagrange model
(16)-(18).

Currently available Modelica tools tackle the prob-
lem by applying specialized algorithms, which exploit the
knowledge of the topology of the kinematic chain, as well
as standard techniques such as BLT partitioning, tearing,
dummy derivatives and symbolic solution of equations
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Figure 3. Block diagram of computed torque control

[33]. From a conceptual point of view, a change of state
variables x allows to transform (19) into an index-1 system

F1(x, ẋ, y, u) = 0, (20)

where

x =
[
xp

xv

]
=

[
q
q̇

]
, y =

[
yp

yv

]
, u = τ. (21)

Eventually, efficient procedures are produced to solve (20)
for ẋ and y given x and u, thus actually bringing the system
into state-space form:

ẋ = f(x, u)
y = g(x, u). (22)

This formulation can be used to solve simulation problems,
by linking it to any ODE/DAE solver. However, there are
several other interesting things that could be done with
(20), from a control engineer’s perspective.

Robot trajectories are originally defined in terms of
end effector coordinates as functions of time y0

p(t). In or-
der to obtain the corresponding reference trajectories in
Lagrangian coordinates for the low-level robot joint con-
trollers, (17)-(18) must be solved for q, q̇, thus computing
the so-called inverse kinematics (IK):

q0 = K−1(y0
p) (23)

q̇0 =
(
∂K

∂q

)−1

y0
v ; (24)

note that the Jacobian of K(q) is also needed to solve
(23), since analytical inverses cannot usually be obtained.
Furthermore, two interesting approaches to model-based
robot control are based on suitable manipulations of eq.
(16): the pre-computed torque approach and the inverse
dynamics approach [39].

The pre-computed torque approach is a feed-forward
compensation scheme, where the theoretical torque re-
quired to follow the reference trajectory is directly fed to
the torque actuators (see Fig. 3) in order to obtain a good
dynamic response to the set point y0

p. The CT block per-
forms this task by solving (16) for τ , given the reference
trajectory and its derivatives:

τ = B(q0)q̈0 +H(q0, q̇0)q̇0 + g(q0). (25)

A feedback controller (FC) is also included to deal with
uncertainties and disturbances.

The inverse dynamics approach is a feedback compen-
sation scheme, that uses the model in order to transform

IK

u
u
u
u

DI Rv
q
q.

yp τFC
q0

Figure 4. Block diagram of inverse dynamics control

the non-linear control problem into a linear, time-invariant
one. Define a virtual input variable v, which satisfies the
following equation

τ = B(q)v +H(q, q̇)q̇ + g(q). (26)

Since the inertia matrix B is structurally non-singular, it is
always possible to solve (26) for v:

v = B−1(q) (τ −H(q, q̇)q̇ − g(q)) . (27)

Plugging v in the robot dynamics equation (16), one ob-
tains:

q̈ = v. (28)

The block diagram interpretation of these equations is
shown in Fig 4: thanks to the dynamic inversion (DI) block,
the dynamic relationship between the virtual input v and
the Lagrangian positions and velocities q and q̇ (repre-
sented by the dotted block) is now described by a simple
integrator and a double integrator, respectively. It is then
easy to tune a fixed-parameter, linear feedback controller
(FC) in order to obtain the desired closed-loop dynamics.

Starting from the index-1 DAE robot model (20), it is
straightforward to derive the equations and then the explicit
algorithms to compute the DK, IK, CT, and DI, by using the
same techniques employed to bring (20) into state-space
form. The DK (17)-(18) is obtained by solving (20) for yp

(and possibly yv) given q (and possibly q̇), while the IK is
obtained by solving (20) for q (and possibly q̇) given yp

(and possibly yv); the subset of required equations is found
by suitable analysis of the incidence matrix. The CT (25) is
obtained by solving (20) for τ given q, q̇, and q̈. Finally,
the DI (26) is obtained by solving (20) augmented with
(26) for τ given v, q, and q̇. EOOL tools should then be
able to automatically generate the code corresponding to
the DK, IK, CT, and DI blocks in two forms: as algorithms
to compute the outputs given the inputs (e.g., C code for
direct inclusion in the robot controller), as well as equation-
based Modelica blocks, which could be used for closed-
loop simulation within a Modelica environment.

As a final remark, note that the method of inverse dy-
namics is a special case of the much more general theory
of feedback linearization [20], whose goal is to obtain a LTI
dynamics made by pure integrators from generic nonlinear
systems, by applying suitable feedback actions as shown
in Figure 4. It could also be interesting to investigate the
coupling between EOOL tools and symbolic manipulation
tools for the design of such controllers.
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5.4 Fast and compact models for Model Predictive
Control

The Model Predictive Control (MPC) approach [25, 36] is
based on a few key ideas, that turn the control problem into
an optimization problem. The control variable is a discrete-
time variable, that changes periodically every Ts seconds:

u(t) = u(k), kTs ≤ t < (k + 1)Ts. (29)

At each time step k, an optimization problem is solved,
whose unknowns are the next values of the control variable
u(k + i) over a finite horizon 1 ≤ i ≤ N . The first sample
u(k + 1) is then applied to the actuators at the next time
step, the rest of the values are discarded, and the process
is repeated over and over, thus implementing a receding
horizon strategy.

There are different ways to formulate the MPC prob-
lem, depending on the specific technique used to solve the
problem. Generally speaking, the figure of merit to be min-
imized is a quadratic function, which suitably weights the
future deviations of the controlled variables from the set
point and the intensity of the control action, as well as any
other problem-specific performance index that has to be
minimized, e.g. the financial cost of running the process.
The constraints of the optimization problem are the dy-
namic relationship between the input and output variables,
typically in the form (4), and possibly other constraints,
such as upper and lower bounds of the state, control and
output variables and of their rate of change.

The main advantage of MPC is its intrinsic ability to
deal with highly interacting multivariable systems (many
control inputs and controlled outputs), while keeping into
account operating constraints such as actuator saturations
or hard bounds on controlled variables, and at the same
time meeting some problem-specific optimality criterion.
The main drawback is the high computational load, since
a (possibly non-linear and non-convex) constrained opti-
mization problem must be solved at each sampling time;
this makes MPC suitable for systems with slow dynamics,
e. g. chemical plants, where there is plenty of time to carry
out the required computations in real time. This limitation
is likely to become less and less stringent in the future,
thanks to Moore’s law.

The second issue is the requirement that a suitable plant
model is available, as the control system performance criti-
cally depends on the model quality. Models for linear MPC
can be obtained either by linearization of analytical models,
or by system identification from experimental and/or simu-
lation data, e. g. step responses; both cases are already sup-
ported by current EOOL tools. Nonlinear MPC (NMPC)
algorithms are preferably based upon analytical models in
state-space form (1), which are derived from physical first-
principles models. The conversion to discrete-time form (4)
is often performed internally by the NMPC algorithm it-
self, by standard ODE integration routines. This means that
the interface between the EOOL tool and the NMPC tool
is similar to the one used for simulation problems, i.e. the
state-space form (1), possibly augmented by the Jacobians
of the right-hand-sides of (1).

The main requirement for NMPC-oriented models is
that they must have the least possible number of state and
algebraic variables, in order to keep the complexity of the
optimization problem within acceptable limits, and that
they have good smoothness properties, in order to avoid
convergence problems of the iterative optimization algo-
rithms. The development of those models can be very time
consuming, and require highly skilled manpower; it is ap-
parent how better tool support could be extremely useful in
order to reduce the development effort and cost.

The potential of OOM for MPC was first noted by Ma-
ciejowski at the end of the ’90 [24]. There are several re-
ported case studies [14, 15, 3, 19], where the model used in
the NMPC algorithm was derived from a Modelica model
of the physical plant, using the tool Dymola to produce
the code corresponding to the state-space form (1), i.e., the
dsmodel.c code that is usually linked to ODE/DAE solvers.
In order to derive suitably simplified models, the features
of Modelica discussed in Section 3.3 have been extensively
exploited. In general, this approach has proven much more
satisfactory than writing the C-code of the model from
scratch; however, it still requires a substantial investment
of time and effort for each new application.

The application of the automatic MOR techniques de-
scribed in section 4, possibly still combined with some
manual intervention in terms of replaceable models, looks
very promising in order to bring detailed simulation mod-
els into a form which is suitable for NMPC with a much
more limited effort by the developer.

Furthermore, [19] correctly points out that, although
the interface to NMPC algorithms is very similar to the
interface to ODE/DAE solvers, the former requires some
more flexibility. For example, advanced NMPC schemes
can provide on-line estimation of uncertain parameters
through the use of extended or unscented Kalman filters.
This means that some model parameters are no longer con-
stant throughout a transient, so that the C-code obtained
for simulation purposes must be manually adapted. A bet-
ter option would be to implement a code export interface
which makes it possible to turn selected parameters ap-
pearing in (5) (which are going to be estimated on-line)
into inputs, before transforming the system in state-space
form (1).

6. Conclusions
After a brief review of the different uses of models in con-
trol system design, the current state of the art of EOOL-
based tools for CACSD has been reviewed: apparently, cur-
rently available tools mainly focus on simulation tasks.
Several further directions for research and development
in EOOL tools where then discussed, which go beyond
the mere simulation problem. Results in these directions
could substantially improve the level of support to the con-
trol engineer willing to apply advanced, model-based con-
trol techniques to real-life problems, starting from object-
oriented models of the plant.
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Abstract
With the introduction of the new Modelica major version
3, innovations mainly consist of further model restrictions
for increased model quality. In addition, developers of-
ten want to ensure the compliance to further requirements
early in the development cycle. Mostly emerging as domain
specific conventions that often crosscut model structures,
according checking mechanisms are required that are de-
tached from the core language. In this paper, a declarative
language is presented for specifying and evaluating quan-
tified rules for static model properties. Based on aspect-
oriented programming, the language allows for concise
and expressive model inspections and a variable and typ-
ing concept facilitate subsequent model manipulations. A
nascent implementation framework is proposed, based on
the logic meta programming paradigm, thus leading to ef-
ficient and scalable aspect processing applicable as model
query engine for an AOP Modelica Compiler.

Keywords Early Checking, Aspect Orientation, Modelica
Model Inspection

1. Introduction
The Modelica description standard [2] proposes a mod-
ern multi-discipline language for component-based mathe-
matical modeling and simulation of complex physical sys-
tems (see e.g. [12, 21]). Its equation-based, object-oriented,
and declarative nature allows for hierarchical specification
of system structure and behavior and smooth integration,
evolution and reuse of developed components. The inno-
vations of the version 3 of the Modelica Specification [2]
mainly constitute further restrictions, e.g. the locally bal-
anced model property [17], hence aiming at design rules
for increased model quality.

Moreover, modeling follows established practices ac-
cording to a substantial set of rules and properties. General-
izing, a developer wants to be able to specify, maintain, and
analyze arbitrary structural model properties accompany-
ing all development phases. A multitude of requirements,
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especially non-behavioral quality properties and proper-
ties not evident in testing cannot be adequately expressed
solely using language constructs of Modelica as they ex-
ceed the expressiveness of object-oriented principles. As
an example, the locations within a model to be considered
for checking design policies such as

"For clarity reasons, inheritance hierarchies deeper
than 4 are to be avoided"

are scattered throughout the code, i.e. the formulation
of such a demand crosses model composition hierarchies.
Also the balanced model concept of Modelica 3 [17] con-
sists of a set of entangled demands, e.g.

"The number of flow variables in a connector must be
identical to the number of non-causal non-flow variables"

which correlates properties of connectors.
Besides, design criteria considering chains of several

models/connectors might be of interest, as well as further
coding conventions such as correct library usage, domain
specific patterns, and simple naming conventions, e.g.

"Flow variables shall be named with a flow postfix"
Therefore, an overall mechanism is desirable for ex-

pressing, modularizing, and finally ensuring compliance
with especially application-domain specific design rules
and patterns. Allowing for arbitrary model inspection with
respect to those requirements, certain kinds of errors can
be avoided from the start. For this purpose, aspect-oriented
programming (AOP) offers a promising approach: Super-
posing the object-oriented paradigm and being oblivious
with respect to the underlying core language, aspects allow
for declarative quantification and modularization of con-
cerns that crosscut the component structure and functional-
ity of models.

As the multitude of properties of Modelica models are
already fixed at definition/compile time – especially al-
most all structural characteristics –static aspectsat source
code level seem to provide a sufficient approach for han-
dling a wide range of aspect-oriented concerns for an early
and efficient checking process inside the development loop.
Therefore, a domain-specific static language is required
for specifying aspect rules that refer to static model enti-
ties constituted by fundamental Modelica language units.
According to the aspect-oriented paradigm, this language
must allow for intuitive and quantified formulation and in-
tegration (weaving) of aspects without explicitly affecting
the underlying "host" language and existing models un-
der consideration. Instead, a smooth description, isolation,
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composition, and reuse of aspects is made possible for
a collectionof (connected) Modelica models, their inner
components and behavioral descriptions, therefore speci-
fying the properties emerging from the demanded require-
ments.

In this paper, syntax and semantics of a rule language
for static aspects is presented in terms of expressions (point
cuts) matching specific locations (join points) in Modelica
models. Reflecting basic entities of such models, the lan-
guage enables model queries at source code level, e.g. in-
spection and correlation of classes, connectors, and equa-
tions. The syntactical structure is based on predefined Mod-
elica language primitives serving as "atoms" and operators
for complex term construction. The design of the language
aims at expressive and declarative encoding of a concise
and succinct set of static design rules. The semantics in-
cludes proposals for the usage of variable bindings and
point cut types for accessing and manipulating model el-
ements. Although this paper focuses on a comprise defini-
tion of the static aspect language rather than an extensive
case study, nevertheless some examples as well as a general
discussion of its application is provided. An implementa-
tion framework for the aspect language is proposed that is
under construction. Herein, logic programming principles
are used for efficient rule processing by an integrated eval-
uation engine.

This paper is organized as follows: In Section 2, a brief
overview on aspect-orientation and further related work is
given. In Section 3, a complete and formalized specifica-
tion of syntax and semantics is presented for a domain spe-
cific static aspect language for Modelica models, and an
extension for a variable concept and type system is men-
tioned. The implementation framework of the language is
proposed in Section 4, and some proposals for sample ap-
plications are depicted in Section 5. Section 6 concludes.

2. Aspect-Orientation and Related Work
Aspect-oriented programming (AOP) [10, 15] is motivated
by the observation, that nowadays abstraction perceptions
for logical system structuring and design mainly refer to the
notions of hierarchy and (de-) composition. Accordingly,
current programming and modeling language paradigms
such as the object-oriented principles of Modelica are de-
signed from this perspective. Nevertheless, in many cases
there are concerns that crosscut a composition structure, so-
calledaspects, which are therefore contradicting the means
of expression of such languages.

Concepts of aspect-oriented programming aim at cap-
turing such crosscutting concerns by appropriate modu-
larization constructs calledpoint cuts. Point cuts are ex-
pressions matching well-defined combinations of corre-
lated points within programs/models of the underlying
component-based language, so-calledjoin points. In the
advicepart of an aspect definition, actions/manipulations
can be defined to be applied to the matching join points.
Depending on the point in time at which aspects are con-
sidered, henceweavedto the host program/model, two cat-
egories can be distinguished: static and dynamic aspects,

thus either at definition/compile time or run time. For in-
stance, an implementation of dynamic aspects for Java is
provided by AspectJ [14], whereas the JTL approach [7]
allows for the specification of static aspects for Java using
query by example.

The static aspect language for Modelica proposed in
this paper is mainly inspired by the PDL described in [16]
which is based on principles of description logics [3, 4].
The adoption of the approach to the Modelica language
refers to the syntactical and semantic structure of Model-
ica version 3 [2]. As a major enhancement, a concept for
variable bindings is proposed.

Previous efforts for checking properties of Modelica
models have been made: In [22], mainly the technical is-
sues are discussed for analyzing Modelica model proper-
ties such as naming conventions and inheritance complex-
ity. However, no integrated approach for expressing such
properties is mentioned. Furthermore, analysis techniques
for specific facets of Modelica models can be found, e.g.
in [5] and [6], where the determination of under and over
constrained systems of equations is presented.

The implementation structure presented in this paper is
based on the logic meta programming approach described
in [23], where the intimate correlation between aspect ori-
entation and logic programming is outlined. As already
proposed by the OpenModelica Project [11] and the Meta-
Modelica Language [20], an ANTLR parser is used to cre-
ate an Abstract Syntax Tree (AST) for examining Modelica
models under consideration. Thereupon, the RML/Meta-
Modelica approach [19] can also be seen as a kind of
strongly typed logic programming language for investigat-
ing Modelica models, but it is not linked to aspect oriented
principles. Finally, a first attempt of an AOP Compiler fo-
cusing on merging AspectJ-likeinter-type declarationsinto
the AST of Modelica models can be found in [1].

3. Static Aspect Language for Modelica
In this Section, a domain-specific static aspect language is
defined by giving a complete formalized syntax and related
semantics for obtaining join points in Modelica models
via quantified point cut expressions. Furthermore, variable
capabilities are proposed for adequate binding of (typed)
join points according to related Modelica language entities.

3.1 Applying Static Aspects to Modelica

First, the requirements for a static aspect language for
Modelica is given to motivate the language design deci-
sions. As an object-oriented language, Modelica benefits
from component-based and inheritance principles fitting
well with real structures from the problem domain thus
being seamlessly transferable to the solution domain. The
equation-based specifications of components’ inertia allow
for declarative and encapsulated behavioral descriptions
detached from the system context. As a consequence, Mod-
elica breaks a system down into smaller units of structure
and behavior which is supported by according language
constructs.
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When aiming at a language for investigating static as-
pectsof Modelica models, one starts with these units stat-
ing the primitives (atoms, terminals, etc.) as well-known
starting points. A distinction betweenunary and binary
primitives of Modelica models can be made, where the
first category comprises high level units such as packages,
classes, connectors, etc., therefore stating single, isolated
entities. Instead, binary primitives are relations that group
two kinds of units by a certain (semantic) criterion, e.g.
all components of a model or all unknowns of an equa-
tion. On this basis, the aspect language must allow for ex-
pressing and modularization of combined, unit-spanning
primitives by appropriate operators. Hereby, arbitrary com-
plex relations (the static aspects) can be iteratively derived
from simpler ones, always starting with the aforementioned
primitives. Remind again the balanced model properties of
Modelica 3: To ensure these properties, the inner structure
of models and their connectors are to be considered on each
hierarchy level.

To demonstrate the application of the syntactical con-
structs of the static aspect language introduced in the fol-
lowing, a simple Modelica model is provided as a running
example consisting of a simplePin for an electrical circuit
as

connector Pin
Voltage v;
flow Current i;

end Pin;

For electrical components with two pins, a corresponding
port "interface" model given as

partial model OnePort
Pin p, n;
Voltage v;
Current i;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end OnePort;

defines the fundamental relations between quantities of
electrical circuits. Beingpartial, the port model is to
be derived by a concrete electrical component, e.g. an ideal
resistor such as

model Resistor
extends OnePort;
parameter Real R(unit="Ohm");

equation
R*i = v;

end Resistor;

characterized by a resistance parameterR and behavior
according to Ohm’s law. A simpleCircuit model

model Circuit
Resistor R1(R=100), R2(R=200);

equation
R1.n = R2.p;

end Circuit;

consists of two resistors connected in series.

3.2 Syntax

The following language is specifically tailored to extend
Modelica by static aspects and consists of two sublan-
guages for modularizing aspect definitions:

• A language for specifying a set ofjoin points, hence
static elements of interest within the model under con-
sideration. The set of join points to be obtained is de-
fined by apoint cut expression that can be composed
out of Modelica primitives (fundamental types of lan-
guage units) and appropriate operators for combination.

• An action language for definingadvices, therefore stat-
ing what to be done with the join points previously cal-
culated as result of the point cut. The actual content of
an advice might vary from the simple output of an error
message in case of using the language for checking de-
sign rules, to arbitrary complex modifications of the join
points. The latter entails static aspect weaving capabili-
ties affecting the inspected model, e.g. by refactorings.

Accordingly, the language allows for specifying a series of
rules of the form:

<Point cut> => <Advice>;

constitutingpoint cut – advice-pairs with well-defined syn-
tactical structure as will be given in this Section, thereby
focusing on the first part.

Point cutsdescribe specific classes of elements in Mod-
elica models referring to the language’s basic constructs
such as class definitions (types), components (members of
classes), and equations. According to static aspects, point
cuts constitute definite points within the model code to be
considered in the aspect advice. Thejoin pointsthat match
to a point cut are those complying with the predicates the
point cut is composed of by combinations of logical and
quantified expressions. Through this declarative approach
of describing "requirements" for model elements under in-
vestigation, these point cut expressions are decoupled from
a specific model and allow for a quantified model inspec-
tion that can be applied to arbitrary Modelica models with-
out knowing inner details.

Due to the obvious relation of the concept to the logic
paradigm, a point cut expression can be construed as a
set of predicate definitions to be evaluated on a Modelica
source of interest (set of model definitions). The therein
contained set of model-specific join points is adjusted step-
wise by iteratively processing the point cut subterms, and
finally resulting in a set of join points fulfilling the over-
all point cut claims. The complete syntax for the point cut
language is depicted in Figure 1. The syntactical structure
is inspired by the PDL in [16], but modified in some parts,
especially concerning parameterized point cuts which will
be introduced in detail below. Meaning and application of
the different constituents will be described in the following
Sections.
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p ::= u

| b(p)

| p and p

| p or p

| not p

| p equalsp

| p lessp

| p subsetp

| existsb : p

| forall b : p

| relop n b

| [v := p]relop b b

u ::= id

| ′pattern′

b ::= id

| b +

| b + n

| p product p

| p product-d p

p : Point Cut

u : Unary Point Cut

b : Binary Relation

id : Identifier

n : Natural Number

relop : Relational Operator

pattern : Name Pattern

Figure 1. Syntax of the Point Cut Language

3.2.1 Primitives

Starting the inspection of a Modelica input source by con-
sidering the set of all join points present, the point cut lan-
guage provides some fundamentalsprimitives for a first
limitation of the join point set. These predefined primitive
terms constitute subsets of the overall join point set to those
of a certain kind and/or within a certain context with re-
spect to elementary structuring constructs of Modelica.

As mentioned in [16], primitives might either be clas-
sified asunary or binary which depends on the number
of join points to be considered for a match. Binary prim-
itives express some property of join points. The choice
of appropriate unary primitives focuses on major entities
in which models are organized: packages and class types.
Such individuals represent first class members, hence key
paradigm concepts of Modelica. Tables 1 and 2 list sets of
unary primitives which are simply accessed by their names.
The most general primitiveclass includes all special-
ized class type definitions, namelymodel, connector,
package, block, type, record andfunction [2].
All of whom are Modelica primitives on their part, there-

Primitive Matches
class all class types defined in the source
model model types defined in the source
connector connector types defined in the source
package package types defined in the source
block block types defined in the source
type data types defined in the source
record record types defined in the source
function function types defined in the source

Table 1. Unary Modelica Primitives for basic Class Types

fore partitioning the set of class types into disjoint sub-
sets. Applied to theCircuit example,class matches
to Pin, OnePort, Resistor, andCircuit, whereas
connector only selects thePin. The (sub-) set of par-

Primitive Matches
partialType partial types defined in the source
finalType final types defined in the source
localType local types defined within a type

Table 2. Unary Modelica Primitives for specialized Types

tial class type definitions can be obtained by the primi-
tive partialType, and the final types correspondingly.
Hence,partialType matches toOnePort, whereas
the predicatefinalType is matched nowhere in the sam-
ple model. ThelocalType primitive matches local class
instances nested within a model, e.g. consider an additional
local model declaration

replaceable model Res = Resistor;

within Circuit for parameterized typing of circuit ele-
ments. PrimitivelocalType matches to the type ofRes
which actually refers to the global typeResistor in this
example.

Binary primitives match pairs of join points, therefore
expressing binary relations. They can be used for incremen-
tally deriving interrelations, therefore inspecting further
properties of model elements, e.g. relating a member vari-
able or nested component and its surrounding class type. As
unary Modelica primitives were defined on the high-level
type structure, now binary primitives allow for a detailed
inspection of the internal properties of a class, namely the
parts for structure (variables/component members, inher-
itance, accessibility etc.) and behavior (equations). Again,
binary primitives are given by a name followed by a param-
eterp stating the kind of join point, it is related to. Tables 3
to 7 contain structural, and Table 8 behavioral unary primi-
tives for Modelica models. The primitives in Table 3 allow
for structural insights of a given typep by accessing its
members. These might either beprimitiveMember or
components, thus class-typed variables. For the circuit ex-
ample,primitiveMember(model) results in the re-
sistance variableR from modelResistor1. Further par-
titioning of members is done by their dimension (vectors,

1 Note:The variables v and i from Pin and OnePort are typed by an accord-
ing (non-primitive) Type declaration, thus stating component members.
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Primitive Matches
member(p) all members of a type

that matches p
primitiveMember(p) primitive members of

a type that matches p
componentMember(p) components of a type

that matches p
vectorMember(p) vector members of a

type that matches p
matrixMember(p) matrix members of a

type that matches p
publicMember(p) public members of a

type that matches p
protectedMember(p) protected members of a

type that matches p
replMember(p) polymorphic members of

a type that matches p
replType(p) local class member of

a type that matches p
constrType(p) upper bound type of a

replaceable type that
matches p

Table 3. Binary Modelica Primitives for Type Members

matrices),and visibility. Note that members not explicitly
stated as public or protected in a model are assumed to
be public, e.g.public(connector) results inv,i. A
Modelica specific concept is that ofreplaceablemembers,
explicit polymorphic members, and replaceable local types
for type parameterization. ThereplMember(model)
primitive for example would match components such as:

replaceable OnePort op;

within Circuit. This component can for instance be re-
placed byResistor via a modifier on instantiation. For
replType consider again the replaceable resistor model
example and the aforementionedlocalType primitive:
In contrast,replType(model) matches the member
variableRes itself instead of its referenced type whichis
actually the type of components withinResistor typed
asRes. Finally, constrType(model) matches types
constraining replaceable types, i.e. for

replaceable model Res
= Resistor extends OnePort;

the point cut expression

constrType(replType(model))

results inOnePort. TheprimModifier(p) primitive
in Table 4 matches modifier values for parameter members
p applied when its surrounding class is instantiated, e.g.

primModifier(primitiveMember(model))

matches100,200 as Resistor is instantiated twice
within Circuit with corresponding modifier values for
the parameterR. The primitive compModifier(p)
matches types used for redeclaration of replaceable com-
ponentsp when its surrounding class type is being instan-
tiated, e.g. in

Primitive Matches
primModifier(p) modifier of a primitive

parameter member that
matches p

compModifier(p) modifier of a replaceable
component that matches p

typeModifier(p) redeclaration type of a
replaceable type

Table 4. Binary Modelica Primitives for Modification and
Redeclaration

Circuit circuit(
redeclare OnePort Resistor);

the modifierResistor for the replaceableOnePort
matches this predicate. In case of redeclaration of local
class typesp such as

Circuit circuit(
redeclare Model Res =
Capacitor);

the new type parameter assigned toRes can be obtained
by

typeModifier(replType(model))

thus resulting inCapacitor. Table 5 lists primitives

Primitive Matches
derivedType(p) types that are derived from

a type that matches p
baseType(p) types that are derived by a

type that matches p
subType(p) types that are subtypes of a

type that matches p
varDerivedType(p) types that are variably

derived from a local
type that matches p

Table 5. Binary Modelica Primitives for Inheritance Hier-
archies

for obtaining inheritance relations between types. The re-
sult ofderivedType(partial) isResistor (direct
subclass relation), andbaseType(model) inversely
matchesOnePort as the direct super class ofResistor.
In Modelica, a distinction is made between explicit sub-
classes and implicit subtypes within the type hierarchy of a
system model. The primitivesubType matches all types
with public interfaces being compatible with that of typep.
Note that this primitive is quite powerful as it is not directly
extractable from a model source, but rather requires addi-
tional computational efforts. A further advanced construct
of Modelica is variable inheritance. Consider the modified
OnePort model:

model OnePort
replaceable model Res = Resistor;
...

protected
extends Res;
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...
end OnePort;

Here, the local class typeRes can be used to redeclare
the base class ofOnePort which is initially stated as
Resistor. Thus, the result of the expression

varDerivedType(localType)

wherelocalType matchesResistor, is OnePort.
The primitives depicted in Table 6 allow for inspection of

Primitive Matches
flow(p) flow members of a type that

matches p
input(p) input members of a type that

matches p
output(p) output members of a type that

matches p
constant(p) constant members of a type that

matches p
parameter(p) parameter members of a type

that matches p
inner(p) inner members of a type that

matches p
outer(p) outer members of a type that

matches p
final(p) final members of a type that

matches p
discrete(p) discrete members of a type that

matches p

Table 6. Binary Modelica Primitives for Member Proper-
ties

furthermember properties. Being mostly self-explanatory,
a detailed description shall be omitted at this point.

Primitive Matches
startValue(p) start value of a member

that matches p
fixedStartValue(p) fixed value of a member

that matches p

Table 7. Binary Modelica Primitives for Member Initial-
ization

Modelicaallows for the propagation of start values and
initialization values for primitive member variables. The
primitives in Table 7 can be used to obtain such values.
The primitives listed in Table 8 can be used to delve into
model bodies and explore the behavioral specifications in
equations2. Asequation(p) matches all kinds of equa-
tions defined for typep, e.g.R*i = v; for Resistor,
further primitives for partitioning the set of equations are
given, i.e. initial equations, equations for connecting two
connector components, equations containingif or when
clauses (potentially causing events), andfor loops. After
having selected a certain equation, theunknown primitive
can be used to get the set of variables appearing in an equa-
tion, hence

2 Note: Algorithm parts can also constitute model behavior, but are no
further considered at this point.

Primitive Matches
equation(p) equations defined in a

type that matches p
initEquation(p) initial equations in a type

that matches p
connectEquation(p) connect equations in a

type that matches p
ifEquation(p) equations containingif

in a type that matches p
whenEquation(p) eq. containingwhen

in a type that matches p
forEquation(p) equations containingfor

in a type that matches p
unknown(p) unknown variables in an

equation p
derivated(p) unknown variables

derivated in an equation p

Table 8. Binary Modelica Primitives for Model Behavior

unknown(equation(p))

for pmatchingtheResistor results inR,i,v. Variables
being derivated within an equation match the primitive
derivated. On this basis, even more arbitrary complex
primitives concerning equation details might be useful, e.g.
inspecting operators, but shall be omitted at this point.

3.3 Operators

For the definition of extensive aspects, thus concerns that
crosscut the entities of models, operators for complex term
construction are provided for correlating Modelica primi-
tives of initially separated model units. Being closed under
the set of join points of the overall model, such operators
allow for iterative combinations of point cut expressions
permitting rules of any complexity. Some criteria to take
into account when choosing appropriate operators:

• The resulting language’s expressiveness must be suffi-
cient for capturing a wide range of possibly occurring
requirements.

• The operators must allow for an "atomic" conversion
and efficient evaluation.

• The operators usage must be concise and intuitive.

As the operators are applied tosetsof join points, they are
mainly of set oriented nature inspired by logic program-
ming and query languages. For operator precedences, the
usage of appropriate parentheses is recommended as usual.

3.3.1 Logical Operators

For simple interrelations of join point sets, logical connec-
tors are provided. For instance, classes, that are both sub-
classes derived from other classesand subtype of another
type, can be searched via

derivedType(class) and subType(class)

As another example, the expression

input(class) or output(class)
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matches all directed member variables. As one of the most
powerful operators, the logical negation allows for expres-
sions matching all join pointsnot being contained in a
given set of join points3. For instance

partial and not baseType(class)

matches all partial class types not being derived by any
other class type. Moreover, the equality of two sets of join
points can be stated, e.g.

class equals (model or connector)

requires systems only consisting of models and connectors.
Two more operators for more intuitive descriptions of step-
wise refinements for intermediate point cuts are provided:

model less partial

matches all model typesbut partial ones, whereas

partial subset model

matchesonly thosemodel types that are also partial, which
can actually also be expressed by theand operator.

3.3.2 Pattern

In order to examine join points that refer to named model
elements, a pattern operator is provided. Using arbitrary
pattern expressions, the set of join points can be reduced
to the ones whose names match the given pattern. By

model and ’Resistor’

the resistor model can be obtained. Moreover, patterns can
be used to check naming conventions, e.g. the demand
"Flow variables shall be named with a flow postfix"can
be expressed by

(flow(class) less ’*_flow’)

matching those flow members whose names do not have the
required postfix. Besides wild cards* matching arbitrary
sequences of symbols, further operators inspired e.g. by
regular expressionscan be used such as ranges[a,b,c]
demanding one of the listed symbols. As there are primi-
tives referring to unnamed join point types, e.g. equations,
the pattern operator is only allowed at innermost position
of expressions and no explicit comparison operator is pro-
vided.

3.3.3 Quantification

Point cut quantification can be used to check some condi-
tion on arangeof values in a binary relation of join points.
Therefore, point cut expressions can be constructed whose
matching join points are based on properties of related join
points. The expression

forall primitiveMember : output(block)

matches block types, whose primitive members areall out-
put variables, i.e. sources. In this example, the property
output (of a block) is postulated for all primitive mem-
bers of that block (stated as a binary primitive relation). In
contrast, the expression

3 Dependingon the type system applied, this complemented set could be
further limited to only those join points of the same type as the given ones.

exists primitiveMember : output(block)

matches blocks withat leastone output variable.

3.3.4 Cardinality

Operators dealing with the cardinality of join point sets
allow for evaluation of model metrics. Style conventions
for structuring Modelica libraries such as"The number of
models defined in an own package must be at least 5"can
be expressed by

package and (> 5 componentMember)

resulting in "malformed" packages containing less than 5
type declarations. A cardinality expression can be parame-
terized by an optional point cut[v:=p], hence a set of join
points. Note that this concept will be generalized in Section
3.5 for application to all point cut expressions. In this way,
comparisons of cardinalities concerning further properties
between join points can be enforced. The complex balanced
model demand"The number of flow variables in a connec-
tor must be identical to the number of non-causal non-flow
variables"[17] can be stated as

[v:=connector](= flow(v)
(primitiveMember(v)
less (flow(v) or input(v) or output(v)
or parameter(v) or constant(v)))

constituting an iterative "foreach" loop over the set of con-
nectors.

3.3.5 Composition

New binary relationsb can be created by composing two
point cuts by building the Cartesian product, hence combin-
ing all join points matching these point cuts. For instance,
the expression

[v:=class](derivedType(v) product
derivedType(v))

relates types having the same (direct) super class. Here,
again the parameterization syntax is used to relate both
subclasses to the same super class. Note that theproduct
operator also relates identical join points, thus creating
reflexive relations. For avoiding such self-references, the
product-d (disjoint) operator can be used. As a further
example, the expression

[v:=connectEquation(model)]
(unknown(v) product-d unknown(v))

relates components being connected within models.

3.3.6 Transitive Closures

The deduction of (anti-symmetric) transitive closures of a
binary relations can be obtained by

derivedType+

for instance, resulting in the subclass relation, hence relat-
ing two classes (indirectly) associated via arbitrary chains
of derivations. The "bounded" transitive closure operator
creates chains limited to at mostn links, e.g.

derivedType+4
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can be used to check whether inheritance hierarchies
deeperthan 4 are present in the model by comparing the re-
sult to that of the unbounded case. The closure operator can
also be used for examining connector traces of Modelica
models.

3.4 Semantics

Partly taken from [16], the point cut evaluation is reduced
to element-wise reasoning of join point sets considering the
stipulated conditions. The evaluation of a point cut expres-
sionp ∈ P from a set of rulesP with respect to a Model-
ica model specificationM (a collection of conjugated class
type definitions) is stated as:

p : JM → P(JM)

resulting in a (sub-) set of join points of the model under
consideration, whereJM is assumed to be

JM = {sets of all types of join points present inM}

The evaluation of a rule expression precedes from inwards
to outwards, therefore calculating temporary join point sets
as intermediate stages that are gradually refined toward the
overall result set. Being composites of unary and binary
expressions, point cuts are calculated through sequences of
mappings

U : Unary Point Cut→ P(JM)

for unary primitivesu, and

B : Binary Relation→ P(JM × JM)

for binary primitivesb(p), respectively. The evaluation of
u in a point cut expression can be simply stated asP [[u]] =
U [[u]], whereu might be either a unary primitive denoted by
id and will therefore be replaced by those join pointsj ∈
JM matchingid, or it is some kind of regular expression,
thus

U [[′pattern
′]] = {j | j matches ’pattern’}

is to be applied. For the evaluation of binary primitives
b(p), the given parameterp is to be taken into account:

P [[b(p)]] = {j1 | (j1, j2) ∈ B[[b]], j2 ∈ P [[p]]}

The relation setb between the parameter join pointp and
the binary primitive is constructed by trying out all possible
combinations and keeping those fulfillingb. The result,
again is a set of single join points "fitting" to the parameter
p. Unary and binary primitives can be nested (composed)
at will, e.g.b(b(p)). The operators for logical combinations
of join point sets can be reduced to according set operators:

P [[p1 and p2]] = P [[p1]] ∩ P [[p2]]

P [[p1 or p2]] = P [[p1]] ∪ P [[p2]]

P [[p1 lessp2]] = P [[p1]] \ P [[p2]]

P [[not p1]] = {j | j 6∈ P [[p1]]}

The operators for comparing sets of join points (equality
and subsets) are evaluated as follows:

P [[p1 subsetp2]] = {j | ∀j ∈ p1 : j ∈ p2}

P [[p1 equalsp2]] = (p1 subsetp2) and (p2 subsetp1)

Hence,subset results in the join pointp1, iff p1 ⊆ p2

and in the empty set, otherwise. The equality of two join
point sets can then be ensured viaequals by checking the
result set not being empty. For the quantification operators,
the semantics are given as

P [[forall b : p]] = {j2 | ∀(j1, j2) ∈ B[[b]] : j1 ∈ P [[p]]}

P [[existsb : p]] = {j2 | ∃(j1, j2) ∈ B[[b]] : j1 ∈ P [[p]]}

Binary relations constitute relationships between two join
points and can be obtained by according primitivesid:

B[[id]] = <primitive>

Further relations can be constructed as Cartesian products:

P [[p1 product p2]] = {(j1, j2) ∈ P [[p1]] × P [[p2]]}

For theproduct-d operator, the requirementj1 6= j2

must be satisfied. The semantics for transitive closure is
defined to be

P [[b+]] = {(j1, jk) | ∃(j1, j2), . . . , (jk−1, jk) ∈ B[[b]]}

wherek ≤ n must hold in the bounded case forP [[p + n]].

3.5 Variable Binding and Type System

As already used for the cardinality comparison operator,
for further examinations of elements within other subterms,
variable bindings are introduced. They allow for binding of
join points to variables which can be used as parameters
in subsequent terms. This concept shall now be enhanced
to all kinds of point cut expressions. Generally, a point cut
expression can be parameterized by an arbitrary set of point
cut variablesφ that are then visible within the point cut:

[φ]p : Point cutφ, whereφ = {v1 := p1, . . . , vn := pn}

is a set ofn point cut variablesvi, whose content is again
defined by point cut expressionspi. In the modified seman-
tics, these parameters are passed to all subterms ofp, e.g.

P [[p1 and p2]]φ = P [[p1]]φ ∩ P [[p2]]φ

These enhanced evaluation semantics constitutes a (nested)
"for-each" loop over the set of join point combinations de-
picted by the parameter point cut(s) to be likewise adopted
to all point cut subterms.

As proposed in [16], the adoption oftypes for point
cuts allows for sound expressions with respect to the types
expected for the matching join points. Such types reflect
the basic kinds of Modelica constructs the join points refer
to, namely types, members (primitive, components), scalar
values, and equations. The integration of a type system for
point cuts into the aforementioned semantics allows for
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exact determination of the join point types in the result set.
Therefore,the matching join points are restricted to those,
that are in the static type calculated for the point cut. Due to
lack of space, a formalization of this approach, especially
considering types of parameter variables for point cuts, is
deferred to future work.

3.6 Advices

Theadvicepart of a rule shall only be discussed informally
at this point. Generally, it is considered to be "executable"
and it is applied for each join point matching the point cut
part of a static aspect. For the simplest case, e.g. rule check-
ing, a report string can be put out as an error description:

<point cut> =>
"Error: violated naming convention";

For providing a more expressive report, access to the re-
sulting join point set should be made possible, e.g. by the
following syntax for iterating the result set:

<point cut> =>
"Error: violated naming convention in "
+ ResultSet.nextItem().getName();

returning the name of the join point within the result
set currently iterated. Note that the join points within
ResultSet must be of a type that refers to a named ele-
ment in Modelica. As a next step, arbitrary code as well as
access to additional variables defined in the point cut could
be permitted, e.g. for obtaining the corresponding AST
Nodes for manipulation within a compiler environment.

4. Implementation Framework
A sample implementation framework of the static aspect
language that is currently under construction is proposed
in the following. It is based on the principles oflogic
meta programming[23]. The application of two languages
is proposed for processing static aspects on given Model-
ica models: (1) AUser language for specifying static as-
pects, such as the previously defined point cut language
which serves as an inspection API for Modelica models,
and (2) an efficientImplementationlanguage for process-
ing of the aspects, therefore stating a point cut evaluation
engine. Due to the similarities of aspect principles and the
logic paradigm [23], the first order logic programming lan-
guage Prolog [9] can serve as an evaluation engine. Prolog
allows for seamless conceptual representation and efficient
evaluation of aspect queries on Modelica models in terms
of logical facts and rules. A structural overview of the re-
sulting implementation framework architecture is depicted
in Figure 2. The front end for user input parsing and trans-
formation consists of two interfaces:

1. A Modelica model input interface realized as a conven-
tional ANTLR [11, 18] Modelica Parser that constructs
the Abstract Syntax Tree (AST) representation of the
model under consideration and extracts primitives in
terms of Prolog facts. A similar approach is taken in
MetaModelica [20].

Modelica Source Static Aspects

Modelica 
Parser

Rule 
Parser

Primitive 
Extraction

Rule Mapping 
Scheme

Result Set (typed)

Advice

Prolog Engine

Point CutAST

Facts Rules Join Points

Report, 
AST Nodes

Figure 2. Architectureof the Static Aspects Framework
for Modelica Models

2. An aspect rule input interface accepting syntactically
well-formed static aspects expressions according to the
aforementioned point cut language grammar. The point
cut expression parts are then transformed to suitable
Prolog rules according to a mapping scheme for itera-
tively composing primitives and operators.

The middle end forms the aspect processing engine in
terms of a Prolog interpreter implemented on top of the
Modelica source code parser. Applying the Prolog rules
generated for point cut expressions to the fact basis con-
taining the model primitives, the engine integrates both,
the input models and the related aspect rules for join point
result set processing. The back end interface conducts ad-
vice processing with respect to the resulting join point set,
i.e.

• Error reports for simple design rule evaluation,

• References to the originating AST nodes of the resulting
join points, thus allowing for arbitrary post-processing
of complex aspect advices detached from the frame-
work, e.g. as described in [8].

A simple example for mapping model structures to corre-
sponding Prolog rules shall be given. Consider the afore-
mentionedResistor model inheriting from the partial
OnePort model. First, the "existence" of both models can
be expressed by appropriate Prolog facts:

model(m1,’OnePort’).
model(m2,’Resistor’).

Next, the interrelation of both models with respect to the
implied inheritance hierarchy can be stated as:

derive(m2,m1).

According to these facts, implications can be derived by
appropriate rules, e.g.:
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derivedType(Sub,Sup)
:- derive(Sub,Sup).

derivedType(Sub,Sup)
:- derive(Sub,X),

derivedType(X,Sup).

for calculation of the transitive closure of the inheritance
hierarchy.

The decoupling of theUser and Implementationlan-
guage aims at a high grade of extensibility and adaptabil-
ity. Being Turing complete, the Prolog engine allows for
integrating point cut language constructs of any complex-
ity, and does not dictate the concrete representation of the
aspect language implementation. The implementation can
either be used as a "stand-alone" rule checker for system-
atic model inspection, or it can be integrated to an ambient
Modelica compiler/development environment accomplish-
ing static aspectweavinge.g. AST transformations.

5. Application
On the basis of the adaptable and scalable framework im-
plementation and the flexibility of the proposed static as-
pect language for Modelica, various possible areas of ap-
plication are conceivable:

1. Rule checking "by negation": Describing point cuts
matching join points that are not desired to appear in
the models as proposed in [16]. In case of non empty
result sets, the rule is violated by the join points calcu-
lated and corresponding error reports can be generated
in the advice part. By expressing new restrictions of the
Modelica 3 specification as static aspects, the compati-
bility of legacy code such as libraries can be examined
automatically.

2. Model inspection: Searching for model elements or pat-
terns matching criteria of interest, either "off-line" (e.g.
metrics calculations), or "on-line" as a model inspec-
tion tool within a Modelica IDE. Further applications
in the realm of the object oriented paradigm might be
that ofconcepts[13], thus checking whether a given set
of types are applicable as parameters for a generic con-
struct (upper bound resolution for constraining types).

3. Join point manipulations within the advice part, e.g.
renaming of certain elements with respect to naming
conventions or model maintenance.

4. Arbitrary model restructuring by join points referencing
nodes of the AST. Therefore, static aspect weaving can
be done by graph transformation, e.g. context aware
refactorings.

6. Conclusion
The formal syntax and semantics definition and sample
implementation framework of a static aspect language for
Modelica was presented. The language design aims at suffi-
cient expressiveness and extensibility, but yet still provides
intuitive usage. Language extensions for variable bindings
of (typed) join points were mentioned for enhanced rule
precision.

The framework proposed can serve as a foundation for
a wide range of applications, e.g. simple rule checking up
to source code manipulations. An integration into existing
environments is aimed at, either as a basis for a point cut
evaluation engine for a Modelica AOP Compiler, or as a
programmer’s on-line assistance tool for code inspection
queries, e.g. providing an interactive search engine with
Eclipse IDE integration.

In future work, after having finished the implementa-
tion, the application of the language in various case studies
can indicate, whether the language boundaries defined up
to this point are sufficient. For this purpose, the formula-
tion of balanced model requirements of Modelica version
3 in terms of static aspects is assumed to be a convenient
case study. Hereby, the performance of the implementation
can be investigated concerning the number and complexity
of rules and models under investigation. Optimizations can
lead to increased efficiency, e.g. by dynamical and cached
AST access on demand during rule evaluation. Moreover,
a detailed survey of the advice part is aimed at, especially
in view of conflicts analysis between different aspects. On
this basis, studies of applying dynamic aspect approaches
to Modelica can be promising, although Modelica-like lan-
guage are notproceduralones as demanded e.g. in [15].
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Abstract
Current equation-based object-oriented (EOO) languages
typically contain a number of fairly complex language con-
structs for enabling reuse of models. However, support for
model transformation is still often limited to scripting solu-
tions provided by tool implementations. In this paper we in-
vestigate the possibility of combining the well known con-
cept of higher-order functions, used in standard functional
programming languages, with acausal models. This con-
cept, called Higher-Order Acausal Models (HOAMs), sim-
plifies the creation of reusable model libraries and model
transformations within the modeling language itself. These
transformations include general model composition and
recursion operations and do not require data representa-
tion/reification of models as in metaprogramming/meta-
modeling. Examples within the electrical and mechanical
domain are given using a small research language. How-
ever, the language concept is not limited to a particular lan-
guage, and could in the future be incorporated into existing
commercially available EOO-languages.

Keywords Higher-Order, Acausal, Modeling, Simulation,
Model Transformation, Equations, Object-Oriented, EOO

1. Introduction
Modeling and simulation have been an important applica-
tion area for several successful programming languages,
e.g., Simula [6] and C++ [24]. These languages and other
general-purpose languages can be used efficiently for dis-
crete time/event-based simulation, but for continuous-time
simulation, other specialized tools such as Simulink [15]
are commonly used in industry. The latter supports causal
block-oriented modeling, where each block has defined in-
put(s) and output(s). However, during the past two decades,
a new kind of language has emerged, where differential al-
gebraic equations (DAEs) can describe the continuous-time
behavior of a system. Moreover, such languages often sup-
port hybrid DAEs for modeling combined continuous-time
and discrete-time behavior.
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These languages enable modeling of complex physical sys-
tems by combining different domains, such as electrical,
mechanical, and hydraulic. Examples of such languages are
Modelica [10, 17], Omola [1], gPROMS [3, 20], VHDL-
AMS [5], andχ (Chi) [13, 27].

A fundamental construct in most of these languages is
theacausal model. Such a model can encapsulate and com-
pose both continuous-time behavior in form of DAEs and /
or other interconnected sub-models, where the direction of
information flow between the sub-models is not specified.
Several of these languages (e.g., Modelica and Omola) sup-
port object-oriented concepts that enable the composition
and reuse of acausal models. However, the possibilities to
perform transformationson models and to create generic
and reusable transformation libraries are still usually lim-
ited to tool-dependent scripting approaches [7, 11, 26], de-
spite recent development of metamodeling/metaprogram-
ming approaches like MetaModelica [12].

In functional programming languages, such as Haskell
[23] and Standard ML [16], standard libraries have for a
long time been highly reusable, due to the basic property
of having functions as first-class values. This property, also
calledhigher-order functions, means that functions can be
passed around in the language as any other value.

In this paper, we investigate the combination of acausal
models with higher-order functions. We call this concept
Higher-Order Acausal Models (HOAMs).

A similar idea calledfirst-class relations on signalshas
been outlined in the context of functional hybrid modeling
(FHM)[18]. However, the work is still at an early stage
and it does not yet exist any published description of the
semantics. By contrast, our previous work’s main objective
has been to define a formal operational semantics for a
subset of a typical EOO language [4]. From the technical
results of our earlier work, we have extracted the more
general ideas of HOAM, which are presented in this paper
in a more informal setting.

An objective of this paper is to be accessible both to en-
gineers with little functional language programming back-
ground, as well as to computer scientists with minimal
knowledge of physical acausal modeling. Hence, the paper
is structured in the following way to reflect both the broad
intended audience, as well as presenting the contribution of
the concept of HOAMs:
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• The fundamental ideas of traditional higher-order func-
tions are explained using simple examples. Moreover,
we give the basic concepts of acausal models when used
for modeling and simulation (Section 2).

• We state a definition of higher order acausal models
(HOAMs) and outline motivating examples. Surpris-
ingly, this concept has not been widely explored in the
context of EOO-languages (Section 2).

• The paper gives an informal introduction to physical
modeling in our small research language called Mod-
eling Kernel Language (MKL) (Section 3).

• We give several concrete examples within the electri-
cal and mechanical domain, showing how HOAMs can
be used to create highly reusable modeling and model
transformation/composition libraries (Section 4).

Finally, we discuss future perspectives of higher-order
acausal modeling (Section 5), and related work (Section
6).

2. The Basic Idea of Higher-Order
In the following section we first introduce the well estab-
lished concept of anonymous functions and the main ideas
of traditional higher-order functions. In the last part of the
section we introduce acausal models and the idea of treat-
ing models with acausal connections to be higher-order.

2.1 Anonymous Functions

In functional languages, such as Haskell [23] and Standard
ML [16], the most fundamental language construct is func-
tions. Functions correspond to partial mathematical func-
tions, i.e., a functionf : A → B gives a mapping from (a
subset of) the domainA to the codomainB.

In this paper we describe the concepts of higher-order
functions and models using a tiny untyped research lan-
guage calledModeling Kernel Language (MKL). The lan-
guage has similar modeling capabilities as parts of the
Modelica language, but is primarily aimed at investigating
novel language concepts, rather than being a full-fledged
modeling and simulation language. In this paper an infor-
mal example-based presentation is given. However, a for-
mal operational semantics of the dynamic elaboration se-
mantics for this language is available in [4].

In MKL, similar to general purpose functional lan-
guages, functions can be defined to beanonymous, i.e.,
the function is defined without an explicit naming. For ex-
ample, the expression

func(x){x*x}

is an anonymous function that has a formal parameterx as
input parameter and returnsx squared1. Formal parameters
are written within parentheses after thefunc keyword,

1 In programming language theory, an anonymous function is called a
lambda abstraction, written λx.e, wherex is the formal parameter ande
is the expression representing the body of the function. The corresponding
syntactic form in MKL for a lambda abstraction isfunc p{e}, wherep
is apattern. A pattern can be an-ary tuple enclosed in parenthesis, e.g., a
tuple pattern with one parameter can have the form(x) and one with two
parameters(x,y).

and the expression representing the body of the function
is given within curly parentheses; in this case{x*x}.

An anonymous function can be applied by writing the
function before the argument(s) in a parenthesized list, e.g.
(3):

func(x){x*x}(3)
→ 3*3
→ 9

The lines starting with a left arrow (→) show the evaluation
steps when the expression is executed.

However, it is often convenient to name values. Since
anonymous functions are treated as values, they can be
defined to have a name using thedef construct in the same
way as constants.

def pi = 3.14
def power2 = func(x){x*x}

Here, bothpi and functionpower2 can be used within the
defined scope. Hence, the definitions can be used to create
new expressions for evaluation, for example:

power2(pi)
→ power2(3.14)
→ 3.14 * 3.14
→ 9.8596

2.2 Higher-Order Functions

In many situations, it is useful to pass a function as an
argument to another function, or to return a function as a
result of executing a function. When functions are treated
as values and can be passed around freely as any other
value, they are said to befirst-class citizens. In such a case,
the language supportshigher-order functions.

DEFINITION 1 (Higher-Order Function).
A higher-order function is a function that

1. takes another function as argument, and/or
2. returns a function as the result.

Let us first show the former case where functions are
passed as values. Consider the following function defini-
tion of twice, which applies the functionf two times on
y, and then returns the result.

def twice = func(f,y){
f(f(y))

};

The functiontwice can then be used with an arbitrary
functionf, assuming that types match. For example, using
it in combination withpower2, this function is applied
twice.

twice(power2,3)
→ power2(power2(3))
→ power2(3*3)
→ power2(9)
→ 9*9
→ 81

Sincetwice can take any function as an argument, we can
applytwice to an anonymous function, passed directly as
an argument to the functiontwice.
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Figure 1. Outline of a typical compilation and simulation process for an EOO language tool.

twice(func(x){2*x-3},5)
→ func(x){2*x-3}(func(x){2*x-3}(5))
→ func(x){2*x-3}(2*5-3)
→ func(x){2*x-3}(7)
→ 2*7-3
→ 11

Let us now consider the second part of Definition 1, i.e., a
function that returns another function as the result.

In mathematics, functional composition is normally ex-
pressed using the infix operator◦. Two functionsf : X →
Y andg : Y → Z can be composed tog ◦ f : X → Z, by
using the definition(g ◦ f)(x) = g(f(x)).

The very same definition can be expressed in a language
supporting higher-order functions:

def compose = func(g,f){
func(x){g(f(x))}

};

This example illustrates the creation of a new anonymous
function and returning it from thecompose function. The
function composes the two functions given as parameters to
compose. Hence, this example illustrates both that higher-
order functions can be applied to functions passed as ar-
guments (using formal parametersf andg), and that new
functions can be created and returned as results (the anony-
mous function).

To illustrate an evaluation trace of the composition func-
tion, we first define another functionadd7

def add7 = func(x){7+x};

and then composepower2 andadd7 together, forming a
new functionfoo:

def foo = compose(power2,add7);
→ def foo = func(x){power2(add7(x))};

Note how the functioncompose applied topower2 and
add7 evaluates to an anonymous function. Now, the new
functionfoo can be applied to some argument, e.g.,

foo(4)
→ func(x){power2(add7(x))}(4)
→ power2(add7(4))
→ power2(7+4)
→ power2(11)
→ 11*11
→ 121

The simple numerical examples given here only show the
very basic principle of higher-order functions. In functional

programming other more advanced usages, such as list ma-
nipulation using functionsmap andfold, are very com-
mon.

2.3 Elaboration and Simulation of Acausal Models

In conventional object-oriented programming languages,
such as Java or C++, the behavior of classes is described
using methods. On the contrary, in equation-based object-
oriented languages, the continuous-time behavior is typi-
cally described using differential algebraic equations and
the discrete-time behavior using constructs generating
events. This behavior is grouped into abstractions called
classes or models (Modelica) or entities and architectures
(VHDL-AMS). From now on we refer to such an abstrac-
tion simply asmodels.

Models are blue-prints for creatingmodel instances(in
Modelica called components). The models typically have
well-defined interfaces consisting of ports (also called con-
nectors), which can be connected together usingconnec-
tions. A typical property of EOO-languages is that these
connections usually areacausal, meaning that the direction
of information flow between model instances is not defined
at modeling time.

In the context of EOO languages, we define acausal
(also called non-causal) models as follows:

DEFINITION 2 (Acausal Model).
An acausal model is an abstraction that encapsulates and
composes

1. continuous-time behavior in form of differential alge-
braic equations (DAEs).

2. other interconnected acausal models, where the direc-
tion of information flow between sub-models is not spec-
ified.

In many EOO languages, acausal models also contain con-
ditional constructs for handling discrete events. Moreover,
connections between model instances can typically both
express potential connections (across) and flow (also called
through) connections generating sum-to-zero equations.
Examples of acausal models in both MKL and Modelica
are given in Figure 2 and described in Section 3.1.

A typical implementation of an EOO language, when
used for modeling and simulation, is outlined in Figure 1.
In the first phase, a hierarchically composed acausal model
is elaborated(also called flattened or instantiated) into
a hybrid DAE, describing both continuous-time behavior
(DAEs) and discrete-time behavior (e.g., when-equations).
The second phase performsequation transformations and
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code generation, which produces executable target code.
When this code is executed, the actual simulation of the
model takes place, which produces a simulation result.
In the most common implementations, e.g., Dymola [7]
or OpenModelica [26], the first two phases occur during
compile time and the simulation can be viewed as the
run-time. However, this is not a necessary requirement of
EOO languages in general, especially not if the language
supports structurally dynamic systems (e.g., Sol [29], FHM
[18], or MOSILAB [8]).

2.4 Higher-Order Acausal Models

In EOO languages models are typically treated as compile
time entities, which are translated into hybrid DAEs during
the elaboration phase. We have previously seen how func-
tions can be turned into first-class citizens, passed around,
and dynamically created during evaluation. Can the same
concept of higher-order semantics be generalized to also
apply to acausal models in EOO languages? If so, does this
give any improved expressive power in such generalized
EOO language?

In the next section we describe concrete examples of
acausal modeling using MKL. However, let us first define
what we actually mean by higher-order acausal models.

DEFINITION 3 (Higher-Order Acausal Model (HOAM)).
A higher-order acausal model is an acausal model, which
can be

1. parametrized with other HOAMs.
2. recursively composed to generate new HOAMs.
3. passed as argument to, or returned as result from func-

tions.

In the first case of the definition, models can be para-
metrized by other models. For example, the constructor of a
automobile model can take as argument another model rep-
resenting a gearbox. Hence, different automobile instances
can be created with different gearboxes, as long as the gear-
boxes respects the interface (i.e., type) of the gearbox pa-
rameter of the automobile model. Moreover, an automobile
model does not necessarily need to be instantiated with a
specific gearbox, but onlyspecializedwith a specific gear-
box model, thus generating a new more specific model.

The second case of Definition 3 states that a model can
reference itself; resulting in a recursive model definition.
This capability can for example express models composed
of many similar parts, e.g., discretization of flexible shafts
in mechanical systems or pipes in fluid models.

Finally, the third case emphasizes the fact that HOAMs
are first-class citizens, e.g., that models can be both passed
as arguments to functions and created and returned as re-
sults from functions. Hence, in the same way as in the
case of higher-order functions, generic reusable functions
can be created that perform various tasks on arbitrary mod-
els, as long as they respect the defined types (interfaces) of
the models’ formal parameters. Consequently, this property
enablesmodel transformationsto be defined and executed
within the modeling language itself. For example, certain
discretizations of models can be implemented as a generic

function and stored in a standard library, and then reused
with different user defined models.

Some special and complex language constructs in cur-
rently available EOO languages express part of the de-
scribed functionality (e.g., the redeclare and for-equation
constructs in Modelica). However, in the next sections we
show that the concept of acausal higher-order models is a
small, but very powerful and expressive language construct
that subsumes and/or can be used to define several other
more complex language constructs. If the end user finds
this more functional approach of modeling easy or hard
depends of course on many factors, e.g., previous program-
ming language experiences, syntax preferences, and math-
ematical skills. However, from a semantic point of view,
we show that the approach is very expressive, since few
language constructs enable rich modeling capabilities in a
relatively small kernel language.

3. Basic Physical Modeling in MKL
To concretely demonstrate the power of HOAMs, we use
our tiny research language Modeling Kernel Language
(MKL). The higher-order function concept of the language
was briefly introduced in the previous section. In this sec-
tion we informally outline the basic idea of physical model-
ing in MKL; a prerequisite for Section 4, which introduces
higher-order acausal models using MKL.

3.1 A Simple Electrical Circuit

To illustrate the basic modeling capabilities of MKL, the
classic simple electrical circuit model is given in Figure 2.
Part (I) shows the graphical layout of the model and (II)
shows the corresponding textual model given in MKL. For
clarity to the readers familiar with the Modelica language,
we also compare with the same model given as Modelica
textual code (III).

In MKL, models are always defined anonymously. In
the same way as for anonymous functions, an anonymous
model can also be given a name, which is in this exam-
ple done by giving the model the namecircuit. The
model takes zero formal parameters, given by the empty tu-
ple (parenthesized list) to the right of the keywordmodel.
The contents of the model is given within curly braces. The
first four statements define four newwires, i.e., connec-
tion points from which the different components (model
instances) can be connected.

The six components defined in this circuit correspond to
the layout given in part (I) in Figure 2. Consider the first
resistor instantiated using the following:

Resistor(w1,w2,10);

The two first arguments state that wiresw1 and w2 are
connected to this resistor. The last argument expresses that
the resistance for this instance is 10 Ohm. Wirew2 is also
given as argument to the capacitor, stating that the first
resistor and the capacitor are connected using wirew2.

Modeling using MKL differs in several ways compared
to Modelica (Figure 2, part III). First, models are not de-
fined anonymously in Modelica and are not treated as first-
class citizens. Second, the way acausal connections are de-
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(I) (II) (III)

def Circuit = model(){
def w1 = Wire();
def w2 = Wire();
def w3 = Wire();
def w4 = Wire();
Resistor(w1,w2,10);
Capacitor(w2,w4,0.01);
Resistor(w1,w3,100);
Inductor(w3,w4,0.1);
VSourceAC(w1,w4,220);
Ground(w4);

};

model Circuit
Resistor R1(R=10);
Capacitor C(C=0.01);
Resistor R2(R=100);
Inductor L(L=0.1);
VsourceAC AC(VA=220);
Ground G;

equation
connect(AC.p, R1.p);
connect(R1.n, C.p);
connect(C.n, AC.n);
connect(R1.p, R2.p);
connect(R2.n, L.p);
connect(L.n, C.n);
connect(AC.n, G.p);

end Circuit;

Figure 2. Model of a simple electrical circuit. Figure part (I) shows the graphical model of the circuit, (II) gives the
corresponding MKL model definition, and (III) shows a Modelica model of the same circuit.

fined between model instances differs. In MKL, the con-
nection (in this electrical case a wire), is created and then
connected to the model instances by giving it as argu-
ments to the creation of sub-model instances. In Model-
ica, a specialconnect-equation construct is defined in
the language. This construct is used to define binary con-
nections between connectors of sub-model instances. From
a user point of view, both approaches can be used to ex-
press acausal connections between model instance. Hence,
we let it be up to the reader to judge what is the most natural
way of defining interconnections. However, from a formal
semantics point of view, in regards to HOAMs, we have
found it easier to encode connections using ordinary pa-
rameter passing style2.

3.2 Connections, Variables, and Flow Nodes

The concept of wire is not built into the language. Instead,
it is defined using an anonymous function, referring to the
built-in constructsvar() andflow():

def Wire = func(){
(var(),flow())

};

Here, a function calledWire is defined by using the
anonymous function constructfunc. The definition states
that the function has an empty formal parameter list (i.e.,
takes an empty tuple() as argument) and returns a tuple
(var(),flow()), consisting of two elements. A tuple
is expressed as a sequence of terms separated by commas
and enclosed in parentheses.

2 In the technical report [4], we have been able to define the elaboration
semantics with HOAMs using an effectful small-step operational seman-
tics. The main challenge of handling HOAMs and acausal connections
concerns the treatment of flow variables and sum-to-zero equation. By us-
ing the parameter passing style, we avoid Modelica’s informal semantic
approach of using connection-sets. Moreover, by using this approach, the
generated sum-to-zero equations implicitly gets the right signs, without
the need of keeping track of outside/inside connectors.

The first element of the defined tuple expresses the cre-
ation of a new unknown continuous-time variable using the
syntaxvar(). The variable could also been assigned an
initial value, which is used as a start value when solving
the differential equation system. For example, creating a
variable with initial value 10 can be written using the ex-
pressionvar(10). Variables defined usingvar() corre-
spond topotentialvariables, i.e., the voltage in this exam-
ple.

The second part of the tuple expresses the current in the
wire by using the constructflow(), which creates a new
flow-node. This construct is the essential part in the formal
semantics of [4]. However, in this informal introduction,
we just accept that Kirchhoff’s current law with sum to zero
at nodes is managed in a correct way.

In the circuit definition (Figure 2, part II) we used the
syntaxWire(), which means that the function is invoked
without arguments. The function call returns the tuple
(var(),flow()). Hence, theWire definition is used
for encapsulating the tuple, allowing the definition to be
reused without the need to restate its definition over and
over again.

3.3 Models and Equation Systems

The main model in this example is already given as the
Circuit model. This model contains instances of other
models, such as theResistor. These models are also
defined using model definitions. Consider the following
two models:

def TwoPin = model((pv,pi),(nv,ni),v){
v = pv - nv;
0 = pi + ni;

};
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def Resistor = model(p,n,R){
def (_,pi) = p;
def v = var();
TwoPin(p,n,v);
R*pi=v;

};

In the same way as forCircuit, these sub-models are de-
fined anonymously using the keywordmodel followed by
a formal parameter and the model’s content stated within
curly braces. A formal parameter can be a pattern andpat-
tern matching3 is used for decomposing arguments. Inside
the body of the model, definitions, components, and equa-
tions can be stated in any order within the same scope.

The general modelTwoPin is used for defining com-
mon behavior of a model with two connection points.
TwoPin is defined using an anonymous model, which here
takes one formal parameter. This parameter specifies that
the argument must be a 3-tuple with the specified structure,
wherepv, pi, nv, ni, andv are pattern variables. Here
pv means positive voltage, andni negative current. Since
the illustrated language is untyped, illegal patterns are not
discovered until run-time.

Both models contain new definitions and equations. The
equationv = pv - nv; in TwoPin states the voltage
drop over a component that is an instance ofTwoPin. The
definition of the voltagev is given as a formal parameter
to TwoPin. Note that the direction of the causality of this
formal parameter is not defined at modeling time.

The resistor is defined in a similar manner, where the
third elementR of the input parameter is the resistance.
The first linedef (_,pi) = p; is an alternative way of
pattern matching where the currentpi is extracted fromp.
The pattern_ states that the matched value is ignored. The
second row defines a new variablev for the voltage. This
variable is used both as an argument to the instantiation
of TwoPin and as part of the equationR*pi=v; stating
Ohm’s law. Note that the wiresp and n are connected
directly to theTwoPin instance.

The inductor model is defined similarly to theResistor
model:

def Inductor = model(p,n,L){
def (_,pi) = p;
def v = var(0);
TwoPin(p,n,v);
L*der(pi) = v;

};

The main difference to theResistor model is that
the Inductor model contains a differential equation
L*der(pi) = v;, where thepi variable is differen-
tiated with respect to time using the built-inder operator.

The other sub-models shown in this example (Ground,
VSourceAC, andCapacitor) is defined in a similar
manner as the one above.

3 A pattern can be a variable name, an underscore, or a tuple. When ar-
gument values are passed, each value is matched against its correspond-
ing pattern. A variable is bound to the corresponding argument value, an
underscore matches anything, i.e., nothing happens; a tuple is matched
against a tuple value resulting in that each variable name in the tuple pat-
tern is bound to the corresponding value in the tuple.

3.4 Executing the Model

Recall Figure 1, which outlined the compilation and simu-
lation process for a typical EOO language. When a model
is evaluated (executed) in MKL, this means the process
of elaborating a model into a DAE. Hence, the steps of
equation transformation, code generation, and simulation
are not part of the currently defined language semantics.
This latter steps can be conducted in a similar manner as
for an ordinary Modelica implementation. Alternatively,
the resulting equation system can be used for other pur-
poses, such as optimization [14]. In the next section we
illustrate several examples of how HOAMs can be used.
Consequently, these examples concern the use of HOAMs
during the elaboration phase, and not during the simula-
tion phase. Further discussion on future aspects of HOAMs
during these latter phases is given in Section 5.

4. Examples of Higher-Order Modeling
In Definition 3 (Section 2.4) we defined the meaning of
HOAMs, giving three statements on how HOAMs can be
used. This section is divided into sub-sections, where we
exemplify these three kinds of usage by giving examples in
MKL.

4.1 Parameterization of Models with Models

A common goal of model design is to make model li-
braries extensible and reusable. A natural requirement
is to be able to parameterize models with other mod-
els, i.e., to reuse a model by replacing some of the sub-
models with other models. To illustrate the main idea of
parameterized acausal models, consider the following over-
simplified example of an automobile model, where we use
Connection() with the same meaning as the previous
Wire():

def Automobile = model(Engine, Tire){
def c1 = Connection();
def c2 = Connection();
Engine(c1);
Gearbox(c1,c2);
Tire(c2); Tire(c2); Tire(c2); Tire(c2)

};

In the example, the automobile is defined to have two
formal parameters; anEngine model and aTire model.
To create a model instance of the automobile, the model can
be applied to a specific engine, e.g., a modelEngineV6
and some type of tire, e.g.TireTypeA:

Automobile(EngineV6,TireTypeA);

If later on a new engine was developed, e.g.,EngineV8, a
new automobile model instance can be created by changing
the arguments when the model instance is created, e.g.,

Automobile(EngineV8,TireTypeA);

Hence, new model instances can be created without the
need to modify the definition of theAutomobile model.
This is analogous to a higher-order function which takes a
function as a parameter.
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Figure 3. A mechatronic system with a direct current (DC) motor to the left and a flexible shaft to the right. The flexible
shaft consists of1 to N elements, where each element includes an inertia, a spring, and a damper.

In the example above, the definition ofAutomobile
was not parametrized on theGearbox model. Hence, the
Gearbox definition must be given in the lexical scope of
the Automobile definition. However, this model could
of course also be defined as a parameter toAutomobile.

This way of reusing acausal models has obvious streng-
ths, and it is therefore not surprising that constructs with
similar capabilities are available in some EOO languages,
e.g., the specialredeclare construct in Modelica. How-
ever, instead of creating a special language construct for
this kind of reuse, we believe that HOAMs can give sim-
pler and a more uniform semantics of a EOO language.

4.2 Recursively Defined Models

In many applications it is enough to hierarchically com-
pose models by explicitly defining model instances within
each other (e.g., the simpleCircuit example). How-
ever, sometimes several hundreds of model instances of the
same model should be connected to each other. This can of
course be achieved manually by creating hundreds of ex-
plicit instances. However, this results in very large models
that are hard to maintain and get an overview of.

One solution could be to add a loop-construct to the
EOO language. This is the approach taken in Modelica,
with thefor-equation construct. However, such an extra
language construct is actually not needed to model this
behavior. Analogously to defining recursive functions, we
can definerecursive models. This gives the same modeling
possibilities as adding thefor-construct. However, it is
more declarative and we have also found it easier to define
a compact formal semantics of the language using this
construct.

Consider Figure 3 which shows a Mechatronic model,
i.e., a model containing components from both the electri-
cal and mechanical domain. The left hand side of the model
shows a simple direct current (DC) motor. The electromo-
toric force (EMF) component converts electrical energy to
mechanical rotational energy. If we recall from Section 2,
the connection between electrical components was defined
using theWire definition. However, in the rotational me-
chanical domain, the connection is instead defined by using
the angle for the potential variable and the torque for flow.
The rotational connection is defined as follows:

def RotCon = func(){(var(),flow())};

In the middle of the model in Figure 3 a rotational body
with InertiaJ=0.2 is defined. This body is connected to a
flexible shaft, i.e., a shaft which is divided into a number of
small bodies connected in series with a spring and a damper
in parallel in between each pair of bodies.N is the number
of shaft elements that the shaft consists of.

A model of the mechatronic system is described by the
following MKL source code.

def MechSys = model(){
def c1 = RotCon();
def c2 = RotCon();
DCMotor(c1);
Inertia(c1,c2,0.2);
FlexibleShaft(c2,RotCon(),120);

};

The most interesting part is the definition of the component
FlexibleShaft. This shaft is connected to the Inertia
to the left. To the right, an empty rotational connection is
created using the constructionRotCon(), resulting in the
right side not being connected. The third argument states
that the shaft should consist of 120 elements.

Can these 120 elements be described without the need of
code duplication? Yes, by the simple but powerful mecha-
nism of recursively defined models. Consider the following
self-explanatory definitions ofShaftElement:

def ShaftElement = model(ca,cb){
def c1 = RotCon();
Spring(ca,c1,8);
Damper(ca,c1,1.5);
Inertia(c1,cb,0.03);

};

This model represents just one of the 120 elements con-
nected in series in the flexible shaft. The actual flexible
shaft model is recursively defined and makes use of the
ShaftElement model:

defrec FlexibleShaft = model(ca,cb,n){
if(n==1)

ShaftElement(ca,cb)
else{

def c1 = RotCon();
ShaftElement(ca,c1);
FlexibleShaft(c1,cb,n-1);

};
};
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The recursive definition is analogous to a standard recur-
sively defined function, where theif-expression evaluates
to false, as long as the count parametern is not equal to
1. For each recursive step, a new connection is created
by definingc1, which connects the shaft elements in se-
ries. Note that the last element of the shaft is connected to
the second port of theFlexibleShaft model, since the
shaft element created when theif-expression is evaluated
to true takes parametercb as an argument.

When theMechSys model is elaborated using our
MKL prototype implementation, it results in a DAE con-
sisting of 3159 equations and the same number of un-
knowns. It is obviously beneficial to be able to define re-
cursive models in cases such as the one above, instead of
manually creating 120 instances of a shaft element.

However, it is still a bit annoying to be forced to write
the recursive model definition each time one wants to seri-
alize a number of model instances. Is it possible to capture
and define this serialization behavior once and for all, and
then reuse this functionality?

4.3 Higher-Order Functions for Generic Model
Transformation

In the previous section we have seen how models can be
reused by applying models to other models, or to recur-
sively define models. In this section we show that it is in-
deed possible to define several kinds ofmodel transforma-
tionsby using higher-order functions. These functions can
in turn be part of a modeling language’s standard library,
enabling reuse of model transformation functions.

Recall the example from Section 2.2 of higher-order
functions returning other anonymously defined functions.
Assume that we want to create a generic function, which
can take any two models that have two ports defined
(Resistor, Capacitor, ShaftElement etc), and
then compose them together by connecting them in paral-
lel, and then return this new model:

def composeparallel = func(M1,M2){
model(p,n){

M1(p,n);
M2(p,n);

}
};

However, our modelResistor etc. does not take two ar-
guments, but 3, where the last one is the value for the partic-
ular component (resistance for theResistor, inductance
for theInductor etc.). Hence, it is convenient to define a
function that sets the value of this kind of model and returns
a morespecializedmodel4:

def set = func(M,val){
model(p,n){

M(p,n,val);
}

};

4 In these examples we are using tuples as argument to the function,
which makes it necessary to introduce a set function. The same kind of
specialization can of course also be performed usingcurrying. However,
we have chosen to use the tuple notation, since it is likely to be more
accessible for the reader with little experience of functional languages.

For example, a new modelFoo that composes two other
models can be defined as follows:

def Foo = composeparallel(set(Resistor, 100),
set(Inductor, 0.1));

A standard library can then further be enhanced with other
generic functions, e.g., a function that composes two mod-
els in series:

def composeserial = func(M1,M2,Con){
model(p,n){

def w = Con();
M1(p,w);
M2(w,n);

}
};

However, this time the function takes a third argument,
namely a connector, which is used to create the connec-
tion between the models created in series. Since different
domains have different kinds of connections (Wires, Rot-
Con etc.), this must be supplied as an argument to the func-
tion. These connections are defined as higher-order func-
tions and can therefore easily be passed as a value to the
composeserial function.

We have now created two simple generic functions
which compose models in parallel and in series. How-
ever, can we create a generic function that takes a model
M , a connectorC, and an integern, and then returns a
new model wheren number of modelsM has been con-
nected in series, using connectorC? If this is possible,
we do not have to create a special recursive model for the
FlexibleShaft, as shown in the previous section.

Fortunately, this is indeed possible by combining a
generic recursive model and a higher-order function. First,
we define a recursive modelrecmodel:

defrec recmodel = model(M,C,ca,cb,n){
if(n==1)

M(ca,cb)
else{

def c1 = C();
M(ca,c1);
recmodel(M,C,c1,cb,n-1);

};
};

Note the similarities to the recursively defined model
FlexibleShaft. However, in this version an arbitrary
modelM is composed in series, using connector parameter
C.

To make this model useful, we encapsulate it in a higher-
order function, which takes a modelM, a connectorC, and
an integer numbern of the number of wanted models in
series as input:

def serialize = func(M,C,n){
model(ca,cb){

recmodel(M,C,ca,cb,n);
}

};

Now, we can once again define the mechatronic system
given in Figure 3, but this time by using the generic func-
tion serialize:
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def MekSys2 = model(){
def c1 = RotCon();
def c2 = RotCon();
DCMotor(c1);
Inertia(c1,c2,0.2);
def FlexibleShaft =

serialize(ShaftElement,RotCon,120);
FlexibleShaft(c2,RotCon());

};

Even if the serialize function might seem a bit compli-
cated to define, the good news is that such functions usually
are created by library developers and not end-users. Fortu-
nately, the end-user only has to call the serialize function
and then use the newly created model. For example, to cre-
ate a new model, where 50 resistors are composed in series
is as easy as the following:

def Res50 =
serialize(set(Resistor,100), Wire, 50);

5. Future Perspectives of Higher-Order
Modeling

Our current design of higher-order acausal modeling capa-
bilities as presented here is restricted to executing during
the compiler (or interpreter) model elaboration phase, i.e.,
it cannot interact with run-time objects during simulation.
However, removing this restriction gives interesting possi-
bilities for run-time higher-order acausal modeling:

• The run-time results of simulation can be used in con-
junction with models as first-class objects in the lan-
guage, i.e., run-time creation of models, composition of
models, and returning models. This is also useful in ap-
plications such as model-based optimization or model-
based control, influenced by results from (on-line) sim-
ulation of models, e.g., [9].

• Structural variability [8, 18, 19, 29] of models and sys-
tems of equations means that the model structure can
change at run-time, e.g., change in causality and/or
number of equations. Run-time support for higher-order
acausal model can be seen as a general approach to
structurally variable systems. These ideas are discussed
in [18, 19] in the context of Functional Hybrid Model-
ing (FHM).

These run-time modeling facilities provide more flexibility
and expressive power but also give rise to several research
challenges that need to be addressed:

• How can static strong type checking be preserved?

• How can high performance from compile-time opti-
mizations be preserved? One example is index reduc-
tion, which requires symbolic manipulation of equa-
tions.

• How can we define a formal sound semantics for such a
language?

Another future generalization of higher-order acausal mod-
eling would be to allow models to be propagated along con-
nections. For example, a water source could be connected

to a generic flow connection structure with unspecified me-
dia. The selection of a media of type water in the source
would automatically propagate to other objects.

6. Related Work
The main emphasis of this work is to explore the language
concept of HOAMs in the context of EOO languages. In the
following we briefly discuss three aspects of work which is
related to this topic.

6.1 Functional Hybrid Modeling

As mentioned in the introduction, our notation of HOAMs
has similarities tofirst-class relations on signals, as out-
lined in the context of Functional Hybrid Modeling (FHM)
[18, 19]. The concepts in FHM are a generalization of
Functional Reactive Programming (FRP) [28], which is
based on reactive programming with causal hybrid mod-
eling capabilities. Both FHM and FRP are based onsig-
nals that conceptually are functions over time. While FRP
supports causal modeling, the aim of FHM is to support
acausal modeling with structurally dynamic systems. How-
ever, the work of FHM is currently at an early stage and
no published formal semantics or implementation currently
exist.

HOAMs are similar to FHM’s relations on signals in
the sense that they are both first-class and that they can
recursively reference themselves. In this paper we have
showed how recursion can be used to define large structures
of connected models, while in [19] ideas are outlined how
it can be used for structurally dynamic systems.

One difference is that FHM’s relations on signals are
as its name states only relations on signals, while MKL
acausal models can be parameterized on any type, e.g.,
other HOAMs or constants. By contrast, FHM’s relation on
signals can be parameterized by other relations or constants
using ordinary functional abstraction, i.e., free variables
inside a relation can be bound by a surrounding function
abstraction. There are obvious syntactic differences, but the
more specific semantic differences are currently hard to
compare, since there are no public semantic specification
available for any FHM language.

The work with MKL has currently focused on formal-
izing a kernel language for the elaboration process of typ-
ical EOO languages, such as Modelica. Hence, the formal
semantics of MKL defined in [4] investigates the compli-
cations when HOAMs are combined with flow variables,
generating sum-to-zero equations. How this kind of issue
is handled in FHM is currently not published.

6.2 Metaprogramming and Metamodeling

The notion of higher-order models is related to, but differ-
ent from metamodeling and metaprogramming. A metapro-
gram is a program that takes other programs/models as data
and produces programs/models as data, i.e., meta-programs
can manipulateobject programs[21]. A metamodel may
also have a subset of this functionality, i.e., it may spec-
ify the structure of other models represented as data, but
not necessarily be executable and produce other models.
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Staged metaprogramming can be achieved by quoting/un-
quoting operations applied in two or more stages, e.g., as
in MetaML [25] and Template Haskell [22].

We have earlier developed a simple metaprogramming
facility for Modelica by introducing quoting/unquoting
mechanisms [2], but with limited ability to perform op-
erations on code. A later extension [12] introduced general
metaprogramming operations based on pattern-matching
and transformations of abstract-syntax tree representations
of models/programs similar to those found in many func-
tional programming languages.

By contrast, the notion of higher-order models in this
paper allows direct access to models in the language, e.g.,
passing models to models and functions, returning models,
etc, without first representing (or viewing, reifying) mod-
els as data. This allows more integrated access to such fa-
cilities within the language including integration with the
type system. Moreover, it often implies simpler usage and
increased re-use compared to what is typically offered by
metaprogramming approaches.

Metaprogramming, on the other hand, offers the pos-
sibility of greater generality on the allowed operations on
models, e.g., symbolic differentiation of model equations,
and the possibility of compile-time only approaches with-
out any run-time penalty.

We should also mention the common usage of interpre-
tive scripting languages, e.g., Python, or add-on interpre-
tive scripting facilities using algorithmic parts of the mod-
eling language itself such as in OpenModelica [12] and Dy-
mola [7]. This works in practice, but is less well integrated
and typically a bit ad hoc. This either requires two lan-
guages (e.g., Python and Modelica), or a separate interpre-
tive implementation of a subset of the same language (e.g.,
Modelica scripting) which often give some differences in
semantics, ad hoc restrictions, and inconsistent or partially
missing integration with a general type system.

6.3 Modelica Redeclare and For-Equations

Modelica [17] provides a powerful facility called redecla-
ration, which has some capabilities of higher order mod-
els. Using redeclare, models can be passed as arguments
to models (but not to functions using ordinary argument
passing mechanisms e.g., at run-time), and returned from
models in the context of defining a new model. For exam-
ple:

model RefinedResistorCircuit =
GenericResistorCircuit
(redeclare model ResistorModel =
TempResistor);

Redeclaration can also be used to adapt a model when it is
inherited:

extends GenericResistorCircuit
(redeclare model ResistorModel =
TempResistor)

Redeclare is a compile-time facility which operates during
the model elaboration phase. Moreover, using redeclare
it is not possible to pass a model to a function, or to

return a model from a function. Redeclaration is similar to
C++ templates and Java Generics in that it allows passing
types/models, but is more closely integrated in the language
since it part of the class/model concept rather than being a
completely separate feature. The Modelica redeclare can
be seen as a special case of the more general concept of
higher-order acausal models.

Modelica also provides the concept of for-equations
to express repetitive equations and connection structures.
Since iteration can be expressed as recursion, also for mod-
els as shown in Section 4.2, the concept of for-equations
can be expressed as a special case of the more general con-
cept of recursive models included in higher-order acausal
models.

Even though EOO languages, such as Modelica, does
not support HOAMs at the syntax level, HOAMs can still
be very useful as a semantic concept for describing a pre-
cise formal semantics of the language. Language con-
structs, such asfor-equations, can then be transformed
down to a smaller kernel language. Having a small pre-
cisely defined language semantics can then make the lan-
guage specification less ambiguous, enable better formal
model checking possibilities, as well as providing more
accurate model exchange.

7. Conclusions
We have in this paper informally presented how the concept
of higher-order functions can be combined with acausal
models. This concept, which we call higher-order acausal
models (HOAMs), has been shown to be a fairly simple and
yet powerful construct, which enables both parameterized
models and recursively defined models. Moreover, by com-
bining it with functions, we have briefly shown how it can
be used to create reusable model transformation functions,
which typically can be part of a model language’s standard
library. The examples and the implementation were given
in a small research language called Modeling Kernel Lan-
guage (MKL), and it was illustrated how HOAMs can be
used during the elaboration phase. However, the concept is
not limited to the elaboration phase, and we believe that fu-
ture research in the area of HOAMs at runtime can enable
both more declarative expressiveness as well as simplified
semantics of EOO languages.
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Abstract
This paper investigates a novel approach to a type system
for modular systems of equations; i.e., equation systems
constructed by composition of individual equation system
fragments. The purpose of the type system is to ensure, to
the extent possible, that the composed system is solvable.
The central idea is to attribute astructural typeto equa-
tion system fragments that reflects which variables occur in
which equations. In many instances, this allows over- and
underdetermined system fragments to be identified sepa-
rately, without first having to assemble all fragments into
a complete system of equations. The setting of the pa-
per is equation-based, non-causal modelling, specifically
Functional Hybrid Modelling (FHM). However, the cen-
tral ideas are not tied to FHM, but should be applicable to
equation-based modelling languages in general, like Mod-
elica, as well as to applications featuring modular systems
of equations outside the field of modelling and simulation.

Keywords Equation-based, non-causal modelling; Mod-
elica; Functional Hybrid Modelling; structural analysis;
types; type-based analysis; dependent types

1. Introduction
An important question in the context of equation-based
modelling is whether or not the system of equations de-
scribing the modelled entity is solvable. In general, this can
only be answered by studying the complete system of equa-
tions, and often not even then, except by attempting to solve
the equations through simulation.

This is problematic. Models are usually modular, i.e.
described by combining small systems of equations into
larger ones. Being able to detect problems with individ-
ual parts or their combinations without first having to put
together a complete system model is generally desirable.
Moreover, a system may bestructurally dynamic, mean-
ing that the system of equations describing its behaviour
changesover time. This implies that the question of the
solvability cannot be addressed prior to simulation.
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However, establishing that a system of equationsdefi-
nitely is not solvablecan be almost as helpful. Fortunately
there are criteria necessary (but not sufficient) for solvabil-
ity that can be checked more easily and that are applicable
to model fragments. A simple example is that the number of
variables (unknowns) and equations must agree. For exam-
ple, Modelica as of version 3.0 [12] enforces this constraint
for model fragments (and thus for a model as a whole) so as
to enable early detection of common modelling mistakes.
Keeping track of the variable and equation balance is also
the idea behind the structural constraint delta type system
[2] with similar aims.

This paper is a preliminary investigation into an im-
proved type-based (and thus compile-time) analysis for de-
termining when (fragments of) systems of equationscan-
not be solved. The goal is to provide improved precision
compared with just counting variables and equations by at-
tributing astructural typeto systems of equations reflecting
which variables occur in which equations. A type-based ap-
proach is adopted as that is a natural way of ensuring that
model fragments can be checked in isolation. This is par-
ticularly important for structurally dynamic systems where
parts of the system change over time. However, as long as
thetypesof the parts remain unchanged, and are reasonably
informative, a meaningful analysis can still be carried out
statically, at compile-time.

The development is carried out in the context of Func-
tional Hybrid Modelling (FHM) [14, 15], as this provides a
small and manageable modelling language framework that
helps keeping the focus on the essence of the problem.
FHM itself is still in an early stage of development. How-
ever, the central ideas put forward in this paper are not tied
to FHM, but should be applicable to equation-based mod-
elling languages like Modelica in general, as well as to ap-
plications featuring modular systems of equations outside
the field of modelling and simulation. In effect, FHM is
mainly used as a convenient and concise notation for mod-
ular systems of equations.

The rest of the paper is organised as follows. Section 2
provides general background and discusses related work.
Section 3 provides an overview of FHM in the interest of
making this paper relatively self-contained. Section 4 then
develops the idea of structural types for modular systems
of equations. As an example, this is applied to a simple
electrical circuit in Section 5. Finally, Section 6 discusses
future work and Section 7 gives conclusions.
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2. Background and Related Work
Object-oriented modelling languages like Modelica [12] al-
low models to be developed in amodularfashion: systems
of equations describing individual components are com-
posed into larger systems of equations describing aggre-
gates of components, and ultimately into a complete model
of the system under consideration. As with software in gen-
eral, such modularity is key to addressing the complexity
of large-scale development as it allows large problems to
be broken down into smaller ones that can be addressed
independently, enables reuse, etc.

Of course, it is possible that mistakes are made during
the development of a model. If so, it is desirable to catch
such mistakes early. In a modular setting, this means check-
ing whether a component in isolation is inherently faulty,
and whether two or more components are being composed
appropriately. As a result, mistakes can be localised effec-
tively, meaning it becomes a lot easier to find and correct
them. In contrast, mistakes that only become evident once
a system has been fully assembled are usually a lot harder
to pinpoint as the symptom in itself often is not enough
to suggest any particular part of the system as the root of
the problem. Even more problematic is a situation where
problems only reveal themselves in use, as this means the
system is unreliable.

A good way to catch errors early is to employ the notion
of types. An entity has some particular type if it satisfies the
properties implied by that type. Atype systemthen governs
under which conditions typed entities may be combined,
and determines what properties the combined entity satis-
fies, i.e. its type.

As a simple example, consider the typeInteger . If an
entity has typeInteger , this means that this entity satisfies
the property of being an integer. Moreover, a rule of the
type system would establish thatany two entities satisfy-
ing the property of being integers can be combined using
arithmetic addition into a new entity that also is an inte-
ger. This example is trivial, but as we will see, it is possible
to capture much more complex properties through suitably
defined types.

An important aspect of a type system is that it works
solely on the basis of thetypesof the combined entities,
without referring to any specific entityinstances. This
makes it possible to establish various properties of a com-
bined entity before knowing exactly what all its parts are.
This in turn allows for all manner of useful parametrisa-
tions, systems with dynamically evolving structure, etc.

This paper is concerned with equation systems proper-
ties for establishing whether a system can be solved or not.
One necessary but not sufficient condition for solvability
is the variable and equation balance: globally, the num-
ber of variables to solve for and the number of equations
must be equal. Languages like Modelica naturally enforce
this. Since version 3.0 [12], Modelica has adopted the even
stricter criterion that (in essence) variables and equations
must belocally balanced, i.e. balanced on a per component
basis. Thus, in a sense, the property of being balanced is
implicitly part of the type of a component in Modelica 3.0,

as all well-typed components are balanced. Naturally, if all
components of a model are locally balanced, this implies
that the model is globally balanced.

Of course, a locally imbalanced model might still be
globally balanced. To allow such models (without defer-
ring all checking until a model has been fully assembled),
it is necessary toexplicitly make the variable and equation
imbalance part of the type of a component. This was sug-
gested by Nilssonet al. [14] and, independently, by Bro-
manet. al. [2], who developed the idea in detail by inte-
grating the notion of a “structural constraint delta” into the
types of components.

Unfortunately, ensuring that the number of variables
and equations agree only gives relatively weak assurances.
As a simple example, consider the following system of
equations, wheref , g, andh are known functions, andx,
y, andz are variables:

f(x, y, z) = 0

g(z) = 0

h(z) = 0

The number of equations and variables agree. Yet it is clear
that we cannot hope to solve this system of equations:x and
y occur only in one equation, but we need two equations
to have a chance to determine both of them. Moreover,z

occurs alone in two of the equations, meaning that it may
be impossible to find a value ofz that satisfies them both.
What we have in this case is anunderdeterminedsystem of
equations forx andy (one equation, two variables), and an
overdeterminedsystem of equations forz (two equations,
one variable).

Note that it was possible to establish the unsolvability
of this system by just considering itsstructure: which vari-
ables occurs in which equations. This can be formalised
through the notion of astructurally singularsystem of
equations:

DEFINITION 1 (Structurally singular system of equations).
A system of equations isstructurally singulariff it is not
possible to put the variables and equations in a one-to-
one correspondence such that each variable occurs in the
equation it is related to.

We now simply observe that a system of equations that is
structurally singular is unsolvable.

Languages like Modelica ensure that models are not
structurally singular as simulation is not possible if this is
the case. However, in Modelica, this check is not carried
out on a per component basis, but only once the system has
been fully expanded into a “flat” system of equations. To
the best of this author’s knowledge, this is also the case for
all similar languages. As a result, if it turns out that the final
model is structurally singular, it can be very difficult to find
out what the origin of the problem is.

To help overcome this difficulty, Bunus and Fritzson
proposed a method to help localising the cause of any struc-
tural singularity [3, 4]. Their idea is to view the system of
equations as a bipartite graph where the variables constitute
one set of nodes, the equations the other set of nodes, and
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f(x, y, z) = 0 (1)

g(x, z) = 0 (2)

h(y, z) = 0 (3)
(a) System of equations

x Eq. 1

y Eq. 2

z Eq. 3

(b) Bipartite graph

x y z

Eq. 1
Eq. 2
Eq. 3

0

@

1 1 1
1 0 1
0 1 1

1

A

(c) Incidence matrix

Figure 1. A system of equations and its corresponding
structural representations.

there is an edge between a variable and an equation if the
former occurs in the latter. See Figure 1(a) and 1(b). They
then use the Dulmage and Mendelsohn canonical decom-
position algorithm [6] to partition the flat system of equa-
tions into three parts: one overdetermined, one underdeter-
mined, and one where the variables and equations match
up. This information is then used to help diagnose the prob-
lem and suggest remedies.

Still, it would be an advantage if mistakes thatinevitably
are going to lead to structural singularities can be flagged
up early, without first having to fully expand a model. This
is true in particular for structurally dynamic systems: since
the system of equations describing the behaviour of the sys-
tem change over time, there is no one fully expanded sys-
tem in this case. This is the kind of systems we ultimately
hope to address in the context of our work on Functional
Hybrid Modelling [14, 15].

This paper investigates an approach to early detection of
structural singularities. The basic idea is to attribute types
to components such that these types characterise thestruc-
tureof the underlying system of equations used to represent
a component, or more precicely, the structure of the equa-
tions that constitute itsinterface. We refer to this as the
structural typeof the component. The fundamental idea is
similar to the structural constraint delta approach suggested
by Bromanet al.. However, the structural type is much
richer: instead of a single number reflecting the variable
and equation imbalance, the structural type details which
variables occur in which equations. That is, the structural
type is essentially a bipartite graph as in the work by Bunus
and Fritzson, or it can be viewed as anincidence matrix: see
Figure 1(c). We will freely switch between these two points
of view in the following.

It turns out, though, that it often will be necessary to
approximate the information on which variables occur in
which equations. Thus the approach of this paper is not
a complete alternative to error diagnosis on the final, flat
system of equations as suggested by Bunus and Fritzson,
but rather complementary to it.

3. Functional Hybrid Modelling
Functional Hybrid Modelling(FHM) [14, 15] is a gener-
alisation of the central ideas of Functional Reactive Pro-
gramming (FRP) [18]. In FRP, a functional programming
language is extended with constructs for reactive program-
ming andcausal, hybrid, modelling, specificallysignals
(time-varying values) and functions on signals. This has
proved to yield a very flexible and expressive framework
for many different kinds of reactive and modelling applica-
tions [13, 9, 5, 8]. The FHM approach is similar, butrela-
tions on signalsare added to addressnon-causalmodelling.

The salient features of FRP and FHM relevant for this
paper are covered in the rest of this section. The ideas are
illustrated with a simple circuit example. This example is
also used later in this paper. Note that FHM is currently
being developed: no complete implementation exists yet.
However, as explained earlier, it provides a convenient set-
ting for this work.

3.1 Fundamental Concepts

FRP is a conceptual framework. A number of concrete im-
plementations exists. Here, we will briefly consider Yampa
[13], which is most closely related to FHM. Yampa is based
on two central concepts:signalsand signal functions. A
signal is a function from time to a value; conceptually:

Signal α ≈ Time → α

(The conceptual nature of this definition is indicated by≈.
→ is the infix type constructor for function types.)Time

is continuous, and is represented as a non-negative real
number. The type parameterα specifies the type of values
carried by the signal. For example, the type of a varying
electrical voltage might beSignal Voltage.

A signal functionis a function fromSignal to Signal :

SF α β ≈ Signal α → Signal β

When a value of typeSF α β is applied to an input signal
of type Signal α, it produces an output signal of type
Signal β. Signal functions arefirst class entitiesin Yampa.
Signals, however, are not: they only exist indirectly through
the notion of signal function. Additionally, signal functions
satisfies a causality1 requirement: at any point in time, the
output must not depend on future input.

The output of a signal function at timet is uniquely
determined by the input signal on the interval[0, t]. If
a signal function is such that the output at timet only
depends on the input at the very same time instantt, it is
calledstateless. Otherwise it isstateful.

3.2 First-Class Signal Relations

A natural mathematical description of a continuous sig-
nal function is that of an ODE in explicit form. A func-
tion is just a special case of the more general concept of
a relation. While functions usually are given a causal in-
terpretation, relations are inherently non-causal. Differen-
tial Algebraic Equations (DAEs), which are at the heart of

1 This is temporalcausality, a notion distinct from the notion of causality
in “non-causal modelling.”

73



non-causal modelling, express dependences among signals
without imposing a causality on the signals in the relation.
Thus it is natural to view the meaning of a DAE as a non-
causalsignal relation, just as the meaning of an ODE in
explicit form can be seen as a causal signal function. Since
signal functions and signal relations are closely connected,
this view offers a clean way of integrating non-causal mod-
elling into an Yampa-like setting.

Similarly to the signal function typeSF of Yampa (Sec-
tion 3.1), the typeSR α stands for a relation on a signal of
typeα. Like signal functions, signal relations are first class
entities, as will become clear in the following. Specific re-
lations use a more refined type; e.g., for the derivative rela-
tion der we have the typing:

der :: SR (Real ,Real)

Since a signal carrying pairs is isomorphic to a pair of
signals, we can understandder as a binary relation on two
real-valued signals.

Signal relations are constructed as follows:

sigrel pattern where equations

The pattern introducessignal variablesthat at each point
in time are bound to theinstantaneousvalue of the corre-
sponding signal. Given a patternp of typet , p :: t , we have:

sigrel p where . . . :: SR t

Consequently, the equations express relationships be-
tween instantaneous signal values. This resembles the stan-
dard notation for differential equations in mathematics. For
example, considerx′ = f(y), which means that the instan-
taneous value of the derivative of (the signal)x at every
time instant is equal to the value obtained by applying the
functionf to the instantaneous value ofy.

There are two styles of basic equations:

e1 = e2

sr ⋄ e3

whereei are expressions (possibly introducing new signal
variables), andsr is anexpressiondenoting a signal rela-
tion. We require equations to be well-typed. Givenei :: ti,
this is the case ifft1 = t2 andsr :: t3.

The first kind of equation requires the values of the two
expressions to be equal at all points in time. For example:

f x = g y

wheref andg are ordinary, pure, functions.2

The second kind allows an arbitrary relation to be used
to enforce a relationship between signals. The symbol⋄
can be thought of asrelation application; the result is a
constraint which must hold at all times. The first kind of
equation is just a special case of the second in that it can be

2 We follow standard functional programming practice and denote ordi-
nary function application simply by juxtapositioning, without any paren-
theses.
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Figure 2. A simple electrical circuit.

seen as the application of the identity relation. Thus, with
I denoting the identity relation, an equatione1 = e2 could
also be writtenI ⋄ (e1, e2).

For another example, consider a differential equation
like x

′ = f(x, y). Using the notation above, this equation
can be written:

der ⋄ (x , f x y)

whereder is the relation relating a signal to its derivative.
For notational convenience, we will often use a notation
closer to standard mathematical practice:

der x = f x y

The meaning is exactly as in the first version. Thus, in the
second form,der is not a pure function operating only on
instantaneous signal values. It is a (stateful) signal function
operating on the underlying signal.

We illustrate the ideas above by modelling the electrical
circuit in Figure 2 (adapted from [11]). The typePin is a
record type describing an electrical connection. It has fields
v for voltage andi for current.3

twoPin :: SR (Pin ,Pin ,Voltage)
twoPin = sigrel (p,n, u) where

u = p.v − n.v

p.i + n.i = 0

resistor :: Resistance → SR (Pin ,Pin)

resistor r = sigrel (p,n) where

twoPin ⋄ (p,n, u)

r ∗ p.i = u

inductor :: Inductance → SR (Pin ,Pin)

inductor l = sigrel (p,n) where

twoPin ⋄ (p,n, u)
l ∗ der p.i = u

capacitor :: Capacitance → (Pin ,Pin)

capacitor c = sigrel (p,n) where

twoPin ⋄ (p,n, u)

c ∗ der u = p.i

The resistor, inductor and capacitor models are defined
as extensions of thetwoPin model. This is accomplished

3 The namePin is perhaps a bit misleading since it just represents a pair
of physical quantities,not a physical “pin component”; i.e.,Pin is the
type ofsignal variablesrather thansignal relations.
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using functional abstraction rather than any Modelica-like
class concept. Note how parameterized models are defined
through functionsreturning relations, e.g.resistor . Since
the parameters (liker of resistor ) are normal function
arguments,not signal variables, their values remain un-
changed throughout the lifetime of the returned relations.4

As signal relations are first class entities, signal relations
can be parameterized on other signal relations in the same
way.

To assemble these components into the full model, a
Modelica-inspiredconnect-notation is used as a conve-
nient abbreviation for connection equations. In FHM, this
is just syntactic sugar that is expanded to basic equations:
equality constraints for connected potential quantities and a
sum-to-zero equation for connected flow quantities.5 In the
following, connect is only applied toPin records, where
the voltage field is declared as a potential quantity whereas
the current field is declared as a flow quantity.

We assume that a voltage source modelvSourceAC

and a ground modelground are available in addition to
the component models defined above. Moreover, we are
only interested in the total current through the circuit, and,
as there are no inputs, the model thus becomes aunary
relation:

simpleCircuit :: SR Current

simpleCircuit = sigrel i where

resistor 1000 ⋄ (r1p, r1n)

resistor 2200 ⋄ (r2p, r2n)

capacitor 0.00047 ⋄ (cp, cn)

inductor 0.01 ⋄ (lp, ln)
vSourceAC 12 ⋄ (acp, acn)

ground ⋄ gp

connect acp r1p r2p

connect r1n cp

connect r2n lp

connect acn cn ln gp

i = r1p.i + r2p.i

There is no need to declare variables liker1p, r1n: their
types are inferred. Note the signal relation expressions like
resistor 1000 to the left of the signal relation application
operators⋄.

As an illustration of signal relation application, let us
expandresistor 1000 ⋄ (r1p, r1n) using the definitions of
twoPin andresistor . The result is is the following three
equations, whereu1 is a fresh variable:

u1 = r1p.n − r1n.v

r1p.i + r1n.i = 0

1000 ∗ r1p.i = u1

3.3 Dynamic Structure

Yampa can express highly structurally dynamic systems.
Ultimately, we hope to integrate as much of that function-

4 In Modelica terms, they areparameter-variables.
5 This simple treatment ofconnect has been sufficient for our small
examples thus far. It is not clear if all aspects of the more comprehensive
Modelica notion ofconnect could be handled in the same way.

ality as possible into FHM. As a basic example, switching
among two different sets of equations as a Boolean signal
changes value might be expressed as follows:

switch b

when False

equations
1

when True

equations
2

If the type system approach outlined in this paper is to work
for FHM, we need to consider how to handle such con-
structs from a type perspective. This is done in Section 4.4.
There are many other outstanding problems related to im-
plementation of structurally dynamic systems. But those
are outside the scope if this paper.

4. Structural Types for Signal Relations
We now define the notion of structural type and show how
it enables structural analysis to be carried out in a modular
way, without having to first expand out signal relations to
“flat” systems of equations. The key difficulty is abstraction
of structural types, and consequently the section mostly
focuses on that aspect.

4.1 The Structural Type

In essence, a signal relation is anencapsulatedsystem of
equations. When a signal function is applied, these equa-
tions impose constraints on signals in scope at the point of
application through the variables of the signal relationin-
terface. A larger system of equations is thus formed, com-
posed from equations contributed by each applied signal
relation.

Let us consider a simple example:

foo :: SR (Real ,Real ,Real)

foo = sigrel (x1, x2, x3) where

f1 x1 x2 x3 = 0

f2 x2 x3 = 0

Let us assume a context with five variables,u, v , w , x , y,
and let us applyfoo twice in that context:

foo ⋄ (u, v ,w)

foo ⋄ (w , u + x , v + y)

The result, obtained by substituting the variablesu, v , w ,
x , y into the equations offoo, is the following system of
equations:

f1 u v w = 0

f2 v w = 0

f1 w (u + x ) (v + y) = 0
f2 (u + x ) (v + y) = 0

Note that each application offoo contributed two equations
to the composed system, each for a subset of the variables
to the right of the relation application operator⋄.

As discussed in Section 2, the aim is now to analyse
the structure (which variables occur in which equations)
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of the composed system in order to identify situations that
definitely will result in over- or underdetermined systems
of equations.

However, for a variety of reasons, it is not desirable
to assume that this can be done by simply unfolding the
applied relations as was done above. In the context of FHM,
what goes to the left of⋄ is a signal relationexpression
that may involve parameters that are not known at compile
time, thus preventing the expression from being evaluated
statically. Or the exact contribution of the applied signal
relation might not be known for other reasons, for example
due to separate compilation or because it is structurally
dynamic.

Thus, we are only going to assume that thetypeof the
applied signal relation is known. To enable structural anal-
ysis, the type of signal relations is enriched by a component
reflecting its structure. We refer to this as thestructural type
of the signal relation.

DEFINITION 2 (Structural type of system of equations).
Thestructural typeof a system of equations is the incidence
matrix of that system. It has one row for each equation, and
one column for each variable in scope6. An occurrence of a
variable in an equation is indicated by 1, a non-occurrence
by 0.

Note that definition 2 concerns systems of equations.
For asignal relation, i.e. anencapsulatedsystem of equa-
tions, the structural type is limited to the equationscon-
tributed by the signal relation and the variables of its in-
terface. If the interface includes records of signal variables,
like Pin of the simple circuit example in Section 3.2, then
each field counts as an independent variable. We defer a
precise definition until section 4.3.

As an example, consider the signal relationfoo above.
Its type, including the structural part, is:

foo :: SR (Real ,Real ,Real)

(

1 1 1
0 1 1

)

4.2 Composition of Structural Types

Now let us consider composition of structural types. The
overall structural type for a sequence of equations is ob-
tained by simply joining the incidence matrices for the in-
dividual equations as the same set of variables is in scope
across all equations.

The structural type for a basic equation of the form

e1 = e2

is a single-row matrix indicating which variables occurs in
expressionse1 ande2.

The structural type for the second form of equation,
signal relation application, is more interesting. The general
form of this kind of equation is:

sr ⋄ (e1, e2, . . . , ei)

wheree1, e2, . . . , ei are expressions over the signal vari-
ables that are in scope. These expressions and their relation

6 Only “unknown” signal variables are of interest here, not parameters or
“known” (input) signal variables.

to the variables in scope can also be represented by an in-
cidence matrix, with one row for each expression and one
column for each variable. The incidence matrix of the sig-
nal relationapplicationis then obtained by Boolean matrix
multiplication7 of the structural type of the applied signal
relation and the incidence matrix of the right-hand side ex-
pressions.

Returning to the example from the previous section, the
incidence matrix of the right-hand side of the application

foo ⋄ (u, v ,w)

in a context with five signal variablesu, v , w , x , y is

u v w x y




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0





(where the columns have been labelled for clarity). Multi-
plying the structural type offoo with this matrix yields:

u v w x y

(

1 1 1
0 1 1

)





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



 =

u v w x y
(

1 1 1 0 0
0 1 1 0 0

)

Similarly, for

foo ⋄ (w , u + x , v + y)

we obtain

u v w x y

(

1 1 1
0 1 1

)





0 0 1 0 0
1 0 0 1 0
0 1 0 0 1



 =

u v w x y
(

1 1 1 1 1
1 1 0 1 1

)

The complete incidence matrix for the two applications of
foo is thus

u v w x y








1 1 1 0 0
0 1 1 0 0
1 1 1 1 1
1 1 0 1 1









Compare with the fully expanded system of equations in
the previous section.

4.3 Abstraction over Structural Types

In the previous section, we saw how to obtain the overall
structural type of a composition of signal relations given
the structural types of the involved signal relations. The

7 Multipl ication is understood as Boolean conjunction,∧ (logical “and”),
and addition as Boolean disjunction,∨ (logical “or”).
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next step is to consider how to encapsulate a system of
equations in a signal relation. It is often the case that the
set of variables in the interface of a signal relation, thein-
terface variablesis a proper subset of the variables that are
in scope. A signal relation may thus abstract over a num-
ber of local variables. This, in turn, means that a number
of the equations at handmustbe used to solve for the local
variables: the local variables are not going to be in scope
outside the signal relation, and thus it is not possible to add
further equations for them later.

The available equations are thus going to be partitioned
into local equations, those that are used to solve for lo-
cal variables, andinterface equations, those that are con-
tributed to the “outside” when the signal relation is ap-
plied. This immediately presents an opportunity to detect
instances of over- and underdetermined systems of equa-
tions for the local variables on a per signal relation basis.
However, it also presents a very hard problem as the par-
titioning is not uniquely determined, which in general im-
plies that a signal relation does not have unique best struc-
tural type.

To illustrate, consider encapsulating the example from
the previous section in a signal relation where only the
variablesu andy appear in the interface:

bar = sigrel (u, y) where

foo ⋄ (u, v ,w)
foo ⋄ (w , u + x , v + y)

Recall the incidence matrix of the encapsulated system:

u v w x y








1 1 1 0 0
0 1 1 0 0
1 1 1 1 1
1 1 0 1 1









Three of the underlying equations are needed to solve for
the local variablesv , w , andx , the remaining one is the
interface equation. But the only equation thatcannotbe
chosen as the interface equation is number 2, as no interface
variable occurs in this equation. Projecting out the columns
for the interface variables for the the incidence matrices for
the three possible choices of interface equation yields

u y
(

1 0
)

u y
(

1 1
)

u y
(

1 1
)

The last two possibilities are equivalent, so this leaves us
with two possible structural types: the signal relationbar

can either provide a single equation in which the first vari-
able of the interface occurs, or it can provide an equation
in which both interface variables occurs, depending on the
chosen equation partitioning inbar .

A modelling language compiler will decide on a spe-
cific partitioning. But this choice is typically dictated by
intricate numerical considerations and often also by the us-
age context8. As it is essential that typechecking is com-

8 Tools usually expand the model to a flat system of equations first. These
equations are then “sorted”, meaning deciding on which equation to use
to solve for a particular variable [7].

positional, it is clear that the partitioning must be done in-
dependently of usage context. And to ensure that the type
system is independent of arbitrary implementation choices,
as well as reasonably easy to understand for the end user, it
is clear that the partitioning should not depend on low-level
numerical considerations either.

There are two approaches for dealing with the situation.
One is toacceptthat a signal relation can have more than
one structural type. This paper does not explore that avenue
as there is a risk that it would lead to a combinatorial
explosion of possibilities to consider. Still, it should not
be ruled out. The other approach is to decide on a suitable
notion of “best” structural type. Then, if a signal relation
has more than one possible structural type, choose the best
one, if this is a uniquely determined choice, otherwise
approximateall best types with a type that is better than
them all, but still as informative as possible, and take this
approximation as the structural type of the signal relation.

We are going to adopt the a notion of “best” that reflects
the observation that an equation is more useful the more
variables that occur in it (as this gives more flexibility when
choosing which equation to use to solve for which vari-
able). We are further going to assume that an implemen-
tation is free to make such a best choice. The latter might
not be the case, but we should then keep in mind that the
objective of the type system isnot to guarantee that a sys-
tem of equationscanbe solved, but to detect cases where a
system of equations definitelycannotbe solved. Assuming
a freedom of choice is thus a safe approximation.

DEFINITION 3 (Subsumed (variables)).Let V1 andV2 be
sets of variables.V1 is subsumed byV2 iff V1 \ V2 = ∅.

DEFINITION 4 (Subsumed (structural types)).Let s1 and
s2 be structural types.s1 is subsumed bys2 iff there exists
a permutation of the rows of the incidence matrix fors2

such that the variables of each row of the incidence matrix
for s1 are subsumed by the variables of the corresponding
row of the permuted incidence matrix fors2. The subsumed
relation on structural types is denoted by the infix symbol
≤.

DEFINITION 5 (Best Structural Types).Let S be a set of
structural types. Thebest structural typesin S is the set

{s | s ∈ S ∧ ¬(∃s
′ ∈ S . s ≤ s

′)}

Returning to the signal relationbar above, we find that
it actually has a single best structural type since

u y
(

1 0
)

≤
u y

(

1 1
)

The complete type ofbar is thus:

bar :: SR (Real ,Real)
(

1 1
)

As an example of a case where there is not any best type,
consider

s1 =

(

1 0 1
1 0 0

)

, s2 =

(

0 0 1
1 1 1

)
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Note thats1 6≤ s2 ands2 6≤ s1. Neither is better than the
other, and the best structural types ofS = {s1, s2} is S.

What is needed if there is more than one best type is
to find an approximation in the form of an upper bound
that subsumes them all. Clearly such a bound exists: just
take the incidence matrix with all 1s, for example. That
corresponds to an assumption that each equation can be
used to solve for any variable, meaning that we are back to
the approach of counting equations and variables. However,
to avoid loosing precision unnecessarily, asmallest upper
boundshould be chosen. As the following example shows,
there may be more than one such bound, in which case one
is chosen arbitrarily.

Consider the two structural types
(

1 1 0 0
0 0 1 1

)

,

(

0 1 0 1
1 0 0 1

)

Upper bounds can be constructed by taking the union of
the first incidence matrix and all possible row permutations
of the second one. As there are only two rows, we get two
upper bounds:

(

1 1 0 1
1 0 1 1

)

,

(

1 1 0 1
0 1 1 1

)

Neither is smaller than the other. However, they are both as
small as possible, as removing a single 1 from any matrix
means it will not subsume one or the other of the original
matrices. Thus, in general, the least upper bound of struc-
tural types under the subsumed ordering is not uniquely
determined.

We can now give a definition of the structural type of a
signal relation:

DEFINITION 6 (Structural type of a signal relation).The
structural type of a signal relationwith a body ofm equa-
tions overn variables, of whichi variables occur in the
interface, if that type exists, is an(m − (n − i)) × i inci-
dence matrix that is a least upper bound of the structural
types of all possible choices of interface equations.

The following algorithm determines the structural type
of a signal relation when one exists, or reports an error
otherwise. We claim this without proof, leaving that as
future work:

Arguments:

1. Structural types for the system of equations of the body
of the signal relation in the form of anm× n incidence
matrix (m equations,n variables).

2. The setV of variables,|V | = n, and a mapping from
variables to the corresponding column number of the
incidence matrix.

3. The setI of interface variables of the signal relation.

Result:

• If successful, an(m− (n− |I|))× |I| incidence matrix
representing the structural type of the signal relation.

• Otherwise, an indication of the problem(s): under- or
overdetermined system of local equations; overdeter-
mined system of interface equations.

Algorithm:

1. LetL = V \ I be the set of local variables. Partitions
into three parts:

• sL: rows corresponding to equations over variables
in L only, thea priori local equations;

• sI : rows corresponding to equations over variables
in I only thea priori interface equations;

• sM : the remaining rows, corresponding to equations
over mixed interface and local variables.

Let mL, mI , mM be the number of rows ofsL, sI , and
sM respectively. (Note that the a priori local equations
canonly be used to solve for local variables, whereas
the a priori interface equations canonlybe used to solve
for interface variables.)

2. Let k = |L| − mL. k is the number of equations in
addition to local ones that are needed to solve for all
local variables.

• If k < 0, report “overdetermined local system of
equations”.

• If k > mM , report “underdetermined local system
of equations”.

3. InitialiseSI′ to ∅

4. Choosek rows from sM in all possible ways (
(

mM

k

)

possibilities,mM ≥ k). For each such choice:

(a) PartitionsM into sL′ containing thek chosen rows
andsI′ containing the remaining rows.

(b) ConsidersL and sL′ restricted to the local vari-
ablesL as a bipartite graph and compute a maxi-
mum matching using the standard augmenting path
algorithm [1, pp. 246–250]. Check if the size of the
matching is equal to|L|. If yes, this means that each
variable inL can be paired with a row fromsL orsL′

in which it occurs, which is a necessary condition for
using the equations corresponding to the rows from
sL or sL′ to solve for the local variables.

(c) ConsidersI andsI′ restricted to the interface vari-
ablesI as a bipartite graph and compute a maximum
matching using the standard augmenting path algo-
rithm. Check if the size of the matching is equal to
the number of rows ofsI andsI′ , i.e.mI +mM −k.
If yes, then this means that all equations correspond-
ing to the rows ofsI andsI′ can be used simulta-
neously to solve for one of the interface variables.
This is a necessary condition for ensuring that the
interface equations contributed by the signal relation
does not constitute an overdetermined system.

(d) If both checks above passed, then this particular
choice ofk rows isvalid.

(e) For each valid choice, addsI′ restricted to the vari-
ablesI to SI′ .

5. If SI′ = ∅, it is not possible to solve for the local vari-
ables and/or the interface equations contributed by the
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signal relation are going to be overdetermined. Report
the problem.

6. Determine the best structural typesSI′′ of SI′ .

7. LetsI′′ be a least upper bound ofSI′′ .

8. The incidence matrix obtained by joiningsI ands
′′

I is
the structural type of the signal relation, i.e. a least upper
bound of the structural types of all possible choices of
interface equations.

4.4 Structurally Dynamic Systems

To conclude the development, we briefly consider how to
handle structurally dynamic systems, for example of the
type illustrated in section 3.3. Clearly, the structural types
of the equations in the different branches could be differ-
ent. However, at any point in time, the choice of which
equations that are active is determined by the condition of
the switch-construct. Thus, the structural type of the en-
tire switch-construct is thegreatest lower boundof the
structural types of the branches, as that is the only thing
which is guaranteed at all points in time. One may also
want to impose additional consistency constraints between
the branches to avoid unpleasant surprises at run-time, e.g.
due to the system of equations all of a sudden becoming
overdetermined. But this has not yet been investigated.

4.5 Implementation

The algorithm for computing the structural type for a signal
relation has been prototyped in Haskell. It implements all
aspects of the described algorithm, except that it has not
been verified whether the computation of upper bounds
indeed yields one of the least upper bounds.

The time complexity of the algorithm is a concern. For
example, the

(

mM

k

)

possible partitionings of the mixed
equations that need to be investigated could, in adverse
circumstances, be a large number. However, there may be
ways to exploit more of the structure of the equations in
order to limit the number of alternatives to consider. It is
also easy to check how many partitioning there are before
starting to enumerate them, and if they are judged to be too
many, one can simply default to a safe over approximation
of the type.

5. Structural Types for a Simple Electrical
Circuit

As an example, let us apply the structural type system
developed in section 4 to the simple electrical circuit from
section 3.2.

Let us first consider the resistor. Recall thatPin is a
record of two fieldsv and i , and that the signal relation
interface thus consists offour variables:p.v , p.i , n.v , and
n.i :

resistor :: Resistance → SR (Pin ,Pin)

resistor r = sigrel (p,n) where

twoPin ⋄ (p,n, u)

r ∗ p.i = u

Before approximation, the two possible structural types for
resistor are

(

0 1 0 1
0 1 0 0

)

,

(

0 1 0 1
1 0 1 0

)

reflecting a choice between usingu = p.v − n.v or r ∗
p.i = u for solving for the local variableu. (The equation
u = p.v − n.v is contributed bytwoPin . However, note
that only itsstructural typeis of interest here, not the exact
equation.) This gets approximated with a least upper bound
to:

(

0 1 0 1
1 1 1 0

)

Of course,resistor cannot provide a single equation in
which all of p.v , p.i , andn.v occur. But as the equation
can only be used to solve for one of the variables, and as an
equation can be provided for either two of the variables or
the third, this is not too bad.

Let us now considerinductor :

inductor :: Inductance → SR (Pin ,Pin)

inductor l = sigrel (p,n) where

twoPin ⋄ (p,n, u)

l ∗ der p.i = u

The possible structural types before approximation are the
same as for resistor, but this time reflecting a choice be-
tween usingu = p.v − n.v or p.i =

∫

p.i ′ dt, wherep.i ′

is the state derivative, for solving for the local variables.
Note that the equationl ∗ p.i ′ = u is local, as neither the
state derivative noru occurs in the interface ofinductor .
After approximation, the structural type ofinductor be-
comes the same as that ofresistor .

The case forcapacitor is also very similar, and both
the possible structural types prior to approximation and the
final structural type are again the same.

For a final example, suppose a mistake has been made
in the definition ofsimpleCircuit : instead of

connect r1n cp

connect r2n lp

the equations read

connect r2n lp

connect r2n lp

Note that the number of equations and variables remain
exactly the same in the two cases (eachconnect above
is expanded to one equality constraint and one sum-to-zero
equation).

The structural type checking algorithm presented in this
paper correctly reports thatsimpleCircuit is a locally un-
derdetermined system. If only variables and equations had
been counted, this error would not have been detected.

6. Future Work
It should be emphasised that what has been presented in the
present paper is only a preliminary investigation into the
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basics of a type-based structural analysis for modular sys-
tems of equations. It is not yet yet a full-featured type sys-
tem. In particular, we have only considered the structural
aspect in isolation, and to that end it was tacitly assumed
that the structural types of composed signal relations were
known, enabling the overall structural type of signal rela-
tions to be computed in a bottom-up manner.

However, FHM aims at treating signal relations as first
class entities. One consequence of this is that signal rela-
tions can beparametrised, including on other signal rela-
tions. In FHM, a parametrised signal relation is simply a
function that computes a signal relation given values of the
parameters, which could include other signal relations. The
question then is how to determine the structural type of any
signal relation parameters.

One option would be to insist that the structural types of
signal relation parameters is always declared. This could be
cumbersome, but there is always the possibility of making
a permissible (imprecise) default assumption in the absence
of explicit declarations. Another option might be to try to
infer suitable structural constraints for the parameters from
how they are being used in Hindley-Milner fashion. A third
option would be to move to a framework ofdependent
types[17, 16] where types are indexed by (can depend on)
terms. In our case, the incidence matrices that represent the
structural type would be considered term-level data, and
the output structural type of a parametrised signal relation
is then allowed to depend on the input structural type(s),
or even the values of other parameters, meaning that the
output structural type will be given as a function of the
parameter values.

Incidentally, Modelica effectively also provides para-
metrised signal relations through its mechanism of replace-
able components. Here the problem is addressed by syn-
tactically requiring a default value for the replaceable com-
ponent, which is used for typechecking, and additionally
insisting that any replacement conforms with the type of
the default value in such a way that the the result after any
replacement is still guaranteed to be well-typed.

Another aspect that was not considered is how to handle
equations on arrays. If the sizes of the arrays are manifestly
known, it would be possible to consider an array equation
simply as a shorthand notation for equations between the
individual elements. But that is not very attractive, and it
would inevitably lead to unwieldy structural types, bloated
with lots of repetitive information. And, of course, if the
array sizes are not manifest but parameters of the relation,
it would be even more problematic. The most feasible ap-
proach is likely to restrict array equations in such a way
that each such equation can be considered a single equa-
tion for the purpose of the structural types. Again, mov-
ing to a setting of dependent types might be helpful, as the
typechecking depends on term-level data, i.e. the sizes of
the arrays. Dependent type systems supporting explicitly
sized data has been studied extensively. One good example
is Dependent ML [19, 20].

We would also like to integrate checking of physical
dimensions [10] into the FHM type system. We observe

that this is another reason to look closer at dependent types
since the types become dependent on term-level data. For
example, if an entity with a dimension type is subject to
iterated multiplication, the resulting dimension depends on
how many timesthe multiplication was iterated.

Finally, there are usability aspects that needs to be con-
sidered. While the type errors that are reported should be
attributed fairly precisely to the component that is faulty, it
is not clear how to phrase the error messages such that the
problem becomes evident to the end user. Also, we need
to keep in mind the conservative nature of the type system:
there is no guarantee that further errors will not be discov-
ered when a complete system of equations has been assem-
bled. Combining the approach developed here with that of
Bunus and Fritzson [3, 4] might help on both counts.

7. Conclusions
This paper presented a preliminary investigation into type
system for modular systems of equations. The setting of
the paper is equation-based, non-causal modelling, but the
central ideas should have more general applicability. The
paper showed how attributing astructural typeto equation
system fragments allows over- and underdetermined sys-
tem fragments to be identified separately, without first hav-
ing to assemble all fragments into a complete system of
equations. The central difficulty was handling abstraction
of systems of equations. The paper presented an algorithm
for determining the best possible type for an abstracted sys-
tem, although this may involve approximation.

It should be emphasised that was has been presented is
not yet a complete type system. The paper only consid-
ers the structural aspect, and it was tacitly assumed that
these structural types essentially could be determined in
a straightforward bottom-up manner. The goal of treating
signal relations as first class entities raises a number of
further challenges, some of which were discussed in Sec-
tion 6.
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Abstract
The work performed by the authors to provide to Model-
ica more discrete-event system modeling functionalities is
presented. These functionalities include the replication of
the modeling capacities found in the Arena environment,
the SIMAN language and the DEVS formalism. The imple-
mentation of these new functionalities is included in three
free Modelica libraries called ARENALib, SIMANLib and
DEVSLib. These libraries also include capacities for ran-
dom number and variates generation, and dynamic memory
management. They are freely available for download at
http://www.euclides.dia.uned.es/.

As observed in the work performed, discrete-event sys-
tem modeling with Modelica using the process-oriented ap-
proach is difficult and complex. The convenience to include
a new concept in the Modelica language has been observed
and is discussed in this contribution. This new concept
corresponds to the model communication mechanism using
messages. Messages help to describe the communication
between components in a discrete-event system. They do
not substitute the current discrete-event modeling capabili-
ties of Modelica, but extend them. The proposed messages
mechanism in Modelica is discussed in the manuscript.
An implementation of the messages mechanism is also
proposed.

Keywords discrete events, process-oriented modeling,
Modelica, Arena, SIMAN, DEVS, messages

1. Introduction
Several Modelica libraries have been developed by the
authors in order to provide to Modelica more discrete-
event system modeling capabilities. The work performed
is specially based in modeling systems using the process-
oriented approach, reproducing the modeling function-
alities of the Arena simulation environment [10] in a

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
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Modelica library called ARENALib. The functionalities
of the SIMAN modeling language [18], used to describe
components in Arena, have also been reproduced in a
Modelica library called SIMANLib. One objective of
the development of this library is to take advantage of
the Modelica object-oriented capabilities to modularize
as much as possible the development of discrete-event
system models. Also, the use of a formal specification to
describe SIMANLib components helped to understand,
develop and maintain them. SIMANLib blocks can be
described using DEVS specification formalism [21]. Event
communication in DEVS and block communication in
SIMANLib match perfectly. An implementation of the
Parallel DEVS formalism [23] has been developed in a
Modelica library called DEVSLib, and used to describe the
components in SIMANLib. All the performed work with
Modelica has been developed using the Dymola modeling
environment [1]. The problems encountered during the
development of the ARENALib, SIMANLib and DEVSLib
Modelica libraries, and the solutions applied to those
problems are discussed.

The Modelica language includes several functionalities
for discrete-event management, such asif expressions to
define changes in the structure of the model, orwhen
expressions to define event conditions and the actions as-
sociated with the defined events [16].

Other authors have contributed to the discrete-event sys-
tem modeling with Modelica. Depending on the formalism
used to define the discrete-event system, contributions can
be found using finite state machines [7, 14, 17], Petri nets
[15] or the DEVS formalism [2, 3, 4, 8]. On the other hand,
other authors have developed tools to simulate discrete-
event systems in conjunction with Modelica. For example,
translating models developed using a subset of the Model-
ica language to the DEVS formalism. The translated mod-
els are then simulated using the CD++ DEVS simulator [5].
Also, other authors describe the discrete-event system with
an external tool that translates a block diagram to Modelica
code [19].

All these contributions use the event-scheduling ap-
proach for describing the discrete-event systems [12].
Events are scheduled to occur in a future time instant. The
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simulation evolves executing the actions associated with
the occurrence of the events.

Due to the difficulties and problems encountered during
the development of the mentioned Modelica libraries, the
convenience of introducing a new concept in Modelica
has been identified. This new concept will facilitate the
development of discrete-event systems, extending the cur-
rent Modelica capacities. This new concept is the model
communication using the messages mechanism. The main
characteristics and functionalities of this mechanism are
also discussed in this manuscript.

2. Process-Oriented Modeling in Modelica
A discrete-event system modeled using the process-oriented
approach is described from the point of view of entities
[10]. These entities flow through the components of the
system, and some processes are applied to them using the
available resources of the system. Some of the information
associated with the entities are the serial number, the
type, the statistical indicators, the attributes, the creation
time, and the processing time among others. An example
of this kind of system can be a beverage manufacturing
system. The entities of this system are the bottles. A tank
fills bottles with the beverage. Once filled, the bottles are
labeled and quality controlled before they are accepted
for distribution (first and second class bottles). Bottles
without the required quality are cleaned and re-labeled. The
components of this kind of systems are usually stochastic.
For example, the labeling and cleaning processes are
modeled using the Triangular probability distribution. The
quality controls are represented by two-way decisions
whose percentage is based on the values of uniform random
variates.

The process-oriented approach is supported by the
Arena simulation environment to model discrete-event
systems. Arena hasdata modules, that represent the en-
tities, the resources, and some other static elements of
the system, andflowchart modules, that represent the
processes performed on the entities across the system.
The implementation of the beverage manufacturing system
using Arena is shown in Figure 1a. It is modeled as a hybrid
system, because the tank is represented by a continuous-
time model.

Arena allows some simple hybrid modeling by describ-
ing level variables, that change continuously over time, and
rate variables, that represent how fast the level variable
changes its value. Each pair of level/rate variables repre-
sents a differential equation that is simulated using Euler,
RKF or any user-implemented integration method.

2.1 ARENALib

ARENALib reproduces the Arena data and flowchart mod-
ules that have to be combined and connected to model the
system. This library is freely available for download at [6].
At the moment, the Create, Process, Dispose and Decide
flowchart modules and the Entity, Queue, Resource and
Variable data modules, of the Arena Basic Process panel,
have been implemented.

a)

b)

Figure 1. Beverage manufacturing system. An example of
hybrid discrete-event system developed using: a) Arena;
and b) ARENALib.

The library also allows hybrid system modeling, com-
bining the current Modelica continuous-time system mod-
eling functionalities with the components of ARENALib. A
detailed description of the library can be found in [20]. The
model of the beverage manufacturing system composed
using ARENALib is shown in Figure 1b. In this figure,
theBottle_fillingmodule corresponds to a Create module,
Labeling and Cleaning correspond to Process modules,
Quality_controland Quality_control_2are Decide mod-
ules and theFirstClass_bottleandSecondClass_bottleare
Dispose modules.Entities, queuesand resourcescontain
the data modules required for this system.

The main tasks accomplished during the development
of the ARENALib library were: a) the model communica-
tion mechanism; b) the entity management; c) the manage-
ment of the statistical information and; d) the generation of
stochastic data. These tasks and the solutions proposed and
implemented to the problems encountered during the de-
velopment of the ARENALib library are discussed below.

2.2 Model Communication Mechanism

Entities are generated in the system during the simulation,
flow across the components of the system and, if necessary,
are disposed. Generally, the number of entities in the sys-
tem changes during the simulation run, depending on the
behavior of the system.

Usually an entity arrives to a module, is processed and
sent to the following module. Entity communication is an
important part of the simulation process.
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Model interaction in Modelica can be performed using
connectors. A connector is an special class and contains
some variables that are linked with the ones in another
connector using a connect equation. The connect equation
relates variables either equaling them, or summing them
and equaling the sum to zero.

Several approaches have been studied, implemented and
evaluated during the development of ARENALib in order
to perform the entity transmission between modules. The
approach used to perform the entity transmission is com-
pletely transparent for the end user. At the user level, the
communication is just defined by connecting the output
ports of some modules to the input ports of other modules.
The mentioned approaches are discussed next.

2.2.1 Direct transmission

It consists of specifying all the variables that define a type
of entity inside the connector. The values assigned to the
variables of one connector represent an entity. These values
are assigned, because of the connect equation, to the con-
nector of the next model. In this way, an entity is directly
transmitted from one model to another. Different types of
entities require different connectors, one for each type. This
is the simplest way for communicating models, but presents
a problem: the simultaneous reception of several entities
at one model. There are three possible situations for this
problem:

• One-to-one connection: one model sends several enti-
ties to another model at the same time.

• Many-to-one connection: several models simultane-
ously send one entity to another model.

• A combination of the previous cases: several models
simultaneously send one, or more, entities to another
model.

The two following solutions have been applied to this prob-
lem.

1. Synchronizing the entity transmission between mod-
els using semaphores. The synchronization allows the
sender and receiver to manage the flow of entities be-
tween both models, using a send/ACK mechanism like
in the TCP/IP communication. Thus, the sender model
will send an entity to the receiver and wait for an ACK.
On the other hand, the receiver model will receive enti-
ties when it is ready to process them, and only send the
ACK back if still ready to continue processing more en-
tities. A model of the semaphore synchronization mech-
anism, based on a previous work by Lundvall and Fritz-
son [9], has been implemented and is freely available
for download at [6]. A disadvantage of this solution is
the performance degradation due to the event iteration
that takes place during the synchronization phase of the
entity transmission.

2. Including in the connector aflow variable that rep-
resents the number of entities sent from a model. So,
the model receiving the entities will know the number
of entities received, even with many senders. However,

the information that describes several entities can not
be transmitted simultaneously using the direct trans-
mission approach. The variables of the connector that
describe the entity can not be assigned with different
values, that represent the different transmitted entities,
at the same time. Anyway, the text file storage and
dynamic memory storage approaches, discussed below,
allow to solve this problem using the flow variable.

2.2.2 Text file storage

The idea is to define an intermediate storage for the trans-
mitted entities. This storage behaves as a communication
buffer between two or more modules.

The storage is implemented in a text file, that stores in
each line of text the information related to each transmitted
entity. The connector contains a reference to the text file,
its file-name, and the flow variable indicating the number
of entities received. This reference is shared between the
models connected to that connector, allowing them to ac-
cess the file. Each module able to receive entities, creates
an storage text file and sets the reference to that file in the
connector. Functions to read/write entities from/to the file
have been developed. A model writes one or several entities
to the file using the write function. Another function is used
by the receiver to check the number of entities in the file.
When there is any entity to be read, the receiver reads the
entities and processes them. Thus, this approach allows the
simultaneous reception of several entities.

A disadvantage associated with this approach is the poor
performance due to the high usage of I/O operations to ac-
cess the files. Also, the structure of the information stored
in the files is not very flexible if any additional information
has to be included. If new types of entities need to be
used, or the attributes of an entity have to be changed, the
file management functions (i.e. read and write) have to be
reimplemented to correctly parse the text file to support
these new changes.

2.2.3 Dynamic memory storage

In order to improve the performance of the text file ap-
proach, the intermediate storage was moved from the file-
system to the main memory. Using the Modelica external
functions interface, a library in C was created to manage
the intermediate storage using dynamic memory allocation.
An entity is represented in Modelica using arecord class,
and in C using its equivalentstruct data structure. En-
tities are stored using linked-lists structures during their
transmission from one model to another. This library is
freely distributed together with the ARENALib Modelica
library.

Instead of a reference to the file, the connector contains
a reference to the memory space that stores the entities,
together with the flow variable that indicates the number
of entities received. That reference is the memory address
pointing to the beginning of the linked-list. It is stored in
an integer variable in the connector. Similarly to the text
file approach, each model able to receive entities initializes
the linked-list and sets the reference to it in the connector.
Entities can be transferred to the queue using the write
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function, and can be extracted using the read function. An-
other function is used to check the availability of received
entities, in order to process them.

This approach also allows the simultaneous reception
of several entities. The performance is highly increased
compared to the text file approach. And, the structure of the
information only depends on the data structures managed
by the functions. To modify any attribute or entity type, it
is only necessary to change a data structure and not all the
functions used to manage that structure.

2.3 Entity Management

Regarding the entity management, it has to be mentioned
that an additional problem appears when implementing
processes that delay the entity. Arena process module can
include a delay time that represents the time spent pro-
cessing the entity. This delay time is usually randomly
selected from a probability distribution. It has to be noticed
that since the delay time is usually random, the order of
the arrived entities need not correspond to the order of
the entities leaving the process. These processes have to
include a temporal storage for the entities that are being
delayed. This problem can be solved using the text file
storage or the dynamic memory storage as an additional
storage for delayed entities. Due to performance reasons,
the dynamic memory approach was used to manage entity
storage during delays in ARENALib and SIMANLib.

Together with the initialization of the linked-queue for
entity communication, a process module initializes a tem-
porary storage, represented by a linked-list in memory, for
delayed entities. The reference to that list is also stored in
an integer variable. Every time the process module has to
delay an entity, it stores the entity in the list using a write
function. Entities are inserted in the list in increasing order,
according to the time they must leave the process. The
insertion of an entity in the list returns the leaving-time
for the first entity in the queue. When the simulation time
reaches the next leaving-time, the entity or entities leaving
the process are extracted from the list and sent to the next
module.

2.4 Stochastic Data Generation

Discrete-event models usually contain some kind of stochas-
tic information. Random processing times, delays or inter-
arrival times help to construct a more realistic model of a
given system.

The Modelica language specification does not include
any functionality for random number generation. Dymola,
the modeling environment used to develop and test the
mentioned Modelica libraries, includes two functions for
generating random uniform and random normal variates
[1]. The generation of random variates following other
probability distributions is not covered by these random
number generation functions. Also, the application of vari-
ance reduction techniques is not supported by these func-
tions.

A random number generator (RNG) was developed by
the authors. The RNG algorithm selected for its implemen-
tation in Modelica is the same that is used in the Arena

environment. This allows the validation of the ARENALib
models using the Arena environment, because both use
the same source of random numbers. This RNG algorithm
was proposed by Pierre L’Ecuyer and is called Combined
Multiple Recursive Generator. A detailed description of the
RNG is given in [13].

Additionally to the implementation of the RNG, some
functions for generating random variates were also devel-
oped by the authors of this manuscript. The new RNG and
the random variates generation functions are packaged in a
Modelica library called RandomLib. This library is freely
available for download at [6].

2.5 Statistical Information Management

Simulation results are usually reported using statistical in-
dicators, due to the stochastic nature of discrete-event sys-
tems. Some of these statistical indicators have to be cal-
culated during the simulation and some others at the end.
The amount of data that has to be stored to calculate some
of these indicators changes depending on the length of the
simulation.

Modelica does not allow to declare variables with an
undefined length or size, which are required to store the
statistical data. A mechanism to declare variables of unde-
fined length in Modelica needs to be defined, giving the
possibility to increase or decrease the size of the variable
during the simulation run.

This problem is very similar to the previously mentioned
one about intermediate entity storage for transmission or
delay management. So, the mentioned dynamic memory
storage has been used in ARENALib to record the infor-
mation regarding the statistical indicators of the simulation.
The indicators calculated in each ARENALib module are
shown in Table 1. Statistical indicators calculated include
the number of entities arrived, the number of entities de-
parted, processing times, the number of entities in queue,
and the number of entities in the system, among others.
The information calculated for each indicator is the mean,
the maximum value, the minimum value, the final value
and the number of observations. These values are updated
during the simulation. On the other hand, all the interme-
diate values have to be recorded and used to calculate the
confidence interval at the end of the simulation. A variable
in Modelica stores a reference to the memory space that
contains the stored data for each indicator. That space is
managed using external functions written in C.

2.6 SIMANLib

The first approach for the development of ARENALib was
to write all its components, except the mentioned external
functions and data types which are written in C, in plain
Modelica code. This generated large and complex models
that were difficult to understand, maintain and extend.

The idea then was to divide the actions performed by
each module into simpler actions that combined will offer
the same functionality than the original module.

The same structure can be observed in the Arena en-
vironment, where the modules are based and constructed
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Module Indicator Values

Create System.NumberIn Obs
Process NumberIn Obs

NumberOut Obs
VATime Per Entity Avg, Min, Max, Final, Obs
NVATime Per Entity Avg, Min, Max, Final, Obs
TotalTime Per Entity Avg, Min, Max, Final, Obs
Queue.NQ Avg, Min, Max, Final
Queue.WaitTime Avg, Min, Max, Final, Obs

Dispose System.NumberOut Obs
EntityType NumberIn Obs

NumberOut Obs
VATime Avg, Min, Max, Final, Obs
NVATime Avg, Min, Max, Final, Obs
TranTime Avg, Min, Max, Final, Obs
WaitTime Avg, Min, Max, Final, Obs
OtherTime Avg, Min, Max, Final, Obs
Work In Progress Avg, Min, Max, Final

Table 1. Statistical indicators and values calculated in the
ARENALib modules.

a) b)

Figure 2. Flowchart modules: a) ARENALib; and b)
SIMANLib.

using a lower level simulation language called SIMAN
[18].

SIMANLib contains low-level components for discrete-
event system modeling and simulation. These are low-
level components compared to the modules in ARENALib,
which represent the high-level modules for system mod-
eling. Flowchart modules of both libraries are shown in
Figure 2. ARENALib modules can be described using a
combination of SIMANLib components. For example, the
process module of ARENALib is composed by the Queue,
Seize, Delay and Release blocks of SIMANLib, as shown
in Figure 3.

Components in SIMANLib are divided, as well as in the
SIMAN language, in two groups: blocks and elements. The
blocks represent the dynamic part of the system, and are
used to describe its structure and define the flow of entities
from their creation to their disposal. The elements represent
the static part of the system, and are used to model different
components such as entities, resources, queues, etc.

An example of a model developed using SIMANLib
is shown in Figure 4. This system is very similar to the

a)

b)

Figure 3. ARENALib process module: a) icon; and b)
internal structure composed using SIMANLib components.

beverage manufacturing system mentioned above. The en-
tities are pieces to be machined. The pieces arrive to the
system and are processed by a machine, one at a time.
After processed, the pieces are inspected by a supervisor
and classified as Good, Reject and Repair. Repair pieces
are sent back for re-processing.

3. Parallel DEVS in Modelica
The main objective of the implementation of the DEVSLib
library has been to closely follow the definition of the
Parallel DEVS formalism and implement all its features
without restrictions. The functionalities of DEVSLib are
similar to the ones offered by other DEVS environments
such as DEVSJAVA [24] or CD++ [22]. These similarities
include the new atomic and coupled models construction
based on predefined classes, the redefinition of the internal,
external, output and time advance functions in each atomic
model as required by the user and the management of
model input and output ports as needed. However, due to
the capacities of the Modelica language, DEVSLib still
presents some restrictions that will be discussed below.

3.1 DEVSLib Architecture

The architecture of the library is rather simple. It is shown
in Figure 5a. It contains two main models, atomicDraft
and coupledDraft, that represent the basic structures for
building any new atomic or coupled DEVS models. To-
gether with the main models there are several auxiliary
models and functions for managing event transmission.
Additionally, some examples of atomic and coupled sys-
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Figure 4. Manufacturing system model composed using SIMANLib components.

tems have been included. One of the included examples is
the hybrid model of a pendulum clock [11], which is shown
in Figure 5b. In this system a continuous-time model of a
pendulum generates tics, acting as the motor of the clock.
The rest of the clock receives the tics, calculates the current
time (in hours and minutes) and manages the alarm of the
clock.

3.2 Model Development with DEVSLib

When building a new atomic model, the user has to specify
the actions to be performed by the external transition,
internal transition, output and time advance functions.
This can be performed redeclaring the functionsFext,
Fint,Fout andFta, initially declared in the atomicDraft
model. The user can specify any desired behavior for
these functions, while maintaining the defined function
declaration. Any new atomic model has to extend the
AtomicDEVS model and to redeclare the mentioned func-
tions. The Modelica code of a processor system [23]
developed using DEVSLib is shown in Listings 1, 2 and
3.

The desired number of input and output ports can also
be included in the new model and managed with the men-
tioned functions. The user can drag and drop new input and
output ports into the model. The prototypes of the external
transition and the output function allow the user to check
the port where an incoming event has been received, or to
specify the output port to send the event. All these ports
could be connected later to other models.

A coupled DEVS model, like the one shown in Fig-
ure 5b, can be easily build using previously defined atomic
or coupled models, and connecting them as required. The
input and output ports have to be included and connected
to any of the model components

model processor
extends AtomicDEVS(

redeclare record State = st);
redeclare function Fcon = con;
redeclare function Fint = int;
redeclare function Fext = ext;
redeclare function Fta = ta;
redeclare function initState =

initst(dt=processTime);
parameter Real processTime = 1;
Interfaces.outPortManager outPortManager1(

redeclare record State = st,
redeclare function Fout = out,
n=1);

Interfaces.outPort outPort1; // output port
Interfaces.inPort inPort1; // input port

equation
iEvent[1] = inPort1.event;
iQueue[1] = inPort1.queue;
connect(outPortManager1.port, outPort1);

end processor;

Listing 1. Modelica code of a processor system modeled
using DEVSLib.

3.3 DEVSLib Modeling Restrictions

One restriction in DEVSLib is the impossibility to perform
one-to-many connections. These kind of connections are
not considered in ARENALib or SIMANLib because nei-
ther Arena nor SIMAN permit them. However, the Parallel
DEVS formalism allows this kind of connection so they
have been taken into account.

This restriction appears because the way the port and the
event communication mechanism is managed, using dy-
namic memory storage. As mentioned before, each receiver
initializes its linked-queue to receive entities. A one-to-
many connection cannot be performed because the sender
can not store in just one integer variable the references to
all the linked-queues created by the receivers. A solution
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function con "Confluent Transtition Function"
input st s;
input Real e;
input Integer q;
input Integer port;
output st sout;
output st soutput;

algorithm
soutput := s;
sout := ext(int(s),e,q,port);

end con;

function int "Internal Transition Function"
input st s;
output st sout;

algorithm
sout := s;
sout.phase := 1; // passive
sout.delta := Modelica.Constants.inf;
sout.job := 0;

end int;

function ext "External Transition Function"
input st s;
input Real e;
input Integer q;
input Integer port;
output st sout;

protected
Integer numreceived;
stdEvent x;

algorithm
sout := s;
numreceived := numEvents(q);
if s.phase == 1 then
for i in 1:numreceived loop

x := getEvent(q);
if i == 1 then

sout.job := x.Value;
Modelica.Utilities.Streams.
print("* Event to process");

else
Modelica.Utilities.Streams.
print("* Event balked");

end if;
sout.received := sout.received +1;

end for;
sout.phase := 2; // active
sout.delta := s.dt; // processing_time

else
sout.delta := s.delta -e;

end if;
end ext;

function out "Output Function"
input st s;
input Integer port;
input Integer queue;
output Boolean send;

protected
stdEvent y;

algorithm
if s.phase == 2 then
send := true;
y.Type := 1;
y.Value := s.job;
sendEvent(queue,y);

else
send := false;

end if;
end out;

function ta "Time Advance Function"
input st s;
output Real delta;

algorithm
delta := s.delta;

end ta;

Listing 2. Modelica code of the functions redeclared in the
processor system.

a)

b)

Figure 5. The DEVSLib Modelica library: a) architecture;
and b) case of use (model of a pendulum clock).

record st "State of the model"
Integer phase; // 1 = passive, 2 = active
Real delta; // internal transitions interval
Real job; // current processing job
Real dt; // default processing time
Integer received; // num of jobs received

end st;

function initst "State Initialization Function"
input Real dt;
output st out;

algorithm
out.phase := 1; // passive
out.delta := Modelica.Constants.inf;
out.job := 0;
out.dt := dt;
out.received := 0;

end initst;

Listing 3. Modelica code of the state and state initalization
function of the processor system.

has been implemented in the DEVSLib library. This so-
lution consists in an intermediate model that can be used
to duplicate the events and send them to the receivers.
Examples of this intermediate model are theMinValueand
theHourValuemodels shown in Figure 5b.

By default, the information transmitted between models
in DEVSLib, at event instants, is composed by two values:
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the type of the event and a real value. The information
communication mechanism using dynamic memory is rel-
atively complex. It will not be easy for a user to change
the structure of the information, type and value, transmit-
ted in events. Anyway, it can be performed modifying the
Modelica and C data structures that support the communi-
cation mechanism. In order to improve the mechanism for
managing the information transmitted in events, additional
information structures will be included to the DEVSLib li-
brary. For example, giving the possibility to transmit arrays
or matrices instead of only real values.

4. Introducing Messages in Modelica
A conclusion of the performed work is that discrete-
event system modeling with Modelica, using the process-
oriented approach, is not an easy task. The components
required for modeling these kind of systems and the
solutions proposed for the problems are relatively complex.
The developed libraries provide some functionalities for
discrete-event system modeling with Modelica, using the
process-oriented approach. Still, there are some problems
without a solution, like the one-to-many connections in
DEVSLib and the polymorphism of the information trans-
mitted at event instants.

In this section the model communication using mes-
sages in Modelica is presented. The authors also propose
a possible implementation of this mechanism that will be
discussed in Section 5.

4.1 Motivation

The main difficulty observed in the presented work is the
model communication mechanism. This is the way models
are connected and communicate.

The connection of models in Modelica is represented
by theconnect equation. In a connection equation the
value of the variables at the ends of the connection are
either equaled, or summed and equaled to zero. A connec-
tion between discrete-event models does not establish any
relation between variables of both models, but is used to
communicate some information that has been generated in
one model and is transmitted to another. Both connection
concepts mean different things.

Event management is also different between Modelica
and DEVS discrete-event systems. An event in Model-
ica involves a change in the value of a boolean condition
that either makes the structure of the model to change,
or performs a change in the discrete time variables or the
state variables of the model. Events in DEVS discrete-event
systems represent a change in the state of the system or its
discrete time variables, and usually also involves the ex-
change of information between models. This is an instanta-
neous transmission/reception of an impulse of information
between models at the time of an event. Event management
in discrete-event systems involve additional things than in
Modelica, because of this information communication.

In order to make the development of discrete-event
systems more simple and easy, a new concept is proposed
and introduced in Modelica. This concept is the messages

communication mechanism. The messages mechanism
provides the capacity for communicating impulses of
information between models at event instants.

4.2 Messages and Mailboxes

The model communication mechanism using messages in-
volves two parts: the message itself and the mailbox. The
message represents the information either traveling from
one model to another, or inside a model itself. The mailbox
receives the incoming messages and stores them until they
are read. The mailbox also represents the concept of a bag
of events in the Parallel DEVS formalism.

The characteristics of the model communication using
messages are the following:

• A message can be sent to any available mailbox. Avail-
able mailboxes are the ones that can be referenced from
the model that sends the message, either accessing di-
rectly or using a connection.

• The mailbox warns the model when new incoming mes-
sages are received.

• Once received, the message can be read from the mail-
box.

• The transmission of messages between models has to be
performed instantly. Any message sent from one model
will be immediately received by another model.

• Messages can be received simultaneously, either in the
same or different mailboxes.

• The information transported by a message, the content,
is independent from the message communication mech-
anism. It is a task of the user to define the structure of
that information using the existing components of the
Modelica language, so it can be managed by the models.

• Messages can be of different types. A mailbox can store
any message independently of its type. The type of the
message has also to be independent from the content of
the message.

• Received messages have to be stored temporarily in the
mailbox, until they are read.

• Message communication has to be performed in two
stages: sending and reception. The sending involves the
transmission of any message in the system at a given
point in time, so all the messages sent are stored in the
mailbox at the end. After the sending, all the messages
are available for reception in each mailbox and can be
read and managed as required. If a model sends several
messages to the same mailbox, all the sent messages
have to be stored in the mailbox before the first message
can be read by the receiver.

4.3 Message Sending, Transmission, Detection and
Treatment

A message can be sent from one model to any other model
that contains a mailbox, even if no connection between
models is available.

Mailboxes can also be shared between models. Sharing
a mailbox represent that several models can access to the
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message storage that it represents. Each model sharing
the mailbox can access the messages stored, reading or
extracting them from it. Read messages are kept in the
mailbox until the are extracted, or fetched, from it.

An special case of mailboxes are the ones defined inside
connectors. Two mailboxes, inside connectors, connected
using a connect equation represent a bidirectional message
communication pipe. They will act as input/output mail-
boxes instead of only receiving messages. A message sent
to one end of the pipe will be transported to the opposite
end, and viceversa. If more than two models are connected
to the same pipe, a copy of the message will be trans-
ported to each receiver connected to the pipe. This pro-
vides a message broadcast functionality that also emulates
the event transmission in DEVS, however in DEVS the
communication is not bidirectional. The connect equation
functionalities in Modelica have to be extended in order to
support this mailbox behavior. An example of this behavior
is shown in Figure 6.

The detection of a message is implicit in the action of
sending it, since they are transferred instantly. Every time a
model sends a message to a mailbox, the simulator knows
that the message will be received by another model and will
have to be treated properly.

The treatment of each message has to be defined by the
user. The mailbox warns when a new message has arrived.
The mailbox activates a listener function that can be used
as a condition to detect any incoming message, used with
statements likewhen or if in Modelica. This does not
mean that the new message condition has to be effectively
checked at each simulation step, because it is notified by
the send message operation. Once a new message arrives
to a mailbox, the arrived message or messages have to be
read and treated.

5. Proposal of Implementation
This section contains a proposal of implementation in Mod-
elica of the previously described message communication
mechanism. This implementation is based on the definition
of data structures that support the message and mailbox
concepts, and the definition of the operations that can be
performed with both data structures. Messages and mail-
boxes have to be defined as new predefined classes that
have to be treated in a singular way, allowing objects of
type message or mailbox. Due to the current Modelica
language specification, the proposed implementation dif-
fers from the mechanism described above. The Modelica
language will need to be extended in order to support the
messages mechanism.

5.1 Data structures

There are two data structures needed to manage the mes-
sages mechanism. These are the definition of the message
itself and the structure to support the mailbox that receives
the defined messages.

The message structure contains two components: the
type and the content. The type of a message can be rep-
resented with an integer value. It is used to separate the

messages of the system in different classes. The content
represents the information transported by the message. The
content of a message is defined by the user and has to be
independent from the message management mechanism.
Thus, any mailbox can receive messages with any content
and of any type. It is a task of the user to distinguish
between the types of the messages and their contents. The
content of the message is represented by a reference to an
external data structure in C defined by the user. The user
has to provide this data structure and the functions required
to manage it using the reference in Modelica. Because of
this definition, a message will be composed by two integer
values: the type and the reference to the content.

The second structure required in the messages mecha-
nism is the mailbox. A mailbox is a temporary storage for
messages. If a message is sent to a mailbox, it is stored in
the mailbox until the receiver reads it. The number of stored
messages in a mailbox is not limited, so this structure has to
be able to change its dimension depending on the number
of stored messages. The implementation of a mailbox is
very similar to the currently implemented linked-lists for
storing delayed entities during processes.

5.2 Operations

The operations that can be performed with the previously
described structures are defined below. Each operation is
defined with its parameters and a short description of its
behavior.

5.2.1 Mailbox Operations

• newmailbox(mailbox). Initializes the mailbox.
• checkmsg(mailbox). Warns about the arrival of a

new message. It changes its value from false to true and
immediately back to false at each message arrival event.

• newmsg(). Detects the arrival of a message to any
of the mailboxes declared in the model. This helps
to manage the simultaneous arrival of messages in
different mailboxes.

• nummsg(mailbox). Returns the number of waiting
messages stored in the mailbox.

• readmsg(mailbox,select). Reads a message
from the mailbox. The select parameter represents a
user-defined function used to select the desired message
to be read from the mailbox.

• getmsg(mailbox,select). Fetches a message
from the mailbox, deleting it. The select parameter is
used in the same way as in thereadmsg function.

• putmsg(mailbox,message). Sends the message
to the mailbox.

5.2.2 Message Operations

• newmsg(content,type). Creates a new message
with the defined type and content.

• gettype(message). Returns the type of the mes-
sage.

• settype(message,newtype). Updates the type
of the message to the value of newtype.
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Figure 6. Model communication with messages using connectors.

• getcontent(message). Reads the content of the
message.

• setcontent(message,newcontent). Inserts
the newcontent into the message.

An example of a SIMAN single-queue system, with
the Create, Queue, Seize, Delay, Release and Dispose
blocks, modeled using the described messages mechanism
is shown in Figure 7. Each block of the figure contains
the pseudo-code that implements the basic actions for
the entity management and communication. The select
function, in thereadmsg and getmsg functions, has
been simplified and only represents the type of message
to be read or extracted.

6. Conclusions
It has been observed that process-oriented modeling of
discrete-event systems in Modelica is a difficult task.
Several Modelica libraries have been developed to pro-
vide more discrete-event system modeling functionalities
to Modelica, specially for modeling systems using the
process-oriented approach. The implementation of these
libraries present some problems and restrictions, and the
solutions proposed and implemented are complex, hard to
understand and difficult to maintain. In order to facilitate
the development of discrete-event system models in Mod-
elica, the message communication mechanism has been
introduced and described. A possible implementation of
this mechanism in Modelica has also been proposed.
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Abstract 
 
This paper introduce the modeling and simulation tool 
EcosimPro and the possibility in the new version 4 of   
using object orientation in its modeling language called 
EL (Ecosimpro Language ) which is the official language 
of The European Space Agency  (ESA). Also shows the 
power that the use of classes gives to EcosimPro 
regarding other simulation environments. 

1. Introduction 

1.1 What is EcosimPro 
 
EcosimPro is a simulation tool with a user-friendly 
environment developed by Empresarios Agrupados 
International for modeling simple and complex physical 
processes that can be expressed in terms of differential-
algebraic equations or ordinary-differential equations and 
discrete events. 
 

 
 

 
 
   EcosimPro runs on the various Windows platforms and 
uses its own graphic environment for model design. 

   

 

1.2 What is EL 
 
The language used in EcosimPro simulation tool for 
modeling dynamic systems based on equations and 
discrete events is named EL, which is the official 
language of The European Space Agency ( ESA). 
    EL has been developed for use in modeling combined 
continuous-discrete physical systems. It allows 
mathematical modeling of complex components 
represented by differential-algebraic equations. One of the 
design goals for EL was to make it clear and easy to use 
for engineers doing simulations of this kind. 
    Models in EL are represented in a natural and intuitive 
way. EL has a simple but powerful language to prepare 
experiments on the models created, calculate steady 
states, transients, perform parametric studies, etc. It can 
also generate reports, plots and other hard copies from 
within a classic sequential language, and has the ability to 
reuse C and FORTRAN functions and C++ classes. 
 

1.3 Key concepts in EcosimPro 
 
The fundamental concepts of EcosimPro are: 
 

• Component: This represents a model of the 
system simulated by means of variables, 
differential-algebraic equations, topology and 
event-based behaviour. The component is the 
equivalent of the “class” concept in object-
oriented programming. 

• Port connection type: This defines a set of 
variables to be interchanged in connections and 
the behaviour and restrictions when there are 
connections between more than two ports. For 
instance, an electric connection type uses voltage 
and current as variables to be used in 
connections. The connection port avoids 
connecting individual variables; instead, sets of 
variables are managed together. 

      Figure 1. General view of the tool. 

• Partition: To simulate a component, the user 
first has to define its associated mathematical 
model; this is called a partition. A component 
may have more than one partition. For example, 
if a component has several different boundary 
conditions, depending on the set of variables 
selected, each set of variables produces a 
different mathematical model, or partition. The 
next step is to generate experiments for each 
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partition. The partition defines the causality of 
the final model. 

• Experiment: The experiments performed for 
each partition of the component are the different 
simulation cases. They may be trivial for 
calculating a steady state or very complex with 
many steady and transient states changing 
multiple variables in the model. 

• Library of components: All the components are 
classified by disciplines into libraries. 

 
 

1.4 EL and Object Orientation 
 
EL is a language for automatically solving systems of 
differential-algebraic equations, as this is how it works 
internally. However, the complexity of these systems is 
hidden: all the user has to do is define high-level 
equations using a high level object-oriented language 
similar to some programming languages and expressing 
the equations as algebra does. 
    EL is object-oriented: components can inherit from one 
another and can be aggregated to create other more 
complex, modular components. These features allow the 
modeller to reuse tried and tested components to create 
other more complex ones, incrementally. 
 
 

1.5 The Component in EL 
 
 
The most important element in EL is the component. A 
component represents a model by means of variables, 
topology, equations and an event-based behaviour. 
     A component may be simple, for example an electrical 
resistor or capacitor (with a couple of equations); or it 
may be very complex, for example the pressurized cabin 
of a space vehicle (with dozens of physics equations and 
many events). 
    All components have one block which represents the 
continuous equations and another which handles all the 
discrete events. Before the model can be run, it has to be 
generated. Until then, the components are only theoretical 
entities waiting to be used by other components or 
generated into a model. 
 

1.6 The Experiment in EL 
 
 
Once a model has been generated, experiments can be run 
on it.  
    EL has an experiment language similar to the modeling 
language which is used to integrate the model, calculate 
steady states, optimize parameters, etc 
 

1.7 EL Basis 
 
EL’s design is based on continuous modeling concepts 
developed in the 1970s, new ideas of the ‘80s and ‘90s, 
and modern object-oriented techniques applied 
successfully in other fields. 
 

1.8 EL Uses 
 
EL has been designed to be used in industry directly, 
ranging from simple systems to very complex systems 
with hundreds of variables and equations. EL has mainly 
been successfully used for aerospace applications to 
simulate complex systems in Environmental Control and 
Life Support Systems (ECLSS) and in power generation 
to model complex power plants. 
 

1.9 Mathematical capabilities  
 
EcosimPro has Symbolic handling of equations (e.g.: 
derivation, equations reduction, etc.) and robust solvers 
for non-linear equations (Newton-Raphson) and DAE 
systems (DASSL and Runge-Kutta). EcosimPro controls 
the mechanism to interact with these solvers.Also uses 
dense and sparse matrix formats depending on the size of 
the Jacobian matrix. This allows problems with thousands 
of state variables to be simulated.  
    EcosimPro has Math wizards for:  

• Defining design problems  
• Defining boundary conditions  
• Solving algebraic loops  
• Reducing high-index DAE problems  

and clever mathematical algorithms based on graph 
theory to minimize the number of unknown variables and 
equations.  
    Also incorporate Powerful discrete events handler to 
detect when events occur and powerful root finder 
mechanism based on Zbrent and Illinois methods. It is 
completely transparent to the user so the exact moment of 
the crossover of discrete events can be determined.  

2. Object Oriented Modeling 
 

Object-oriented Modeling is a powerful and intuitive 
paradigm for building models which will outlive the 
inevitable changes that are part of the growth and ageing 
of any dynamic system. It is not a panacea, but at least it 
provides the modeller with powerful features to hide 
complexity (encapsulation), to enable reuse (inheritance 
and aggregation) and to create models which are 
independent and easy to maintain. 
    Modular development allows a system to be modelled 
bottom-up. Basic library components can be combined to 
create increasingly complex components by combining 
two methods: 
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• Extension by inheritance from existing 
components 

• Instantiation and aggregation of existing 
components 

 
    These ideas are applied to create a component which 
represents a complete system. The intermediate 
components can also be simulated. This greatly reduces 
development and maintenance time. 
 

2.1 Encapsulation 
 
One of the aims of object-oriented Modeling is 
encapsulation of complexity. For example, an engineer 
could model a complex problem with a purpose-built 
model consisting of hundreds of variables and equations. 
Although the model works, it will probably be difficult to 
follow and understand, and will certainly be difficult to 
reuse for other similar problems. 
    EL makes the modeller’s life easier with its powerful 
abstraction capability and encapsulation of data and 
behaviour. Its main elements are libraries and 
components. 
    The libraries encapsulate all the elements involved in a 
particular discipline, and are exposed for use by other 
libraries. The component is a fundamental item for 
Modeling to express a dynamic behaviour associated with 
certain data. 
    With a conventional object-oriented language such as 
C++, the public interface is the data and methods declared 
public.  
    In EL a component’s public interface consists of its 
ports, construction parameters and data. These elements 
are unique and are visible from outside during Modeling, 
reinforcing encapsulation and favouring reuse of the 
component. 
    Components are connected by their ports. The port 
definition includes the variables for a connection and their 
behaviour and restrictions when there are connections 
between more than two ports. By defining the behaviour 
of the ports, the system is able to automatically insert 
several connection equations, so the user does not need to 
be concerned about them. To add a new component, the 
user only has to be concerned about its internal behaviour 
and not about the connection equations. 

 
 

2.2 Inheritance 
 

Inheritance is what gives EL its tremendous power for 
sharing interfaces and behaviour. 
    In all fields of simulation, when many components are 
developed it becomes apparent that they share much of 
the same behaviour. EL can bring together common data 
and equations in parent components, to be inherited by 
their child components. This allows the creation of 
libraries based on parent components with a linear rather 

than geometric order of complexity. A new component 
based on another parent will include all its data and 
behaviours. 
    EL provides multiple inheritance; i.e., a component can 
inherit data and behaviour from one or many components 
which have previously been designed and tested. This 
capability allows the creation of new components reusing 
parts of others which have already been created. 
 

2.3 Aggregation 
 
In EL, all Modeling items are components. As described 
above, a component can inherit from another (or others), 
and can contain multiple instances or copies of others 
internally. This concept enforces the capability of reuse 
because it allows compound components to be created 
based on others which have already been developed. 
    This paradigm is applied iteratively and has no limit. 
The complexity of a final component can be hidden by the 
aggregation of tried and tested internal instances of other 
components or classes. 
 

2.4 Data Abstraction 
 
EL provides typical numerical data like REAL and 
INTEGER as well as other convenient data types like 
BOOLEAN and STRING. It also offers enumerative 
types to define the user’s own data (very useful in 
chemical Modeling). 
    In addition, EL has multidimensional arrays, 1D, 2D 
and 3D tables and pointers to functions. 
 
 

3. Classes 

3.1 Introduction 
 
Classes in EL are the equivalent to classes in classic 
object-oriented programming languages such as C++ and 
Java, but their use is more restricted (and simple). In fact, 
they are like high-level wrappers for producing a C++ 
class but bearing in mind that the final users are 
engineers and not programmers. 
    There are times when the modeller wants to 
encapsulate data and behaviour in the same item, and later 
instantiate them and use them by means of certain 
methods.The main difference between a class and a 
component in EL is that a component is meant to include 
dynamic equations and discrete events that the simulation 
tool arranges and solves, whereas a class represents a set 
behaviour and only allows the publication of variables 
and methods. 
    Classes are normally used in EL to support the 
Modeling of complex systems where the use of functions 
is sometimes improved if all the functions referring to the 
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same utility are grouped together and share memory by 
means of common variables. 
 
    The general syntax to define classes is as follows: 
 
class_def : CLASS IDENTIFIER ( IS_A 
scoped_id_s)? 
DESCRIPTION? 
( DECLS var_object_decl_s )? 
( OBJECTS class_instance_stm_s )? 
( METHODS method_def_s )? 
END CLASS 
 
 
    As all elements are optional, a very simple valid class 
would be: 
 
CLASS math 
END CLASS 
 
    An example of a slightly more complete class would 
be: 
 
CLASS point2D “class reprenting a 2D 
point” 
DECLS 
PRIVATE REAL x 
PRIVATE REAL y 
METHODS 
METHOD NO_TYPE set2D(IN REAL valueX, 
IN REAL valueY) 
BODY 
x = valueX 
y = valueY 
END METHOD 
METHOD NO_TYPE get2D(OUT REAL valueX, 
OUT REAL valueY) 
BODY 
valueX = x 
valueY = y 
END METHOD 
END CLASS 
 
    This class represents the coordinates of a 2D point. It 
has a description, two private variables named “x” and 
“y” and two methods named “set2D()” and “get3D()”. 
 

3.2 Inheritance 
 
As seen above, a class can be inherited from one class 
(simple inheritance) or more (multiple inheritance) at the 
same time, in which case it will inherit all the associated 
variables and methods exactly as if they had been defined 
in the class itself. 
    To give an example of simple inheritance we can 
define a new class point3D as: 
 
CLASS point3D IS_A point2D "a 3D 
point" 
DECLS 

PRIVATE REAL z 
METHODS 
METHOD NO_TYPE set3D(IN REAL valueX, 
IN REAL valueY,IN REAL valueZ) 
“Method to init a 3D point” 
BODY 
set2D(valueX,valueY) 
z = valueZ 
END METHOD 
METHOD NO_TYPE get3D(OUT REAL valueX, 
OUT REAL valueY,OUT REAL valueZ) 
“Method to obtain a 3D point” 
BODY 
get2D(valueX,valueY) 
valueZ = z 
END METHOD 
END CLASS 
 
    This example shows how inheritance is used to inherit 
"point3D" class from "point2D" class and thus inherit 
their variables “x” and “y” and the methods “set2D()” and 
“get2D()”.To see an example of multiple inheritances, 
another class can be created. 
 
 
CLASS statusClass “a status class” 
DECLS 
PRIVATE BOOLEAN status 
METHODS 
METHOD NO_TYPE setStatus(IN BOOLEAN 
sta) 
BODY 
status= sta 
END METHOD 
METHOD BOOLEAN getStatus() 
BODY 
RETURN status 
END METHOD 
END CLASS 
 
    Then it can be inherited in the definition of point3D. 
 
CLASS point3D IS_A point2D, 
statusClass “a 3D point” 
.... 
END CLASS 
 
 
    Here, the child class will inherit all variables and 
methods from parent classes; in other words, every 
point3D object will have access to all the public parts of 
classes “point2D”,“statusClass” and “point3D”. 
    Variables or methods cannot be inherited with the same 
name as this would produce an error in the compiler. 
 

3.3 DECLS Block 
 
With the DECLS block of a class, any kind of basic EL 
variable can be defined, whether this be a simple variable 
or a multidimensional array. For example, the following 
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declarations are valid: 
 
CLASS testClass 
DECLS 
REAL x = 9.9 
REAL z,y = 1.1 
INTEGER v[3] = {1, 2, 4} 
BOOLEAN stat 
STRING str = "hello world" 
END CLASS 
 
    Defined in it are variables such as REAL, INTEGER, 
BOOLEAN and STRING. Initial values are also assigned. 
The general syntax for defining variables in classes is as 
follows: 
 
var : PRIVATE? CONST? data_type name_s 
( '=' init_expression )? STRING_VALUE? 
 
    Examples of declarations are: 
 
PRIVATE REAL x = 1 
 
PRIVATE CONST REAL x = 1 
 
REAL speed= 1 “speed of the aircraft 
(m/s)” 
 
 
 

3.4 OBJECTS Block 
 
This section allows us to declare objects that are instances 
of classes. The objects are written in the OBJECTS block 
of classes, components, functions and experiments. The 
general syntax of the objects declaration is as follows: 
 
PRIVATE? names STRING_VALUE? 
 
   Valid declarations are: 
 
OBJECTS 
point3D p1 
PRIVATE statusClass object1, object2 
Point2D points[3,4] 
 

3.5 METHODS Block 
 
Methods define the functional interface of a class. They 
are subroutines connected to a definition of a class. They 
are always declared within a class in the METHODS 
block and can only be invoked from instances of that 
class. 
    Like functions, a method can return a basic EL type 
and has a number of call arguments which are defined 
when the method is written. 
 
    The general syntax of a method is: 

 
method_def : PRIVATE? METHOD data_type 
IDENTIFIER 
'(' EOL* func_arg_decl_s ')' 
STRING_VALUE? 
( DECLS var_decl_s )? 
( OBJECTS class_instace_stm_s )? 
( BODY seq_stm_s )? 
( END METHOD )? 
 
    
   An example of its use is: 
 
CLASS example 
DECLS 
PRIVATE REAL x 
METHODS 
-- method to increment x with value v 
(returns nothing) 
PRIVATE METHOD NO_TYPE incr(IN REAL v) 
BODY 
x= x + v -- increase the class 
variable x 
END METHOD 
-- method to return the value of x 
after increasing it with value v 
METHOD REAL popValue(IN REAL v) 
BODY 
incr ( v ) 
RETURN x 
END METHOD 
END CLASS 
 

3.6 Using Classes 
 
Classes defined in EL can be used in functions, 
components, experiments and in other classes. 
    Instances in classes are always defined in the 
OBJECTS block of each statement, as described 
above.These objects are used the same way as in other 
object-oriented programming languages. All their 
variables of instance and public methods (eg, those which 
are not tagged PRIVATE in their definition) are directly 
accessible by using the point (.) operator. The general rule 
is: 
 
OBJECTREF.METHOD(....) 
OBJECTREF.VARIABLE 
 
   For example: 
 
object1.setValue(5) 
object1.speed= 4 
object1.foo.setValue(4) 
 
    The following class uses objects of “example” class 
defined in the previous section: 
 
CLASS useExample 
METHODS 
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METHOD NO_TYPE use() 
DECLS 
REAL v 
OBJECTS 
example ex -- declare object named ex 
BODY 
ex.popValue(2)  
RETURN v 
END METHOD 
END CLASS 
 

3.7 Class Associated With a Partition 
 
When generating a partition, the tool can automatically 
generate an internal class representing the mathematical 
model generated. This provides a number of advantages: 

• Any partition can be encapsulated in a single 
class 

• This class provides an interface for interacting 
with the partition. For instance, initialization of 
variables, steady and transient calculations, get 
values of variables,etc 

• Simulations can be embedded in components, 
functions, experiments and classes, since they 
are programmed with the class interface 

• Multiple experiments can be executed in the 
same run 

• Child classes (inherited from the partition 
classes) can be created by adding new variables 
and methods. In fact, a child class could provide 
complex experiments embedded in a single 
method. 

 
    To automatically generate the class associated with the 
partition, the user must select the option: 
 
“Generate an associated class for a partition” 
 
   located in GUI option Edit->Options->General. In this 
case, each time the modeller makes a partition, an internal 
class will be generated with the name: 
 
“ComponentName_PartitionName” 
 
    Use the underscore (_) separator to create a joint name 
from the component and partition names, such as 
aircraft_transient. 
    Once the internal class has been created, the modeller 
can declare an object of that class from any OBJECTS 
block, such as: 
 
OBJECTS 
aircraft_transient air 

3.7.1 Access to Variables During Simulation 
 

The user can access any model variable of the partition in 
these special classes. Since the variables can be of 
different types, there are different methods that allow the 

user to access the type of variable, to see if the variable 
exists, etc. Here is an example of available methods: 
 
INTEGER getNumberVars () 
REAL getValueReal (IN STRING name) 
BOOLEAN setValueReal (IN STRING name, 
IN REAL v) 
...  

3.7.2   Operations Allowed with Classes of Models 
 
By using these types of classes, you can perform any 
calculation with the partitions as if you were writing an 
experiment. For example, you can perform steady state 
and transient calculations on the same model.  
    Let's look at an example of an experiment carried out 
on the component aircraftGear from the DEFAULT_LIB 
library. The experiment exp1 carries out the following 
transient study: 
 
EXPERIMENT exp1 ON 
aircraftGear.default 
INIT 
-- Dynamic variables 
y3 = 0. 
y3' = 0. 
y2 = 0. 
y2' = 0. 
x = 0. 
x' = 60.96 
BODY 
REPORT_TABLE("reportAll", " * ") 
TIME = 0. 
TSTOP = 10. 
CINT = 0.05 
INTEG() 
END EXPERIMENT 
 
    This same experiment can be written using these 
special classes. Suppose we create a new component 
called useAircraft and that in its initialization (INIT 
block) we want it to perform a transient calculation of the 
partition aircraftGear_default just as we did in the 
experiment. The code would be: 
 
COMPONENT useAircraft 
OBJECTS 
aircraftGear_default air 
INIT 
-- set initial values 
air.setTraceProgramme(TRUE) 
air.setValueReal("y3", 0) 
air.setValueReal("y3'", 0) 
air.setValueReal("y2", 0) 
air.setValueReal("y2'", 0) 
air.setValueReal("x", 0) 
air.setValueReal("x'", 60.96) 
-- integrates the model 
air.REPORT_TABLE("rAir", " * ") 
air.TIME = 0. 
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air.TSTOP = 10. 
air.CINT = 0.05 
air.INTEG() 
END COMPONENT 
 
    When using this component, a transient study will be 
executed for the aircraftGear model at the beginning of 
the calculation. This way, we have managed to embed a 
calculation of a mathematical model into another 
component. This makes the language very powerful for 
embedding mathematical models inside others. 
 

3.7.3 Activation of Flags 

 
By default, performing calculations on any class 
associated with a partition will not produce any on-screen 
messages or log files. 
    There is a set of functions to activate and deactivate 
these flags which  print simulation messages when 
running, return the actual status of flag for tracing the 
simulation, print simulation messages in the log file, 
check assertions when running, ... 

 

3.7.4 Creation of Classes Based on Partition Classes 
 
    We can also create our own classes by inheriting them 
from the automatically generated class of partition. This 
way, a more user-friendly interface can be created for 
operating with a mathematical model. 
    For example, a new class can be created by inheriting it 
from the class aircraftGrear_default and writing the 
experiment written in the INIT block of the example 
in the previous section in a method of the class. 
 
CLASS aircraftTransient IS_A 
aircraftGear_default 
METHODS 
METHOD NO_TYPE run() 
BODY 
-- set initial values 
setTraceProgramme(TRUE) 
setValueReal("y3", 0) 
setValueReal("y3'", 0) 
setValueReal("y2", 0) 
setValueReal("y2'", 0) 
setValueReal("x", 0) 
setValueReal("x'", 60.96) 
-- integrates the model 
REPORT_TABLE("rAir", " * ") 
TIME = 0. 
TSTOP = 10. 
CINT = 0.05 
INTEG() 
END METHOD 
 
END CLASS 
 

    In this example, it has been embedded the same 
experiment in a method of a new class called 
“aircraftTransient”. Thus, we can now re-write the class 
useAircraft as: 
 
COMPONENT useAircraft 
OBJECTS 
aircraftTransient air 
INIT 
-- run the experiment 
air.run() 
END COMPONENT 
 
    This, as can be seen, is a great simplification, since it 
only calls the method “run()” which encapsulates the 
whole experiment.These classes have all the properties of 
a normal class and can define new variables and methods, 
be inherited by others, etc. This gives great flexibility for 
encapsulating experiments in methods of classes and 
reusing them later. 
 

3.7.5 An ilustrative example:  Initialization of models 
 
The main objective of this problems is to allow to start a 
simulation from stationary conditions.To formulate this 
kind of problems in EL, classes are used. 
 
    For instance:  
 
    In a problem of an eletrical engine: 
 

 
        

 
 Figure 2. Electrical engine schematic. 
 
    whose model is given by: 
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 Figure 3. Electrical engine dynamic equations. 
 
 
    The codification in EL is for instance: 
 

 
 

 Figure 4. Electrical engine dynamic codification in EL. 
 
 
 
    The partition to work with that model for example 
could be: 
 

 
              

 Figure 5. Partition of the system. 
 
 
    where the variables “V” and “T” are the boundary 
variables and “i” and “w” are the states and outputs of the 
process. 
    Intuitively, if the model were easy, to start with 
stationary conditions, only would be necessary write the 
equations in the INIT block by this way: 
 
 

 
 

 Figure 6. Initializations. 
 
 
turning the derivatives into null and clearing the outputs 
up.  
    But this operation only could be done if the model 
equations are easy. 
    In general this problem could be solved using classes 
and creating a static partition with the component. In this 
case the static partition would be for example: 
 
 
 

 
 

 
  Figure 7. An example of a partition to initialize the 
dynamic model at stationary conditions. 
 
 
    where V and W are the boundary variables and inputs. 
With “w” and “v” values could be computed the i(0) 
value.  
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 Figure 8. First calculation. 
 
 
    and with the i(0) value, could be computed the T(0) 
value.  
 

 
 

 Figure 9. Second calculation. 
 
 
    This partition could be used in the INIT zone of the 
dynamic component, so another component would have 
been created with the static equations. 
 

 
   
   Figure 10. New component structure schematic. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    So, the codification of the component using classes 
would be: 
 

 
 

 
 Figure 11. New Electrical engine dynamic codification 

in EL using classes to initialize . 
 
 
 

 
 
    Finally using that component and that class the 
simulation will start from stationary conditions. 
 

4. Conclusions 
 
The object-oriented programming language of 
EcosimPro, known as EL, is therefore one of the pioneer 
languages that has to deal with this new way of Modeling 
physical systems. 
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       So finally the advantages of this type of methodology 
that offers the modeller over the others are going to be 
list: 

• The modeller encapsulates data and behaviour 
into individual components (minimise global 
data) 

• A component hides the complexity by making 
public only a certain part of the component 

•  The public interface comprises parameters, data 
and ports, while the local variables, discrete 
events and equations remain private 

• The complexity grows in a linear rather than a 
geometrical way 

• Reuse of tested components 
• Inheritance simplifies the Modeling by sharing 

many common data and equations. Less code, 
more productivity and easier maintainability 

• A component can contain equations that can be 
inserted at the time of simulation or not, 
depending on certain parameters passed to the 
component 

• Use of virtual equations. Some equations change 
from parents to children. Users can decide to 
overwrite a parent equation with their own 

• Equations format is declarative. Algorithms will 
symbolically transform the equations so that they 
fit in the best possible way to be solved 
numerically 

• In general, it be can quoted the following 
considerations in the revolution of object-
oriented Modeling: 

• Modeling is non-causal. In other words, when a 
component is modelled, the causality of 
equations is not given. This will be solved during 
the final moment of simulation. Libraries of 
generic and reusable components can therefore 
be created in all situations 

• Tried and tested components are constantly 
reused through simple or multiple inheritance 
and aggregation 

• There is extensive use of hidden information and 
encapsulated data to deal with the complexity, 
solving each Modeling problem in its associated 
component and not taking other global data into 
account 

• It is easier to make changes in the models 
because everything is divided into parts 
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Abstract 

Modelica specifies two types of equations: the equations 

defined directly in the "equation" section, which are 

supposed to hold all the time, and the equations defined 

within a "when" statement. The latter are "activated" by 

explicit events at corresponding times. In making the 

analogy with Scicos, the equations of the first type are the 

counterpart of "always active" blocks whereas the second 

type equations are "event activated" blocks. A useful 

feature in Scicos is the mechanism of activation 

inheritance. In this paper, we examine the possible 

extension of the Modelica specification to introduce a 

similar mechanism in Modelica. 

Keywords     Modelica, Synchronous languages, Scicos, 

modeling and simulation 

1. Introduction 

Modelica (www.modelica.org) is a language for modeling 

physical systems. It has been originally developed for 

modeling systems obtained from the interconnection of 

components from different disciplines such as electrical 

circuits, hydraulic and thermodynamics systems, etc. 

These components are represented symbolically in the 

language providing the compiler the ability to perform 

symbolic manipulations on the resulting system of 

differential equations. But Modelica is not limited to 

modeling continuous-time systems; it can be used to 

construct hybrid systems, i.e., systems in which 

continuous-time and discrete-time components interact 

 [1]. Modelica specification  [2] defines the way these 
interactions should be interpreted and does so by inspiring 

from the formalism of synchronous languages. Modelica 

hybrid formalism can be interpreted or extended to 

include many features available already in Scicos. We 

have examined some of these issues in previous papers 

 [4] [5]. We consider here the implementation of the 

activation inheritance mechanism of Scicos in Modelica.  

Scicos (www.scicos.org) is a modeling and simulation 

environment for hybrid systems. Scicos formalism is 

based on the extension of synchronous languages, in 

particular Signal  [3], to the hybrid environment. The class 

of models that Scicos is designed for is almost the same 

as that of Modelica. So it is not a surprise that Modelica 

and Scicos have many similar features and confront 

similar problems. Just as in Modelica, Scicos is event 

driven, to be more precise, activation driven, i.e., the 

activation of equations are explicitly specified. This is in 

opposition to data-flow formalism where the activation is 

implicitly derived from the flow of data. 

The data-flow mechanism has however many 

advantages in certain situations. That is why Scicos 

includes an activation inheritance mechanism providing a 

data-flow-like behavior without perturbing the overall 

formalism. The activation inheritance is treated at an early 

compilation phase. 

In this paper, we examine the extension of the Modelica 

specification to implement an inheritance mechanism 

similar to the one available in Scicos. We work here only 

with flat Modelica models (usually obtained from the 

application of a front-end compiler). 

This extension can have many applications. In the last 

section, we consider its possible use in the problem of 

code generation for control applications. 

2. Basic Idea 

There is a clear distinction between equations activated by 

inheritance and those that are declared “always active” in 

Scicos. This is not the case in Modelica where both types 

are placed in the equation section outside of when 

clauses. To distinguish the two types of activations, we 

propose a new when clause in this section. We start by 

considering only discrete dynamics.  

Consider the following valid Modelica code: 

 
  discrete Real z; 
  Real u,y; 
equation 
  u=2*y; 
  y=pre(z); 
  when sample(0,1) then 
    z=pre(z)+u; 
  end when; 

and compare it to 

 
  discrete Real u,y,z; 
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equation 
  when sample(0,1) then 
     u=2*y; 
     y=pre(z); 
    z=pre(z)+u; 
  end when; 

Both codes are correct and should yield identical 

simulation codes on any reasonable compiler/simulator.  

In our proposal, the two codes are considered 

semantically equivalent. The former being transformed to 

the latter in a first phase of compilation by the compiler.  

To see where the activation inheritance comes into 

play in this example, note that the equations defining u, 

and y are not “explicitly activated”; we say then that these 

equations inherit their activations. Such an equation is 

activated only if at least one of the variables on which it 

depends may potentially change value. This of course is 

very similar to a data-flow behavior. In this particular 

example, the equation defining u depended on z, that is 

why it was moved to the when clause. The equation 

defining y depended on u, now in the when clause, so it 

was also moved inside the when clause. 

This may seem like a minor issue however it allows us 

to present useful extensions as we shall see later. 

3. Presence of Discrete States 

To show that the activation inheritance mechanism cannot 

be assimilated with code optimization, consider the 

following code: 

 
equation 
  u=2*y; 
  y=pre(z); 
  j=pre(j)+y; 
  when sample(0,1) then 
    z=pre(z)+u; 
  end when; 

This code is not currently legal in Modelica whether j is 

defined discrete or not. We are not going to worry about 

declarations as discrete; from our point of view, this is 

redundant information that can only be useful for 

checking the model. Indeed, the placement of the variable 

in the equation section is enough to determine its discrete 

nature.    

Now consider the effect of the transformation we had 

proposed on the previous example on this new one: 

 
equation 
  when sample(0,1) then 
    u=2*y; 
    y=pre(z); 
    j=pre(j)+y; 
    z=pre(z)+u; 
  end when; 

This is a valid Modelica code. As we propose that the pre 

and post versions be considered semantically equivalent, 

then the first version should be considered valid as well. 

Note that in this example we do not merely try to propose 

a code optimization strategy. Unlike memory-less 

equations where too much activation does not affect the 

simulation outcome, the activation instants of the equation 

j=pre(j)+y; must be uniquely specified in order to 

obtain an unambiguous model. Clearly without a rigorous 

definition of the concept of activation inheritance, the 

extension that we propose cannot work. 

4. Multiple Inheritance 

Let us now examine the situation where an equation 

depends on more that one variable updated in different 

when clauses: 

 
 equation 
   a=k+m; 
when sample(0,1) then 
   k=pre(k)+1; 
end when; 
when sample(.5,1) then 
  m=pre(m)-1; 
end when; 

In this case, the variable a can potentially change value at 

both sample(0,1) and sample(.5,1). So the 

transformation is carried out as follows: 

 
equation 
when sample(0,1) then 
   k=pre(k)+1; 
   a=k+m; 
end when; 
when sample(.5,1) then 
  m=pre(m)-1; 
  a=k+m; 
end when; 

This is an easy case because the two when clauses are 

primary (see  [5]), i.e. asynchronous. The situation is a bit 
more complicated when this is not the case.  Consider the 

following example: 
     
 equation 
    z=pre(z)+a+b; 
  when sample(0,1) then 
    a=pre(a)+1; 
  end when; 
  when a>3 then 
    b=a; 
  end when; 

Clearly, we would not obtain a correct model if we placed 

the definition of z in both when clauses. In particular z 

would be incremented wrongly twice by a+b when a 

crosses 3. The fundamental reason is that in this case the 

two when clauses are not asynchronous. The activations 

updating a and b when a crosses 3 are in fact 

synchronous (same activation).  In  [5], we showed how 
the secondary when clauses are removed in the process of 

compilation. Adding the inheritance mechanism, in our 

case this yields the following code: 

 
when sample(0,1) then 
  a=pre(a)+1; 
  if edge(a>3) then 
    b=a; 
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  end if ; 
  z=pre(z)+a+b; 
end when; 

The situation is of course more complex in the presence 

of multiple primary and secondary when clauses but the 

inheritance rules are clearly defined and the compiler can 

treat them in an unambiguous manner.  

5. Always Active in Modelica 

So far we have considered only cases where the model 

contained no continuous-time dynamics. In general, the 

main component of a Modelica model runs in continuous-

time and the expressions within an equation section, 

but outside any when clause, have been associated 

systematically to the “always active” components in 

Scicos. It is for this reason that in our Modelica compiler, 

we replicate all these expressions inside the body of all 

when statements. For example in the following example: 

 
equation 
   a=f(k+3); 
   b=sin(time); 
  when sample(0,1) then 
    k=pre(k)+1; 
  end when; 
  when sample(.5,1) then 
    m=pre(m)-1; 
  end when; 

we obtain 

 
equation 
  when continuous then 
   a=f(k+3); 
   b=sin(time); 
  end when; 
  when sample(0,1) then 
   k=pre(k)+1; 
   a=f(k+3); 
   b=sin(time); 
  end when; 
  when sample(.5,1) then 
   a=f(k+3); 
   b=sin(time); 
   m=pre(m)-1; 
  end when; 

This represents of course the result of the brut force 

application of the systematic transformations; the final 

code can be much smaller after optimization.  The when 

continuous clause corresponds essentially to the pure 

continuous-time dynamics, the part that would be left to 

the DAE solver, see  [5] for more details.  

This treatment is not really consistent with the 

inheritance mechanism we are proposing here. If we 

strictly apply the inheritance mechanism described 

previously, there wouldn’t be any continuous clause 

and the expression a=f(k+3) would appear only in the 

first when clause, as it should, but b=sin(time); 

appears nowhere! Clearly there is a distinction between 

the two equations. The inheritance mechanism can work 

only if somehow we specify that b=sin(time); is 

always active. This can be done by introducing a new 

when clause: 
 

  equation 
     a=f(k+3); 
 when always_active then 
   b=sin(time); 
 end when; 
 when sample(0,1) then 
   k=pre(k)+1; 
 end when; 
 when sample(.5,1) then 
   m=pre(m)-1; 
 end when; 

This way we explicitly specify that b=sin(time); 

should be evaluated all the time, but the activation of 

a=f(k+3); is inherited. In particular for discrete 

variables, the compiler replicates this expression only in 

when statements in which “k” is computed (appears on 

the left hand side of an equation): 

 
equation 
when always_active then 
   b=sin(time); 
end when; 
when sample(0,1) then 
   k=pre(k)+1; 
   a=f(k+3); 
end when; 
when sample(.5,1) then 
  m=pre(m)-1; 
end when; 

The equations in the always active section are then copied 

in all when clauses. Of course if we had a=f(k+m); 

then the expression would be copied in both discrete 

when statements above (multiple inheritance).  

The use of the always_active clause corresponds 

exactly to the block property “always active” in Scicos. 

To require such a clause however would break backward 

compatibility in Modelica. A possible solution would be 

to note that in almost all cases, always activation, which is 

associated with variables evolving continuously in time, 

originates from the use of the built-in variable time or 

the operator der(). It is then possible to implement a 

pre-compiler filter that scans over the flat Modelica model 

and place the equations in which der() and time appear 

inside an  always_active clause. The rest of the 

continuous variables follow naturally by applying the 

inheritance rule. 

6. Applications 

There are three closely related issues that need to be 

carefully studied in Modelica: separate compilation of a 

part of a model, code generation for controller 

applications and general external functions allowing for 

internal states. The heart of all three problems is the 

ability to isolate any part of a diagram, and under certain 

conditions, generate a C code providing the overall 

behavior of this part with a canonical API.  

The simplest situation is when this part of the diagram 

contains only memory-less event-less dynamics in which 
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case the C code would be an external function as it 

already exists in Modelica.  

The situation becomes more interesting when the part 

of the diagram we are considering contains discrete states. 

Consider for example a classical controller configuration 

where a continuous-time plant is controlled by a discrete-

time, single frequency controller. By isolating the 

controller part, we end of with models driven 

synchronously. Based on the current interpretation of the 

Modelica specification by Dymola, these discrete blocks 

are each driven by a sample event generator; the use of 

an identical period and phase in the sample statements 

provides the synchronization. We have tried to show in 

 [5] that this form of implicit synchronization detected 

only during simulation puts useless constraints on the 

model and the compiler, and it should be avoided. An 

alternative solution was proposed in  [6] where the 
keyword sample was given a macro status allowing for 

proper synchronization via a clock calculus similar to that 

used in Simulink and SampleCLK blocks in Scicos.  

Another technique to synchronize the discrete blocks 

would be the explicit use of events as signals. For that, we 

introduced a new type called Event in  [4]. In this 
approach, every discrete block would have an event input 

port (called activation input port in Scicos) driving its 

activations. This way, a single sample event generator 

can be hooked up to all discrete blocks driving them 

synchronously. 

The inheritance mechanism provides an alternative 

solution to the synchronization problem. In most cases, 

there are already blocks in the discrete part that work 

almost on the inheritance mechanism. For example a 

simple Gain block used in this part is not driven by any 

event: the corresponding equations are placed in the 

equation section. We have seen that this is pretty much an 

inheritance mechanism relying on compiler optimization. 

With the inheritance mechanism we have introduced, 

models with states such as discrete-state space blocks can 

also be driven via inheritance. In fact it almost suffices to 

remove the when, end when statements from the 

existing models. In an actual implementation, it suffices 

to drive a first block (usually the analog to digital 

converter block defining the boundary between plant and 

controller) with the proper sample event generator. The 

rest of the blocks then follow through by the inheritance 

mechanism synchronously as they should. The advantage 

of the inheritance solution is that the discrete part need 

not even run on a fixed frequency clock. 

Let us examine these ideas on actual examples. In the 

following Modelica diagram, we have a purely discrete 

single frequency system.  

 
unitDelay

1

z
k=1

gain

 

 

The Memory block is driven by a sample event 

generator (equations are all within a when clause) but the 

Gain block contributes an equation to the equation 

section, outside the when clause. The inheritance 

mechanism would move the Gain equation into the when 

clause yielding a purely discrete system (a system where 

all variables are discrete). 

 

 

The Scicos counterpart of this Modelica model is 

1/z 1

 

 

where the only difference is the explicit presence of an 

event clock (generator). Note that the event clock needs 

not have fixed frequency in this case. 

Consider now the case where there are two discrete 

blocks in a diagram: 

 

 
unitDelay

1

z

unitDelay1

1

z

 

  

 

If each block has its own sample event generator, as it is 

the case today in the discrete Modelica library, the Scicos 

counterpart would be 

 

1/z 1/z

 

 

This diagram is not synchronous in Scicos even if the two 

event generators have identical periods. The simulation 

result for this diagram would not be predictable in Scicos 
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and we think it should not be in Modelica either unless a 

new definition is associated with the keyword sample as 

we have proposed in  [6] where the keyword sample was 
given a macro status allowing for proper synchronization 

via a clock calculus similar to the one used in Simulink 

and SampleCLK blocks in Scicos.  The corresponding 

Scicos diagram using SampleCLK blocks would be the 

following: 

1/z 1/z

1

0

S-CLK

1

0

S-CLK

 

In this case, the Scicos compiler starts by performing the 

necessary computations on SampleCLK blocks’ periods 

and offsets to find the unique slowest clock that by 

subsampling can replace the activations of these blocks. 

In this case the computation is trivial because the two 

blocks have identical periods; the equivalent diagram 

after this first phase is the following: 

1/z 1/z

 
 

By adopting the proposed interpretation for the Modelica 

keyword sample in  [6], Modelica compiler would 

function similarly.  

In Scicos, it is also possible to construct directly this 

latter diagram, i.e., to drive both memory blocks by the 

same event block. This is not possible to do in Modelica 

unless we adopt the Event type suggested in  [4].  In that 
case we would be able to express the Memory block as 

follows:  

 
model Memory 
  input Event e1; 
  output Real y; 
  input Real u; 
  discrete Real z;  
  equation 
  when e1 then 
    z=u; 
    y=pre(z); 
  end when; 
end Memory; 

We would also need an event generator block, something 

resembling the following: 

 
    Event e(start=t0) ; 
    discrete Integer k(start=0) ; 
  equation 
    when pre(e)  then 
      k=pre(k)+1 ; 
      e=k*T+t0 ; 
    end when ; 

In Scicos, a Memory block, like any other block, can also 

be defined without an activation input port in which case 

it inherits its activation from its regular input. To see how 

this works, consider a slightly more complicated diagram 

that corresponds to a simple controller part of a 

Plant/controller diagram: 

 

1/z 1/zA/D

 

In this case the Memory blocks (and the sum block as 

well) are activated by inheritance. The Modelica 

counterpart of this Memory block would be: 

 
model Memory 
    output Real y; 
    input Real u; 
    discrete Real z;  
  equation 
     z=u; 
     y=pre(z); 
end Memory; 

This means in particular that in a controller model, by 

defining all discrete blocks “inheriting”, i.e., without any 

built-in when sample clauses, it suffices to drive only 

the interface between the plant and the controller with an 

event generator. This interface would be a model such as 

the following: 

 
model AD 
    discrete output Real y; 
    input Real u; 
    parameter Real T=1; 
  equation 
     when sample(0,T) then 
        y=u; 
     end when; 
end AD; 

It is the activation in the when sample clause of this 

block that is inherited by the controller part which would 

then run synchronously. The following is the general 

picture of this setup: 
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Plant

Continuous time

A/DController

Discrete

   

The continuous-time plant does not inherit any activation 

because it is already always active. This configuration is a 

classical representation used by control engineers. Note 

that no D/A block is necessary here because the output of 

discrete blocks hold their outputs constant until their next 

activation, nonetheless such a block can be used to clearly 

indicate the boundaries of the controller.  

         

7. Conclusion 

We have proposed an activation inheritance mechanism in 

Modelica that can be used to synchronize a set of discrete 

blocks, for example the controller part of a standard 

plant/controller configuration. This extension is one 

possible way to solve the synchronization issues in the 

discrete block library.   

With this new extension, we have three different 

solutions to the synchronization problem: the use of 

macro sample clauses (similar to SampleCLK in Scicos) 

in different discrete blocks, the use of event input/outputs 

allowing the activation of multiple blocks via a single 

event generator, and activation inheritance. These 

solutions are complementary and can very well co-exist in 

Modelica; they do in Scicos.  

The macro sample solution is limited to periodic 

systems. It is particularly useful for modeling 

synchronous multi-frequency systems. Having access to 

the sample parameters in each block allows also the 

computation of blocks parameters as a function of 

sample parameters. For example, the parameters of a 

discrete linear system block may be computed as a 

function of the sampling period using the exact 

discretization method. 

The use of the Event type provides full control over the 

activation and synchronization of discrete blocks and is a 

key element needed for separate compilation in Modelica. 

It allows synchronous, asynchronous, single frequency, 

multi-frequency and sporadic activations. 

Finally inheritance activation provides a modeling 

facility that avoids the need for explicitly defining the 

activation of each block. The use of inheriting blocks 

provides a viable alternative in the single frequency case 

to the other two solutions. 
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Abstract
In Scicos, a graphical user interface (GUI) has been devel-
oped for the initialization of Modelica models. The GUI
allows the user to fix/relax variables and parameters of the
model as well as change their initial/guess values. The out-
put of the initialization GUI is a pure algebraic system of
equations which is solved by a numerical solver. Once the
algebraic equations solved, the initial values of the vari-
ables are used for the simulation of the Modelica model.
When the number of variables of the model is relatively
small, the user can identify the variables that can be fixed
and can provide the guess values of the variables. But, this
task is not straightforward as the number of variables in-
creases. In this paper, we present the way the incidence
matrix associated with the equations of the system can be
exploited to help the user to select variables to be fixed and
to set guess values of the variables during the initialization
phase.

Keywords Modelica, initialization, coupling algorithm,
numerical solver, Scicos

1. Introduction
Scicos1 is a free and open source simulation software used
for modeling and simulation of hybrid dynamical systems
[3, 4]. Scicos is a toolbox of Scilab2 which is also free
and open-source and used for scientific computing. For
many applications, the Scilab/Scicos environment provides
an open-source alternative to Matlab/Simulink. Scicos in-
cludes a graphical editor for constructing models by inter-
connecting blocks, representing predefined or user defined
functions, a compiler, a simulator, and code generation fa-
cilities. A Scicos diagram is composed of blocks and con-
nection links. A block corresponds to an operation and by
interconnecting blocks through links, we can construct a
model, or an algorithm. The Scicos blocks represent ele-

1 www.scicos.org
2 www.scilab.org

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

mentary systems that can be used as building blocks. They
can have several inputs and outputs, continuous-time states,
discrete-time states, zero-crossing functions, etc. New cus-
tom blocks can be constructed by the user in C and Scilab
languages. In order to get an idea of what a simple Scicos
hybrid models looks like, a model of a control system has
been implemented in Scicos and shown in Figure 1.

Den(s)
−−−−−
Num(s)

Den(z)
−−−−−
Num(z)

Plant

Controller

noise

reference
generator
sinusoid

generator
random

output/control

S/H

freq_div

trajectory

Figure 1. Model of a control system in Scicos

Besides causal or standard blocks, Scicos supports a
subset of the Modelica3 language [7]. The diagram in Fig-
ure 2 shows the way a simple DC-DC Buck converter has
been modeled in Scicos. The electrical components are
modeled with Modelica while the blocks that are used to
control the On/Off switch are modeled in standard Scicos.

The Modelica compiler used in Scicos has been devel-
oped in the SIMPA4 project. Recently the ANR5/RNTL
SIMPA2 project has been launched to develop a more
complete Modelica compiler. The main objectives of this
project are to extend the Modelica compiler resulted from
the SIMPA project to fully support inheritance and hybrid
systems, to give the possibility to solve inverse problems

3 www.modelica.org
4 Simulation pour le Procédé et l’Automatique
5 French National Research Agency
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Figure 2. Model of a DC-DC Buck converter in Scicos
using Modelica components

by model inversion for static and dynamic systems, and to
improve initialization of Modelica models.

An important difficulty when simulating a large Model-
ica model is the initialization of the model. In fact, a model
can be simulated only if it is initialized correctly. The
reason lies in the fact that a DAE (Differential-Algebraic
Equation) resulting from a Modelica program can be simu-
lated only if the initial values of all the variables as well as
their derivatives are known and are consistent.

A DAE associated with a Modelica model can be ex-
pressed as

0 = F (x′
, x, y, p) (1)

wherex, x
′, y, p are the vector of differential variables of

sizeNd, derivative of differential variables of sizeNd, al-
gebraic variables of sizeNa, and model parameters of size
Np, respectively.F (.) is a nonlinear vector function of size
(Nd + Na). Since, the Modelica compiler of Scicos sup-
ports index-1 DAEs [1, 2], in this paper we limit ourselves
to this class of DAEs.

In Scicos, in order to facilitate the model initialization,
the initialization phase and the simulation phase have been
separated and two different codes are generated for each
phase: The initialization code (an algebraic equation) and
the simulation code (a DAE).

In the Initialization phase,x′ is considered as an alge-
braic variable (i.e., dx) and then an algebraic equation is
solved. Modelica parametersp are considered as constants
unless they are relaxed by the user. There are (Nd + Na)
equations and (2Nd + Na + Np) variables and parame-
ters that can be considered as unknowns. In order to have a
square problem solvable by the numerical solver, (Np+Nd)
variables/parameters must be fixed. The values ofx andp

are often fixed and given by the user and the values ofdx

andy are computed. But the user is free to fix or relax any
of variables and parameters. For example, in order to ini-
tialize a model at the equilibrium state,dx is fixed and set
to zero whereasx is relaxed to be computed. Another ex-
ample is parameter sizing where the value of a parameter is
computed as a function of a fixed variable. In this case, the
parameterp is relaxed and the variablex is fixed.

In the simulation phase, the values obtained forx, dx,
y, p are used for starting the simulation. During the simu-
lation, the value ofp (model parameters) does not change.

In Modelica, thestart keyword can be used to set
the start values of the variables. The start values of deriva-
tives of the variables can be given within theinitial
equation section. For small programs, this method can
easily be used but as the program size grows, it becomes
difficult to set start values and change thefixed attribute
of variables or parameters directly in the Modelica pro-
gram; initialization via modifying the Modelica model is
specially difficult for models with multiple levels of inher-
itance; the visualization and fixing and relaxing of the vari-
ables and the parameters are not easy. Furthermore, the user
often needs to have a model with several initialization sce-
narios. For each scenario a copy of the model should be
saved.

In Scicos, a GUI has been developed to help the user to
initialize the Modelica models. In this GUI, the user can
easily change the attributes of the variables and the pa-
rameters such asinitial/guess value, max, min,
nominal, etc. Furthermore, it is possible to indicate
whether a variable, the derivative of a variable, and a pa-
rameter must be fixed or relaxed in the initialization phase.

In the following sections, the initialization methodology
for Modelica models and the initialization GUI features
will be presented.

2. Initialization and Simulation of Modelica
Models

The flowchart in Figure 3 shows how initialization and
simulation of Modelica models are carried out in Scicos.
The first step in both tasks is removing inheritances. This
provides access to all variables and generates a flat model.
The flat model is used to generate the initialization and the
simulation codes. Note that the initialization data used for
starting the simulation is passed to the simulation part by
means of an XML file containing all initial values.

In Scicos, three external applications are used in initial-
ization and simulation:Translator, XML2Modelica,
andModelicaC.
Translator is used for three purposes:

• Modelica Front-end compiler for the simulation: when
called with appropriate options,Translator gener-
ates a flat Modelica program. For that,Translator
verifies the syntax and semantics of the Modelica pro-
gram, applies inheritance rules, generates equations for
connect expressions, expandsfor loops, handles
predefined functions and operators, performs the im-
plicit type conversion, etc. The generated flat model
contains all the variables, the derivatives of differen-
tial variables, and the parameters defined with attribute
fixed=false. Constants and parameters with the at-
tribute fixed=true are replaced by their numerical
values.

• Modelica Front-end for initialization: when called with
appropriate options,Translator generates a flat
Modelica program containing the variables and the pa-
rameters defined with attributefixed=false. The
derivatives of the variables are replaced by algebraic
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Figure 3. Initialization flowchart in Scicos

variables. Furthermore, the flat code contains the equa-
tions defined in theinitial equation section in
the Modelica programs. Constants and parameters with
the attributefixed=true are replaced by their nu-
merical values.

• XML generator: when called with -xml option, Transla-
tor generates an XML file from a flat Modelica model.
The generated XML file contains all the information in
the flat model.

Once the XML file generated, the user can change vari-
able and parameter attributes in the XML file with the help
of the GUI. The modified XML file have to be reconverted
into a Modelica program to be compiled and initialized.
This is done byXML2Modelica.

ModelicaC, which is a compiler for the subset of the
Modelica language, compiles a flat Modelica model and

generates a C program for the Scicos target. The main fea-
tures of the compiler are the simplification of the Modelica
models and the generation of the C program ready for simu-
lation. It supports zero-crossing and discontinuity handling
and provides the analytical Jacobian of the model. It does
not support DAEs with index greater than one. Another im-
portant feature of the Modelica compiler is the possibility
of setting the maximum number of simplification carried
out during the code generation phase. Thus, the compiler
can be called to generate a C code with no simplification
or a C code with as much simplification as possible. This is
an important feature for the debugging of the model.

A new feature ofModelicaC is generating the inci-
dence matrix. When a C code is generated, the correspond-
ing incidence matrix is generated in an XML file. The in-
cidence matrix is used by the initialization GUI to help the
user.

As shown in Figure 3, once the user requests the ini-
tialization of the Modelica model, the Modelica front-end
generates a flat Modelica model as well as its correspond-
ing XML file. The XML file is then used in the initializa-
tion GUI. In the GUI, the user can change the variable and
parameter attributes defined in the XML file. The modi-
fied XML file is then translated back to a Modelica pro-
gram. The Modelica program is compiled with the Mod-
elica compiler and a C program is generated. The C pro-
gram is used by the Scicos simulator to compute the value
of unknowns. Once the initialization finished, whether suc-
ceeded or failed, the XML file is updated with the most
recent results. The GUI automatically reloads and displays
the results. The user can then decide whether the simulation
can be started or not.

In order to simulate the Modelica model, similar to the
model initialization, a flat model is generated. Then, the
Modelica compiler simplify the model and generates the
simulation code. The generated code is simulated by a nu-
merical solver. The initial values, needed to start the simu-
lation, are read directly from the XML file. The end result
of the simulation can also be saved in an another XML file
to be used as a starting point for another simulation.

3. Initialization GUI
In Scicos, a GUI can be used for the initialization of the
Modelica models. Figure 4 illustrates a screen shot of the
GUI corresponding to the Modelica parts of the Scicos di-
agram of Figure 2. In this GUI, the Modelica model is dis-
played in the hierarchical from, as shown in Figure 4. Main
branches of the tree represent components in the Modelica
model. Subbranches are connectors, partial models, etc. If
the user clicks on a branch, the variables and parameters
defined in that branch are displayed and the user can mod-
ify their attributes. In the following subsections, some main
features of the GUI will be presented.

3.1 Variable/Parameter Attributes

Any variable/parameter has several attributes which are
either imported directly from the Modelica model such as
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Figure 4. Screen shot of the initialization GUI in Scicos for the electrical circuit of Figure 2

name, type, fixed etc. or defined and used by the GUI
i.e.,id andselection.

• name is the name of the variable/parameter used in
the Modelica program. The user cannot change this
attribute in the GUI.

• id is an identification of the variable/parameter in the
flat Modelica program. The user cannot change this
attribute in the GUI.

• type indicates whether the original type has been
parameter or variable in the Modelica program.
The user cannot change this attribute in the GUI.

• fixed represents the value of the’fixed’ attribute
of the variable/parameter in the Modelica program. The
user cannot change this attribute in the GUI.

• weight is the confidence factor. In the current version
of Scicos, it takes either values0 or 1. weight=0 cor-
responds to thefixed=false in Modelica whereas
weight=1 corresponds tofixed=true. The default
value of weight for the parameters and differential
variables is one, whereas for the algebraic variables
and the derivatives of differential variables (converted
to variables) is zero.

• value is the value of the variable/parameter. If the
weight=1, the givenvalue is considered as the fi-
nal value and it does not change in the initialization. If
weight=0, the givenvalue is considered as a guess
value. If the user does not provide any value, it is auto-

matically set to zero. The user can modify this value in
the GUI.

• selection is used to mark the variables and parame-
ters. This information will be used by the GUI for selec-
tive display of variables/parameters and to influence the
Modelica compiler in the model simplification phase.

Note that if the user sets theweight attribute of a vari-
able to one, it will be considered as a constant and in the ini-
tialization phase it will be replaced by its numerical value.
On the other hand, if the user sets theweight attribute of
a parameter to zero, the parameter will be considered as an
unknown and its value will be computed in the initializa-
tion phase. This is in particular useful when the user tries
to find a parameter value as a function of a variable in the
Modelica model.

3.2 Display Modes

Accessing to variables and parameters of the model be-
comes easier, if different display modes of the GUI are
used:

• Normal mode is the default display mode. Clicking
on each branch of the model tree, the user can visual-
ize/modify the variables/parameters defined in that part
of the Modelica model.

• Reducedmode is used to display the variables of the
simplified model. When the user pushes the initializa-
tion button, the flat Modelica model is compiled and
a simplified model is generated. In this display mode,
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only the remaining variables are displayed. This display
mode is in particular useful when the numerical solver
cannot converge and the user should help the solver ei-
ther by influencing the compiler to eliminate the unde-
sirable variables or by giving more accurate guess val-
ues.

• Selectedmode is used to display only the marked vari-
ables and parameters of the active branch. A variable
or parameter can be marked by putting’y’ in its se-
lection field in the GUI. By default, all parameters, all
differential variables and all algebraic variables whose
start values are given are marked. Marking is useful in
particular when a branch has many variables/parameters
whereas the user is interested in a few ones. In this
display mode, unmarked variables/parameters are not
shown.

• Selected (all)mode is used to display all marked vari-
ables and parameters of the Modelica model.

• Changed mode is used to display the variables and
the parameters whoseweight attributes have been
changed, such as the relaxed parameters.

3.3 Initialization Methods

Once the user modified the attributes of the variables and
the parameters, the initialization process can be started by
clicking on the "Initialize" button. The initialization con-
sists of calling a numerical solver to solve the final alge-
braic equation. There are several algebraic solvers available
in Scicos such asSundials andFsolve [8, 9, 10].

Once the solver finished the initialization, the obtained
results, either successful or not, are put back into the XML
file and new values are displayed in the GUI. If the result
is not satisfactory, the user can either select another initial-
ization method or help the solver by giving initial values
more accurately. This try and error can be continued un-
til satisfactory initialization results are obtained. Then, the
simulation can be started.

4. Problems in Variable Fixing and Variable
Selection

The initialization of DAE (1) can be formulated as the
following algebraic problem

0 = F (dx0, x0, y0, p0) (2)

wherex0, dx0, andy0 are solutions or the initial values
of differential variables, derivative of differential variables,
algebraic variables, and parameter values, respectively. The
degree of freedom of the equation (2) isNd +Np, therefore
the user should fixNd + Np variables or parameters and
let the solver find the values of the remainingNd + Na

unknowns.
Fixing the variables/parameters and giving the start val-

ues of the relaxed variables/parameters are essential in the
initialization of models. But they are not easy and straight-
forward for large models. In the next subsections the way
these problems are handled in Scicos will be explained.

4.1 Fixing the Variables

Consider the following equation set, composed of two
equations and three unknowns.

F :

{

0 = f(x)
0 = g(x, y, z)

Since the degree of freedom is one, the user should
provide and fix the value of a variable. But, it is clear that
x cannot be fixed, because its value is imposed by the first
equation. In this case, the GUI should prevent the user from
fixing x.

Consider the next set of equations composed of three
equations and five unknowns.

F :







0 = f(x, u)
0 = g(x, z)
0 = h(x, y, z, v)

(3)

Although the degree of freedom is two, the user cannot fix
(u, z), (x, z), or (x, u) at the same time. In general, it is not
easy to identify the set of variables that can be fixed. This
is in particular important when the number of equations
increases. In this case, if the user tries to fix an inadmissible
variable, the GUI should raise an error message and prevent
the user from fixing the variable.

This problem can be solved using the incidence matrix
of the Modelica model. For example, this is the incidence
matrix of (3):





1 0 0 0 1
1 0 1 0 0
1 1 1 1 0





Fixing u andz means removingu andz from the equa-
tions which results in the following equation set and the
incidence matrix.

F :







0 = f(x, u0)
0 = g(x, z0)
0 = h(x, y, z0, v)





1 0 0
1 0 0
1 1 1





Although, there are three unknowns and three equations,
the incidence matrix is not structurally full rank. This
means thatu andz cannot be fixed at the same time.

Computing the structurally rank of the incidence matrix
is a straightforward way to determine if the user is allowed
to fix variables or parameters of the model. Since the in-
cidence matrix is very often large and sparse in practical
models, we should use special methods for sparse matrices.
In the GUI, amaximum matchingmethod (also called a
maximum transversal method) is used to compute the struc-
tural rank of the incidence matrix. The maximum matching
method is a permutation of the matrix so that itsk

th diag-
onal is zero-free and|k| is uniquely minimized. With this
method, the structural rank of the matrix is the number of
non-zero elements of the matrix diagonal [6].

When the user tries to fix a variable or a parameter, the
initialization GUI computes the new structural rank of the
incidence matrix. If the fixing operation lowers the rank,
an error message will raised and the modification will be
inhibited.
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4.2 Selection of Variables to Be Eliminated

Another recurrent problem in solving algebraic equations
is the convergence failure of the solver. Newton methods
are convergent if the initial guess values of unknowns are
not too far from the solution. So, the user should provide
reasonable initial guess values. If the problem size is small
and the user knows the nominal values of the unknowns,
the user can provide the guess values. But in large models,
it is nearly impossible to give all guess values. In medium
size Modelica models, we usually end up with models with
many variables whose start values are not specified by the
user. In this case, their initial guess values are automatically
set to zero which is not often a good choice. Furthermore,
many variables of a model are redundant and the user does
not know for which ones the initial guess should be given.
This often happens with variables linked by theconnect
operator in Modelica. Suppose that two Modelica compo-
nents are connected via a connector,e.g.,

connect (Block1.x, Block2.y);

During the model simplification, the compiler may elim-
inate eitherBlock1.x or Block1.y. Even if the user
knows the guess values of both, it is not reasonable to ask
the user to provide them. Since the user has no influence
on the compiler’s variable selection, this may cause a prob-
lem in solving the initialization equation. Consider,e.g.,
the following situation.

F :







0 =
x− 3

(x− 3)2 + 1
− 0.1

0 = x− y

Here, if the user sets the initial guess ofy to 10 and leaves
the guess value ofx unspecifiedi.e., x = 0, although
y = 10 is close to the solution, the Newton’s method will
likely fail. The reason is that the solver ignores the initial
value ofy and uses that ofx. In fact, there is no way to tell
the solver the guess value which is "more" correct than the
others.

The solution is to formally simplify the equations by
eliminating the variables whose guess-values are not given,
by replacing them with the variables having given guess-
values. For that, in the initialization GUI, variables with
known guess-values are marked and the Modelica compiler
is told to eliminate the unmarked variables. The user, of
course, can modify the list of these marked variables.

The compiler tries to eliminate the variables as much as
possible, but a problem may arise when the compiler fails
to eliminate all of unmarked variables. Since, the simulator
sets their guess-value to zero, the original problem still
persists. In this case, the user should be asked to provide
the guess-value of the remaining variables. But, usually the
user has no idea about the nominal values of the remaining
variables or even does not know the physical interpretation
of them. As an example, consider the following set of
equations for which no guess-values are given.

F :

{

0 = f(x)
0 = x− y

Suppose that the compiler eliminatesy, but the user
does not know the start value ofx while y has a physical
interpretation and its nominal value can be given. In this
case, the initialization GUI should propose to the user all
variables that can replacex, i.e.,y.

Proposing alternative variables for formal simplification
is done in the initialization GUI. In the next sections, it will
be shown the way these problems can be handled by the use
of the incidence matrix of the model. This is done using the
maximum flow algorithms.

5. Maximum Flow Problem
The maximum flow problem is to find the maximum feasi-
ble flow through a single-source, single-sink flow network
[5]. The maximum flow problem can be seen as a special
case of more complex network flow problems. A directed
graph or digraphG is an ordered pairG := (V, A) with

• V is the set of vertices or nodes,

• A is the set of ordered pairs of vertices, called directed
edges or arcs.

An edgee = (u, v) is considered to be directed from
u to v; v is called the head andu is called the tail of the
edge;v is said to be a direct successor ofu, andu is said to
be a direct predecessor ofv. The edge(v, u) is called the
inverted edge of(u, v).

Given a directed graphG(V, E), where each edgeu, v

has a capacityc(u, v), the maximal flowf from the source
s to the sinkt should be found. There are many ways of
solving this problem, such as linear programming, Ford-
Fulkerson algorithm, Dinitz blocking flow algorithm, etc
[12, 11].

5.1 Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithmcomputes the maximum
flow in a flow network. The name "Ford-Fulkerson" is of-
ten also used for the Edmonds-Karp algorithm, which is a
specialization of Ford-Fulkerson. The idea behind the al-
gorithm is very simple: as long as there is a path from the
source to the sink, with available capacity on all edges in
the path, we send flow along one of these paths. Then we
find another path, and so on. A path with available capacity
is called an augmenting path.

Algorithm: Consider a graphG(V, E), with capacity
c(u, v) and flowf(u, v) = 0 for the edge fromu to v. We
want to find the maximum flow from the sources to the
sink t. After every step in the algorithm the following is
maintained:

• f(u, v) ≤ c(u, v). The flow fromu to v does not exceed
the capacity.

• f(u, v) = −f(v, u). Maintain the net flow betweenu
andv. If in reality a units are going fromu to v, and
b units from v to u, maintainf(u, v) = a − b and
f(v, u) = b− a.

•
∑

v f(u, v) = 0⇐⇒ fin(u) = fout(u) for all nodesu,
excepts andt. The amount of flow into a node equals
the flow out of the node.
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This means that the flow through the network is a legal
flow after each round of the algorithm. We define the resid-
ual networkGf (V, Ef ) to be the network with capacity
cf (u, v) = c(u, v) − f(u, v) and no flow. Notice that it
is not certain thatE = Ef , as sending flow onu, v might
closeu, v (it is saturated), but open a new edgev, u in the
residual network.

1. f(u, v)← 0 for all edges(u, v)

2. While there is a pathp from s to t in Gf , such that
cf (u, v) > 0 for all edges(u, v) ∈ p:

(a) Findcf (p) = min{cf (u, v)|(u, v) ∈ p}

(b) For each edge(u, v) ∈ p

i. f(u, v)← f(u, v) + cf (p)

ii. f(v, u)← f(v, u)− cf (p)

The pathp can be found with,e.g.,abreadth-firstsearch
or a depth-firstsearch inGf (V, Ef ). The former which is
called the Edmonds-Karp algorithm has been implemented
in Scicos.

By adding the flow augmenting path to the flow already
established in the graph, the maximum flow will be reached
when no more flow augmenting paths can be found in the
graph. When the capacities are integers, the runtime of
Ford-Fulkerson is bounded byO(E ∗ fmax), whereE is
the number of edges in the graph andfmax is the maximum
flow in the graph. This is because each augmenting path
can be found inO(E) time and increases the flow by an
integer amount which is at least1. The Edmonds-Karp
algorithm that has a guaranteed termination and a runtime
independent of the maximum flow value runs inO(V E

2)
time.

5.2 Problem of Proposition of Alternative Variables

In order to handle this problem, we build the bipartite graph
shown in Figure 5. The left-hand side vertices indicate
unknowns, and each vertex at the right-hand side indicates
an equation. The edges are bidirectional and their capacity
is infinite.

Vm

Vi

V2

V1

Qj

Q2

Q1

Qm

∞

∞

∞

∞

∞

EquationsVariables

Figure 5. Bipartite graph of variables and equations

Note that, at this stage of initialization, the number of
unknowns and the number of equations are identical and
the incidence matrix is full rank.

For the problem of proposing alternative variables that
can be initialized instead of a variableVi, based on the
bipartite graph in Figure 5, we build another directed graph
as shown in Figure 6. In this graph, a source vertex and a
target (sink) vertex have been added to the graph. The edge
connecting the source vertex toVi has infinite capacity.
All m edges connecting the target vertex to the variable
vertices have the capacity1 (except the edge connected to
the vertexVi). The edges are mono-directional.

Vm

V2

V1

Qj

Q2

Q1

Qm

1

0

1

1

T

∞

∞

∞

∞

∞

S

∞

Vi

Figure 6. Directed graph for the problem of proposing all
alternative variables forVi

Now, the problem of finding all alternative variables for
Vi is transformed into that of finding of all feasible paths
from the source to the target. All predecessors of the target
are possible alternative variables that can be used instead of
Vi. In the initialization GUI, when the user double-clicks on
a variable, its alternative variables are displayed. This is a
useful help during the initialization.

6. Initialization Iterations
The role of the GUI and the marking in the initialization
loop (see the flowchart in the Figure 3) can be summarized
in the following algorithm.

1. The GUI automatically marks the model parameters, the
differential variables and the algebraic variables whose
guess value are given.

2. In the GUI, the user can

• visualize/modify thefixed attribute of the vari-
ables and the parameters.

• change the guess values of variables and parameters
(final values if they are fixed).

• modify whether a variable or a parameter is marked
or not.

3. Initialization is invoked.

• If necessary, the model is compiled. The Modelica
compiler tries to reduce the number of unknowns by
performing several stages of substituting and elimi-
nation. In this phase the marked variables are more
likely to be eliminated by the compiler.

• A numerical solver is used to find the solution of the
reduced model.

• The obtained solution values are send back to the
GUI to be displayed.
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4. If the obtained results are satisfactory, gotostep 7.

5. The user can readjust the guess values of the remaining
unknowns. If there are still unmarked unknowns in the
reduced model, either the user can provide more accu-
rate guess values for them or can click on the variables
to see their alternatives variables. The alternative vari-
ables should be marked to be remained in the reduced
model.

6. Goto step 2

7. Start the simulation

7. Example

The model of a thermo-hydraulic system is shown in
Figure 6. In this model, there are a pressure source, two
pressure sinks, three pipes (pressure losses), a constant
volume chamber, and two flow-meter sensors linked to
a Scicos scope.

PS

P

MScope
Q

QVolume_A

Figure 7. A thermo-hydraulic system

As shown in Figure 8, the initial non-simplified model
is composed of 132 equations, 131 relaxed variables and
1 relaxed parameter (i.e., 132 unknowns). The number of
fixed parameters and variables are 36 and 1, respectively.

When the model is simplified, the model size is reduced
to only 11 unknowns. In Figure 9, where the display mode
is Reduced, the remaining variables as well as their solu-
tion values are shown.

8. Conclusion
In the Modelica models, initialization is an important stage
of the simulation. At the initialization, variables and pa-
rameters can be fixed or relaxed and their start values can
be changed by the user. In this paper, we presented a spe-
cial GUI to facilitate the task of selecting fixed and relaxed
variables.
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Figure 8. The initialization GUI for the model in Figure 6 (the display mode isnormal and the variables and the parameters
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Abstract 
The paper focuses on the application of equation-based 
object oriented languages to creating models for model-
based diagnosis. We discuss characteristics and language 
constructs essential for diagnostic purposes. In particular, 
we describe the main features of the declarative modeling 
language Rodelica, which is based on the well-known 
language Modelica but enhances it with additional fea-
tures related to diagnosis. Rodelica is used in a commer-
cial model-based diagnosis tool to build and exploit com-
plex diagnostic models of industrial size. Developed 
models can be used in an interactive diagnostic process as 
well as for the generation of more compact forms of diag-
nostic knowledge like diagnostic rules or decision trees 
which are popular for on-board diagnostics or trouble-
shooting in the service bay. A case study concludes the 
paper, illustrating those applications and emphasizing 
their implications for the language itself.   
Keywords:  model-based diagnostics, Modelica, Rodelica, 
constraint propagation, interval arithmetic, failure mode, 
decision tree.  

1. Introduction 
In today’s global economy, time to market decreases due 
to the global competitive pressure and due to the in-
creased customer’s demand for new products with new 
and improved functionality. A company’s market share 
depends largely on its capability to satisfy the ever in-
creasing customer requirements with respect to function-
ality and reliability. The shortened development times and 
the increasing complexity of the products - as indicated 
by the significantly increasing electrical and electronic 
content - may lead to difficulties if not handled appropri-
ately. Despite careful development and construction, 
some of these components may eventually fail. To avoid 
unnecessary damage, environmental or financial, there is 
a need to locate and diagnose these faults as fast as possi-

ble. This can be done with a diagnostic system, which 
should alert the user if there is a fault in the system and, if 
possible, indicate the reason behind it. 

The importance of the ability to perform high quality 
and high reliability diagnostics on a system lies in: 
• Lowering the repair and maintenance time of the real 

system which results in lower maintenance costs and 
increased customer satisfaction.  

• Lowering the number of sound components that are 
replaced erroneously during maintenance and repair. 

• Lowering the downtime and non-operational time of 
critical systems. 

In the last decade, model-based technology in diagnosis 
matured so far that it was transferred from academic re-
search into real applications. It provides an alternative to 
more traditional techniques based on experience, such as 
rule-based reasoning systems or case-based reasoning 
(CBR) systems. Early model-based diagnosis tools in-
clude MDS (Mauss, et al. 2000 [11]), RAZ’R 
(Sachenbacher, et al. 2000 [15]) and RODON (Lunde, et 
al. 2006 [9]).  

In early diagnosis systems, the knowledge about inter-
relations between observations (symptoms), possible fail-
ure causes, and repair actions were encoded in simple 
rules like this: “If the back rest of a passenger seat system 
(business class) cannot be moved to the upright position 
although the forward activation button is pushed then the 
hydraulic controller may be defective or the forward acti-
vation button might be disconnected”. Rule-based sys-
tems are fairly simplistic. As it can be seen from the pre-
vious example, they provide a set of assumptions and a 
set of rules that specify how to act on the set of assertions. 
The advantage of the rule-based systems is that they are 
very efficient with respect to memory and computing 
time. For this reason, they are still widely used in prac-
tice, especially for on-board diagnostics when the lack of 
computational power is an issue. However, in modern 
systems on-board rules are automatically generated by 
model-based tools, which are able to produce more com-
plete and systematic rule sets compared to the traditional 
hand-written ones. 

In a case-based reasoning system, system expertise, 
fault detection and fault isolation is embodied in a library 
of past cases rather than in classical rules. When pre-
sented with a new target problem, a case-based reasoning 
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system will first attempt to retrieve from the case data 
base a similar case that is relevant to solve the target 
problem. For a diagnostic problem, a case usually consists 
of a symptom, and a repair solution. The foundations of 
cased-based reasoning systems are described by Pal and 
Shiu 2004 [13], and an overview of industrial cases is 
given by Althof, et al. 1995 [1]. 

In comparison, the model-based approach tries to use 
the knowledge incorporated in a model to derive the 
symptom-failure associations as well as appropriate repair 
actions automatically. The existence of a modeling lan-
guage that can be used for capturing model knowledge for 
diagnostics purposes is central for model-based-diagnosis. 
Early model-based diagnosis systems used traditional 
general purpose programming languages for specifying 
models. However, in some aspects, general purpose pro-
gramming languages are inadequate to the task of formal-
izing significant domains of engineering practice. They 
lack the expressiveness and power of abstraction required 
by engineers. In this paper, we propose a declarative 
equation-based language called Rodelica. It is derived 
from the standardized modeling language Modelica 
(Modelica Association 2007 [2]) and differs mainly in the 
behavior representation, by using constraints rather than 
differential equations. This deviation is due to the re-
quirements of model-based diagnosis.  

The rest of the paper is organized as follows: In Sec-
tion 2, we give a brief description of the principles of 
model-based diagnosis, by presenting some classical text-
book examples to illustrate and explain the main con-
cepts. In Section 3, we introduce the Rodelica language, 
and we highlight the main language constructs that facili-
tate various failure analyses. The extended case study 
presented in Section 4 illustrates the potential and the 
benefits of the Rodelica modeling language. The model 
presented in the paper was built using RODON, a com-
mercial model-based reasoning (MBR) system. The 
Rodelica language is an essential part of RODON’s inte-
grated modeling environment. We show how, from the 
developed model, we are able to automatically derive 
decision trees for troubleshooting of the system in the 
workshop, and decision rules for on-board diagnosis. We 
will also illustrate an interactive model-based diagnostics 
process in which additional measurements are proposed in 
case that the initial diagnosis does not result in a single 
candidate as a root case. Finally, Section 5 presents our 
conclusions. 

2. Principles of Model-Based Diagnosis 
The basic principle of model-based diagnosis consists in 
comparing the actual behavior of a system, as it is ob-
served, with the predicted behavior of the system given by 
a corresponding model. A discrepancy between the ob-
served behavior of the real system and the behavior pre-
dicted by the model is a clear indication that a failure is 
present in the system. Diagnosis is a two stage process: in 
the first stage, the error should be detected and located in 
the model, and in the second stage, an explanation for that 
error needs to be provided. Diagnoses are usually per-
formed by analyzing the deviations between the nominal 

(fault free) behavior of the system and the measured or 
observed behavior of the malfunctioning system.  

In Figure 1, a model of a real system (an airplane pas-
senger seat system) is depicted at the lower left corner. It 
might contain, for example, the behavior of the mechani-
cal components incorporated in the seats, or the behavior 
of the in-flight entertainment system, or both. Note that, 
like all models, the model is only an abstraction of the 
real system (depicted at the upper left corner) and can be 
incomplete. The granularity of the model and the amount 
of information and behavior that is captured into it will 
directly influence the method employed by the reasoning 
engine as well as the precision of the diagnostic process. 

 
Figure 1. Basic principle of model-based diagnosis 
As a general rule, the models are built to enable the iden-
tification of failed least repairable units (LRUs). Once a 
model of the real system is built, simulation or prediction 
can be performed on the model. The predicted behavior, 
which is the result of the simulation, can then be com-
pared with the observed behavior of the real system. This 
comparison is usually done by a reasoning engine (in our 
case RODON) that is able to detect discrepancies and also 
to generate and propose corrective actions that need to be 
performed on the real system to repair the identified fault. 
We should note that the process of diagnosis (incorpo-
rated in the diagnostic reasoner) is separated from the 
knowledge about the system under diagnosis (the model). 
This ensures that the model can be reused for other pur-
poses as well, such as optimization and reliability analy-
sis.  

The main ideas of model-based reasoning can be illus-
trated by the following simple multiplier-adder circuit 
taken from Kleer and Kurien 2003 [7].  

Figure 2. Multiplier-Adder circuit 
The inputs to the system are A, B, C, D and E, while the 
outputs of the system are F and G. X, Y and Z are inter-
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mediary probing points in the system. If requested, the 
user can perform an observation and measure the value in 
these points. If the system is supplied with the following 
input set: A=3, B=2, C=2, D=3, E=3, then the expected 
output should be F=12 and G=12. The output is calcu-
lated by using a deduction-based reasoning, first comput-
ing the intermediate results X=6, Y=6, and Z=6 at the 
output of the multiplier gates, which then are becoming 
inputs to the adder gates. For computing the results, a 
simple inference engine like the ones used by most simu-
lation environments is enough to perform the calculations. 
Note that the behavior of the components is formulated in 
terms of relations between model variables which are 
called constraints. In general, constraints are not directed 
(unlike assignments), and may be of various nature, e.g. 
equations, inequalities, or logical relations.  

A conflict is any discrepancy or difference between the 
prediction made by the inference engine and the observed 
behavior. Now let us suppose that by observing the real 
system one notices that the output value of F is 10, which 
is different from the expected calculated value of 12. In 
our case, the observation F=10 leads to a conflict that will 
be the triggering point for the diagnostic engine to indi-
cate that something is wrong. It means that one of the 
components in the system does not work correctly, in 
other words: there is a contradiction between the assump-
tions and the observed behavior. In the next step, the di-
agnostic reasoner should find an explanation for the con-
tradictory observation.   

A possible explanation of this behavior might be that 
adder A1 or the multiplier M1 is defective which might 
cause the defective output F=10 (as depicted in Figure 3). 

Figure 3. A defective adder A1 or multiplier M1 might 
explain the wrongly computed value F=10 
A wrongly computed output by the adder A1 might be due 
to the fact that the adder itself is defective, in which case 
we can add the adder to the possible list of candidates, or 
due to the wrong inputs received by the adder. It should 
be noted that the inputs of adder A1 are the outputs of 
multiplier M1 and M2. The output of M2 is also input to the 
second adder A2 that computes the value of G. Since the 
value of G was correctly computed, we can exclude M2 
from the suspected candidates. A defective M2 would cer-
tainly influence the computed value of G. Therefore, with 
the current information about the system we can conclude 
that either M1 or A1 is defective. 

So far, we have considered only single faults in our 
multiplier-adder circuit. Considering multiple simultane-

ous faults will give us a new set of candidates, as depicted 
in Figure 4.  

 
Figure 4. Multiple fault: Both M2 and A2 are defective 
Let us analyze the set of multiple fault candidates shown 
in Figure 4 and see if it is consistent with the observation. 
The multiplier M2 is defective, which means that it will 
produce a wrong output, which will be input to the adder 
A1. With a wrong input, the adder A1 will produce a 
wrong output, which might explain that we observe F = 
10. Moreover, the output of M2 is also input to the adder 
A2, which is also defective. It might happen that the de-
fect inside A2 compensates the defect of the multiplier M2, 
and by chance, it produces a good value for the output G. 
With the given information, this is what we can conclude 
about the system. This reasoning method is called abduc-
tive reasoning. It starts from a set of accepted facts and 
infers their most likely explanations in the form of hy-
potheses. If at a later time, new evidence emerges which 
disagrees with a hypothesis, this hypothesis will be 
proven false and must be discarded. In our example, the 
hypothesis "M2 and A2 are faulty simultaneously" might 
be disproved by an additional measurement of the value Y 
= 6. But without additional information about the system, 
it is a valid hypothesis that explains the abnormal obser-
vation. By using the same type of reasoning, more hy-
potheses can be advanced, e.g. “M2 and M3 are simultane-
ously faulty”.  

3. Rodelica, a Modeling Language for Diag-
nosis 

For modeling diagnosis-related problems, like the exam-
ple presented in the previous section, we describe the 
Rodelica language which is strongly related to the equa-
tion-based object-oriented modeling language Modelica. 
Rodelica was first proposed by Lunde 2000 [8]. After-
wards, it was implemented, and it is now the modeling 
language of the commercial model-based reasoning tool 
RODON. Since 2001, Rodelica was exploited in a large 
number of industrial-size projects.  

The class concept of Rodelica is identical to the class 
concept of Modelica. However, we added set-valued data 
types as well as a new behavior description with seman-
tics which differ from the equation-based behavior de-
scription in Modelica. Those deviations are motivated by 
the requirements of applications in model-based diagno-
sis. We describe the most important diagnosis-related 
semantic features of the Rodelica language in the follow-
ing subsections. 
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3.1 The need for over-constrained systems 
Modeling and simulation environments associated to tra-
ditional equation-based modeling languages like Mode-
lica (Modelica Association 2007 [2]) , gProms proposed 
by Barton and Pantelides 1993 [3], Ascend proposed by 
Piela, et al. 1991 [14] or VHDL-AMS (Christen and 
Bakalar 1999 [6]) use numerical solvers for performing 
simulations. They rely on the fact that the system of dif-
ferential equations extracted from the model is structur-
ally and numerically nonsingular. The structural singular-
ity checks whether the system of equations is well-posed 
or not, but cannot guarantee anything regarding existence 
or uniqueness of the solution. For this reason, the struc-
tural consistency checking is considered as a preprocess-
ing phase to the more powerful notion of numerical singu-
larity. The need to ensure that a system of equations ex-
tracted from the model is structurally nonsingular imposes 
some additional restrictions on the semantics of tradi-
tional equation-based object-oriented languages. For ex-
ample, a necessary but not sufficient condition for ensur-
ing the structural nonsingularity is that the number of 
equations must be equal to the number of variables. The 
second necessary condition is that the sparsity matrix as-
sociated to the structural Jacobian with respect to the 
higher order derivatives in the system can be permuted in 
such a way that it has a non-zero free diagonal. This re-
striction, imposed by the existence of a numerical solver 
for computing the solution of the equations, makes it im-
possible to formulate over- or under-constrained models. 
Models formulated in traditional equation-based lan-
guages need to be well-constrained. Several methods have 
been proposed to check the structural nonsingularity of 
the underlying system of equations associated to a model 
built using a traditional equation-based language. For the 
Modelica language, Bunus and Fritzson 2004 [5] pro-
posed a graph theoretical approach for checking the struc-
tural nonsingularity and for debugging  over- or under-
constrained systems. Broman, et al. 2006 [4] proposed a 
concept called structural constraint delta to determine 
over- and under-constrained systems of equations in mod-
els by using static type checking and a type inference al-
gorithm. Recently, additional restrictions have been added 
into the Modelica language in order to ensure that each 
model is “locally balanced”, which means that the num-
ber of unknowns and equations must match on every hier-
archical level. The rationale behind these restrictions in-
troduced in Modelica 3.0 is presented by Olsson, et al. 
2008 [12]. 

As we have seen in Section 2, a model-based diagnosis 
reasoning algorithm is triggered by conflicts. In Section 2 
Figure 3, we present a situation in which the observed 
value F was equal to 10 compared to the computed value 
F=12. A model-based diagnosis system should have the 
possibility to specify and enter symptoms consisting of 
observations. Adding an observation to the model will 
automatically add an extra constraint (equation) making 
the model over-constrained. Model-based diagnosis sys-
tems like RODON use constraint solvers for performing 
diagnosis tasks that do not require the model to be well-
constrained. It should be also noted that the main task of a 

model-based diagnosis system is to compute a diagnosis 
and not to perform a simulation.  

The inference engine (constraint solver) will make use 
of the constraint network that is automatically extracted 
from the model. A constraint network is a set of variables 
and relations between them, described by constraints. 
Together, they define the admissible values for all vari-
ables. The constraint network is the equivalent to the flat-
tened form of equations extracted by the Modelica com-
piler. Recall that there are no structural singularity condi-
tions imposed on the extracted constraint network. The 
inference engine is able to operate with both insufficient 
information and redundant information. Inference strate-
gies transform the constraint network into equivalent net-
works which describe the set of solutions in a more ex-
plicit way. Often they do not solve the problem directly, 
but they reduce the search space by problem reformula-
tion. Transformations include reduction of variable do-
mains and addition, removal, or modification of con-
straints. The reasoning process is explained in detail in 
Lunde 2006 [10].                    

3.2 The need for failure modes 
The multiplier-adder circuit described in Section 2 has 
only used the correct behavior description of its constitu-
tive components. The “correct behavior” models are usu-
ally easy to acquire; this kind of information should be 
available at the product design phase. As we have seen in 
the previous example, one could compute a list of candi-
dates whose abnormal behavior might explain the faulty 
observed behavior. However, this list can be significantly 
reduced in size if additional information is available, in 
the form of models describing the most probable modes 
of faulty behavior. A diagnostic engine can use these ad-
ditional behavior modes to check whether the assumption 
of an abnormal behavior mode explains the observed sys-
tem behavior. The following example will illustrate why 
the specification of the faulty behavior (fault modes) is 
very helpful in order to achieve physically sensible diag-
nostic results.  

Let us consider the simple electrical circuit from 
Figure 5 consisting of three electrical bulbs (B1, B2, B3) 
connected in parallel to a battery (BAT). The wire connec-
tion between the battery BAT and bulb B1 is marked w1 in 
Figure 5. The connection between B1 and B2 is marked 
w2, while a wire connection named w3 connects bulb B2 
and bulb B3. 

 

Figure 5. Simple electrical circuit consisting of three 
electrical bulbs connected in parallel, and illustrating the 
use of failure modes in diagnosis 
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Now let us consider the following symptom: the circuit is 
correctly powered by the battery, and we observe that 
only bulb B3 emits light, while B1 and B2 are off (are not 
emitting any light). If we admit the possibility of multiple 
faults in our circuit, we can conclude that a simultaneous 
failure in both B1 and B2 explains the behavior that we 
just observed. An alternative explanation consists in a 
simultaneous defect of wire w1 and wire w2. As long as 
we do not know anything about the nature of the defective 
behavior, it is thinkable that the defects in w1 and w2 will 
cause bulb B1 and B2 to be switched off, while they com-
pensate each other causing B3 to behave normally, as 
observed. Actually, this is physical nonsense, since we 
know that an electrical wire can be either disconnected or 
have a short to ground, and there is no possible physical 
situation in which the failures in two different wires con-
nected in series will compensate each other in that way 
and make bulb B3 emit light. Based on a similar formal 
reasoning, a diagnostic reasoning engine might errone-
ously consider the failure in the battery BAT and wire w2 
as a potential candidate pair that might explain the ob-
served behavior. To avoid those physically impossible 
candidates, additional information about how a compo-
nent is most likely to fail should be integrated into any 
model intended for diagnosis purposes.  

In Rodelica, it is possible to define several failure 
modes associated with each component. Let us consider a 
simple electrical component that has two pins: 
model TwoPin 

Pin p1; 
Pin p2; 
FailureMode fm(max =1); 

behavior 
   // current balance that defines the  
   // nominal behavior 
   p1.i + p2.i = 0; 
   // constraints for the failure mode 
   // “disconnected” 
   if (fm == 1){ 
      p1.i = 0; 
   } 
end TwoPin; 
  
Compared to a Modelica representation of a TwoPin 
component, it can be noticed that the Rodelica TwoPin 
component, besides the nominal behavior, defines the 
behavior of the component when it is disconnected. The 
disconnected failure mode will have the effect that the 
current in pin1 will be zero (p1.i = 0). The alternative 
behavior of the component is specified with the help of a 
type variable FailureMode that acts like a switch be-
tween the two operation modes of the component. In our 
case, the failure mode behavior is enclosed between the 
brackets of the if(fm==1) statement. 

A Resistor component that extends the TwoPin 
component can be defined as follows: 
 
model Resistor extends TwoPin(fm (max = 2) ); 
   public     Resistance rNom(final min = 0); 
   protected  Resistance rAct(final min = 0); 
behavior 
   // Basic constraints for nominal case:  

 if (fm == 0){ 

   // Actual resistance is nominal resistance 
   rAct = rNom; 
   // Ohms law for voltage drop between pins 
   p1.u - p2.u = rAct * p1.i; 
 } 
  
// Extensions for failure mode "disconnected": 
if (fm == 1){ 
   // Infinite resistance between pin 1 and 2: 
      rAct = INF_PLUS; 
} 
    

  // Extensions for failure mode "short circuit  
  // between pin 1 and 2": 

if (fm == 2) { 
    // Same potential at pins 1 and 2: 
    p1.u = p2.u; 
    // No resistance between pin 1 and 2: 
    rAct = 0.0; 
 } 

end Resistor; 
 

It should be noticed that a Resistor component will 
inherit all constraints, and thus all failure modes, from the 
TwoPin component. By extending TwoPin, the resistor 
class has the possibility to add new constraints, thus ex-
tending the inherited failure modes or even adding new 
failure modes. By default, nominal behavior is assigned to 
the failure mode fm = 0. In the example, it is extended 
by specifying that the actual resistance will take the value 
of the nominal resistance, and by specifying Ohm’s law 
for the voltage drop between pins. Note that constraints 
which are not enclosed in any if-statement (like 
Kirchhoff’s law in the TwoPin class) are valid in all be-
havior modes. It should be also noticed that the Resis-
tor has an extra failure mode that captures the situation 
when there is a short circuit between p1 and p2. In this 
case, p1 and p2 will have the same potential (p1.u = 
p2.u), and due to the short circuit the resistance of the 
Resistor will be equal to zero (rAct = 0). The short-
circuit current is not specified within the resistor class.  

Note that the number of constraints in each of the if-
cases is not necessarily identical. This distinguishes Rode-
lica’s if-statement from the if-statement in Modelica, 
where each branch is required to contain exactly the same 
number of equations, thus ensuring nonsingularity of the 
resulting system of equations.  However, allowing differ-
ent numbers of constraints is very useful in diagnosis. For 
some components, it may be appropriate to specify a ge-
neric failure mode which summarizes all kinds of faulty 
behavior which is too complex to describe in detail. For 
instance, imagine an electrical connector block with N 
pins. By the laws of combinatorics there is a large number 
of ways how those pins can be shorted, and it is unfeasi-
ble to provide the equations for each of those potential 
failure modes. An elegant way to avoid this complexity is 
the additional definition of a universal failure mode con-
taining no constraint at all, which then may serve to ex-
plain any unexpected behavior which is not specified ex-
plicitly.  

3.3 Interval data types 
Another characteristic of the Rodelica language is the use 
of set-valued data types for defining model variables. This 
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is motivated mainly by the constraint solver, which does 
not always compute a single solution but rather constricts 
the values of all model values in an iterative way as far as 
possible without loosing any solution. In particular, most 
continuous model variables have the data type Interval. 
This is especially useful when working with data that is 
subject to measurement errors or uncertainties. For in-
stance, a leak in a pipe with an uncertain size can be mod-
eled by assigning the diameter a range of reasonable val-
ues, thus avoiding a potentially infinite number of failure 
modes.  

Consequently, the inference engine uses interval arith-
metics to propagate the values of the variables through the 
constraint network. The basic arithmetic operations for 
two intervals [a, b] and [c, d] are given below: 
[a,b] + [c,d] = [a + c, b + d]  
[a,b] − [c,d] = [a − d, b − c]  
[a,b] × [c,d] = [min (ac, ad, bc, bd),  

    max (ac, ad, bc, bd)]  
[a,b] / [c,d] = [min (a/c, a/d, b/c, b/d),  
                 max (a/c, a/d, b/c, b/d)] 

As an example the following simple Rodelica model 
model testIntervalAddition 
   Interval x = [1,6]; 
   Interval y = [3,7]; 
   Interval z; 
behavior 
   z = x + y; 
end testIntervalAddition;   

will restrict the possible values of the variable z in the 
interval  [4  13].   

Using interval variable types will have certain 
unexpected effects. For instance, consider the piecewise 
defined function given below in Figure 6: 

 
Figure 6. Piecewise defined example function  
In Modelica, this function can be easily represented by the 
following model: 
model PiecewiseRealFunction 
   Real x; 
   Real y; 
equation 
   y = if     (x < 2) then 1; 
       elseif (x >= 2 & x <= 5) then x - 1; 
       else   (x > 5) then 4; 
end PiecewiseRealFunction; 

Now, let us consider that the variables x and y are of type 
Interval and the initial value of x is the interval [0 10]. 
In this case, the conditions x<2, x>=2 & x<=5 and x>5 
are undecidable – for some values in x, they are true, but 

for others they are false. As a consequence, none of these 
constraints can be evaluated and y remains undetermined, 
although it is actually clear that the resulting value range 
should be y=[1 4]. Modeling with conditional 
constraints in a conventional style when interval type 
variables are involved in the condition can lead to a loss 
of information. For this reason, the “or” clause was 
introduced as an alternative to the if-statement. In 
Rodelica, the piecewise real function from the example 
above would be more appropriately formulated as 
follows: 
model PiecewiseRealFunction 
   Interval x(min = 0, max = 10); 
   Interval y; 
behavior 
   or { (x < 2; y = 1;}  
        {x = [2 5]; y = x - 1;} 
        {x > 5; y = 4;} 
      } 
end PiecewiseRealFunction; 

An or-clause is treated as a single very complex 
constraint, whose evaluation is a two-step process: firstly, 
the branches of the or clause are evaluated separately; in 
a second step, the final result for each variable is 
calculated as the set union of the value ranges from all 
branches. In case that a conflict in one of the branches  is 
detected (which means that there is no solution for at least 
one variable involved) the branch is excluded from the 
merging. As an example, assume that the variable x can 
take values between 1.5 and 4 (x=[1.5 4]) and y can 
take any real value (y=[- +]). By propagating the 
interval [1.5 4] for x, the three or branches of the 
piecewise real function previously defined will result in 
the following: 
x = [1.5 2]; y = 1; 
x = [2 4]; y = [2 4] - 1 = [1 3]; 
x = {}; y = 4; 

The third branch will be excluded because it results in a 
conflict, which is easily detectable by the empty set 
assigned to x. It is the result of the set intersection of the 
initial value of x (x = [1.5 4]) and the solution of the 
constraint x > 5 which is x = [5  +]. The unification 
of the solutions from the other two branches results in the 
overall solution  x = [1.5 4] and y = [1 3].   

4. Industrial Example 
Let us consider as an example a front-light power window 
system of a Volvo V70 car. The model was built and ana-
lyzed by means of RODON, and it is formulated using the 
Rodelica language. The model of the front light system 
contains an Electronic Control Unit (ECU), the front 
lights and the associated electrical harness consisting of 
electrical wires, fuses and connector blocks. The ECU is 
able to set and detect diagnostic fault codes. The activa-
tion of a diagnostic fault code is an indication that some-
thing is wrong in the system. A small section of the front 
light system is depicted in Figure 7.  
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Figure 7. The front-light subsystem model of a Volvo 
V70 car developed in RODON. 
The front light system is powered by the car battery which 
also powers the power-window system of the car. The 
power window subsystem contains an ECU of its own as 
well as two power window motors with hall sensors, 
fuses, and connector blocks and wires. The ECU detects 
and sets diagnostic trouble codes for power failure and 
Hall sensor failure. The Hall sensors are used to precisely 
locate the position of the window. 

A small part of the power window model is shown in 
Figure 8.  

 

Figure 8. A part of the power-window subsystem model 
of a Volvo V70 car developed in RODON 

The implementation details of the front-light and power-
window subsystem models depicted in Figure 7 and 
Figure 8 are not relevant for the discussion in the paper. 
Let us just mention that for each component, the nominal 
behavior was modeled and augmented with the relevant 
failure modes, and that variables whose values can be 
measured in the real system have been marked as observ-
able in the model.  

Once the model has been created, RODON supports 
several diagnostic methods: 
• Model-Based Diagnosis (MBD), including interactive 

MBD which means that additional measurements can 
be provided by the user to narrow down the number 
of diagnostic candidates. 

• The automatic generation of decision trees (or diag-
nostic trouble-shooting trees), which can serve as a 
model documentation or to assist the mechanic in a 
workshop in a guided diagnosis. 

• The automatic generation of diagnostic rules for on-
board diagnostics. 

In the following, two of these approaches are illustrated 
using the model described above. 

4.1 Interactive Model-Based Diagnosis 
Model-based diagnosis is the most powerful, but also the 
most resource-consuming diagnostic approach. By using 
both nominal and faulty behavior, as specified by the 
Rodelica model, it is able to detect single or multiple 
faults, or to propose additional measurements in an inter-
active way. Available observations and measurements can 
be fed to the model in several ways: there are a file inter-
face, a GUI, and a CAN-bus interface for direct commu-
nication with the car. The main principles of MBD were 
described in Section 2.  

As an example, we consider the situation in which the 
user pushes the power window button with the intent to 
slide down the window pane, but the pane does not move. 
Obviously, there is a failure in the system that immobi-
lizes the window pane. After entering this symptom into 
the tool, we can start the model-based diagnostic process 
to find an explanation for the observed behavior, and to 
isolate the component that caused that particular behavior. 
In the first step, the diagnostic engine will compute a list 
of candidates (hypotheses) that explain the observed be-
havior: 

 
PowerWindowSystem.'11C/35' disconnected, 
PowerWindowSystem.'54/10' disconnected, 
PowerWindowSytem.DDM.powerWindowSwitchFrontLeft.  
                 switchWindowFront disconnected, 
PowerWindowSystem.WindowActuatorLeft.  
                 WindowUpDown disconnected, 
PowerWindowSystem.cDDM_B disconnected, 
PowerWindowSystem.cWindowActuatorLeft  
                 disconnected, 
PowerWindowSystem.wire_B1_Left disconnected, 
PowerWindowSystem.wire_B2_Left disconnected, 
PowerWindowSystem.wire_R_SB_Left disconnected, 
PowerWindowSystem.wire_SB1_Left disconnected, 
PowerWindowSystem.wire_SB2_Left disconnected, 
PowerWindowSystem.wire_SB3_Left disconnected, 
PowerWindowSystem.wire_SB4_Left disconnected, 
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PowerWindowSystem.wire_VO_Left disconnected 

So far, 14 candidates have been identified where each 
corresponds to a single fault which can fully explain the 
symptom. The list is ordered by the associated confidence 
values. These confidence values are part of the model and 
can be imagined as “rough order of magnitude” reliability 
figures. Components with a lower confidence value are 
listed first because they are less reliable than others. In the 
absence of confidence values, the tool will sort the candi-
dates by secondary criteria, for instance lexically. In the 
graphical user interface, the candidates are highlighted 
using color shades ranging from red to blue, with red rep-
resenting lower confidence value and blue representing 
less probable candidates. The highlighting of candidates 
in the GUI is depicted in Figure 9.   

Dealing with such a big number of candidates is not 
very efficient in a workshop environment where the me-
chanic needs to isolate the failure in a very short period of 
time. There is a need to narrow further down the number 
of candidates. This can be done by providing extra infor-
mation to the tool in the form of measurements. 

 
Figure 9. Diagnostics candidates are highlighted in the 
model browser  
The inference engine can profit from this new information 
to validate the previously computed candidates, and pos-
sibly retract those that do not match the measured values. 
In Figure 10, in the upper part of the window, the list of 
candidates is presented, whereas the lower part shows a 
list of potentially useful measurements or observations to 
be performed on the system. The latter are ordered by the 
estimated impact they will have in reducing the number of 
candidates. The first measurement in the list has the big-
gest potential to reduce the number of candidates.   

    

Figure 10. Lists of diagnostic candidates (hypotheses) 
and of proposed measurements 
However, the mechanic is free to choose any measure-
ment from the list. In practice, there might be other selec-
tion criteria which are unknown to the tool. For instance, 
checking a fault code activation on the dash board is less 
expensive than a voltage measurement on a connector 
block, which involves dismounting the door to have ac-
cess to the electrical harness. In the present context, we 
choose the first proposal in the list. It is a fault code read-
ing which can be automatically read from the car by the 
off-board diagnosis device. If the car dashboard is acti-
vated, the fault code may be read off the dashboard, too. 
The status of the fault code is given to the tool by means 
of the measurement GUI. It leads to the assignment of the 
corresponding value (true or false) to the variable out-
putCircuit.fc which is part of the subsystem Power-
WindowSystem.DDM.. We assume that the fault code is 
active. This additional information is used by the reason-
ing engine to exclude some of the candidates from the list. 
In the described situation, there are only 4 candidates left: 
 
PowerWindowSystem.WindowActuatorLeft.  
                    WindowUpDown disconnected, 
PowerWindowSystem.cWindowActuatorLeft  
                    disconnected, 
PowerWindowSystem.wire_R_SB_Left disconnected, 
PowerWindowSystem.wire_VO_Left disconnected, 

The diagnostic process can be continued by entering fur-
ther measurements from the proposed list until the final 
diagnosis is produced (only one single-fault candidate is 
left). We call this process, in which the user is requested 
to provide additional measurements to progressively re-
fine the diagnosis, interactive model-based diagnosis 
(IMBD). 
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4.2  Generation of Decision Trees 
In environments where fewer resources are available, a 
more compact form of diagnostic knowledge representa-
tion is desirable. RODON is able to derive several forms 
of compiled diagnostic knowledge from the object-
oriented Rodelica model, automatically, by means of a 
systematic simulation of all essential system states. To 
this end, the modeler has to specify which single faults 
and which operational states of the system are relevant for 
the analysis. The Cartesian product of all those opera-
tional states with the set of fault states (plus the state Sys-
tem ok) defines a so-called state space.  An automatic 
simulation control module can then be used to simulate 
each state in the state space, systematically, and to write 
the results into a data base, which we call state data base 
(SDB). The SDB can be used for risk analyses, like fail-
ure-modes and effects analysis (FMEA), and it provides 
the necessary information for generating decision trees 
and diagnostic rules.  

Decision trees are used to determine which system 
state explains a symptom, with minimal effort and costs. 
The root node of a decision tree is the symptom. Leaf 
nodes are result nodes describing a fault state, e.g. “w1 is 
disconnected”. The intermediate nodes are decision nodes 
which help to discriminate the system state. Decisions 
may involve a measurement or a visual check to be done 
by the mechanic. To perform a diagnosis for a selected 
symptom, the decision tree is traversed starting from the 
root node, finally arriving at the leaf node with the correct 

diagnosis. The path through the tree to the diagnosis de-
pends on the answers given at each passed decision node.  

The generation process is configurable in a very high 
degree. In particular, actions required at the decision 
nodes may be more or less expensive. Consequently, the 
decision nodes in the generated tree are ordered with re-
spect to a cost measure defined by the modeler. For in-
stance, if fault code checks are declared to be cheap in 
comparison to actual measurements, then the mechanic 
will be asked by the resulting trees to check all helpful 
fault codes before encountering a decision node contain-
ing a measurement. 

Figure 11 displays a decision tree whose root symptom 
is an active fault code at one of the input circuits of the 
Hall sensors in the power window subsystem. If this fault 
code is activated, the user (the mechanic) is instructed to 
check another fault code PDN-0020. In case that this fault 
code is active as well, the user is further asked to perform 
a visual check on cPDM_A, which is a switch in the power 
window system. Otherwise, the user is instructed to make 
a continuity test (Ohmic measurement) on one of the 
wires. Similarly to the interactive model-based diagnosis, 
the user is asked to perform a certain measurement or to 
make an observation. Based on the result of the user ac-
tion, a certain branch of the failure tree is followed until 
the component that caused the failure is isolated.  

 

Figure 11. Generated Fault Tree 
Traditionally, the generation of decision trees is done 
manually by the system experts, which is an extremely 
time consuming and error-prone task. Model-based gen-
eration of decision trees provides a systematic and safer 
way to analyze the combinations of all relevant opera-
tional states and component failures that can occur in a 
system, thus serving as a valuable tool in the authoring of 
troubleshooting documentation.   

5. Summary and Conclusions 
In this paper, we have presented Rodelica, an equation-
based object oriented language derived from Modelica 
and adapted to model-based diagnosis purposes. Some of 
the characteristics of the language that makes it suitable 
for diagnosis are:  

• Numerical representation of values in general as 
value sets (intervals, sets of discrete or Boolean val-
ues); qualitative representation is possible as well. 
This allows to cope with sensor and manufacturing 
tolerances as well as with insufficient information in 
case of faulty behavior. Both situations are common 
in diagnostic applications. 

• Relations between variables are formulated as con-
straints. Supported constraint types include equations, 
but also inequalities, conditional constraints (if and or 
clauses), Boolean relations (formulas or truth tables), 
and spline interpolation. 

• The number of constraints in a model is not restricted 
by the number of variables or by any notion of regu-
larity. A model may be under- or over-determined. 
Underdetermined models lead to large value ranges 
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as the result of the inference process, over-determined 
models lead to conflicts which can be used as a start-
ing point for diagnosis. 

• In particular, it is possible to define failure modes for 
each class, in addition to modeling the nominal be-
havior. Any number of failure modes can be defined 
per class or component. 

• The solver provides the appropriate computational 
methods based on constraint propagation and interval 
set arithmetic. 

The benefits of using the Rodelica language have been 
illustrated in many industrial-size projects. Like the Mod-
elica language, which is considered to be the “de facto” 
standard for modeling and simulation of hybrid systems, 
we believe that Rodelica can be proposed to constitute the 
standard for the exchange of diagnostic models.   
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Abstract
This paper deals with a first implementation of the so-
called motor calculus within Modelica. The motor calculus
can be used to describe the dynamical behaviour of spatial
multibody systems in an efficient way. This method rep-
resents an alternative approach to modelling of multibody
systems. In the paper, some fundamentals of motor calculus
are summarized. Furthermore, a simple implementation of
motor algebra by special additional Modelica code within
some components of the Modelica Multibody Standard Li-
brary is presented. This approach fully corresponds with
the paradigm of object-oriented modelling. However, the
present realisation is not equation-based in its full sense be-
cause of the missing possibility of operator overloading (at
least in the available Modelica simulator environment). In-
stead of this, some functions are used carrying out the nec-
essary calculations. Using this implementation, some ex-
amples are given to prove the applicability and correctness
of the implemented approach.

Keywords Motor calculus, Screw theory, Rigid multi-
body system, Modelica

1. Introduction
The notion of motor, composed of the words moment and
rotor, was coined by CLIFFORD in 1873 in his algebra of bi-
quaternions [4]. But Clifford did apply his concept neither
to the modelling of motion of a single rigid body nor to
the modelling of spatial multibody systems. The approach
of motor calculus to 3D mechanics was suggested by VON
MISES in 1924 [11, 12]. In the first part [11], VON MISES
introduces the dual motor product. He indicates the role of
the dual motor product as a measure of the instantaneous
change of a motor associated to a rigid body by the action
of a second motor. In the second part [12], VON MISES
applied the motor calculus in the derivation of a general
form of the equations of motion of a rigid body. Due to

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

this work, translations and rotations, velocities and angular
velocities, forces and torques, etc. can be described by
motor calculus (or motor algebra). Hence, this approach is
well suited to investigate the behaviour of spatial multibody
systems.

One of the authors studied motor calculus in his Diploma
thesis [22] initiated and supervised by Prof. K. Reinschke
from the Technical University Dresden (one of the former
institutes of R. VON MISES). Recent publications dealing
with this subject can rarely be found (exept e.g. for [8, 18]).
In the context of the modelling language for heterogenous
systems Modelica (see e.g. [5, 13, 19]), the motor calculus
has not been taken into account up to now.

Within the Modelica community, spatial multibody sys-
tems are usually modelled using the Modelica Multibody
Standard Library (see [14] or [15]). Meanwhile, many re-
searchers apply this library to model different kinds of –
partially very complex – multibody systems [2, 9, 10, 16,
20]. This library has proven to be a well suited resource
to modelling such systems. However, applying the motor
calculus, the equations of motion for a rigid body become
more concise and clearer, e.g.

ṗ = f

(p – momentum motor, f – force motor). Despite the formal
equivalence to Newton’s Second Law for a point mass, this
equation fully describes the three-dimensional mechanics
of a rigid body.

The motivation to follow up the motor calculus in the
Modelica context is to investigate the possible simplifica-
tion of handling spatial mechanical systems. A test realisa-
tion within the Modelica Multibody Standard Library has
been carried out by implementing special additional Mod-
elica code within some components of this library. These
modifications take advantage of the built-in feature of in-
heritance. Hence, it is possible to compare both approaches
e. g. with respect to numerical correctness.

In the following section, some fundamentals of motor
calculus are shortly sketched. Some of the most important
mathematical operations are defined. The test implemen-
tation is presented in section 3. It fully corresponds with
the paradigm of object-oriented modelling (see e.g. [3]).
In modelling and simulation, one usually distinguishes be-
tween equations and assignments. In this context, the test
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implementation is not completely equation-based because
some special mathematical operations had to be realised by
functions. Some examples in section 4 show the principal
applicability of the motor calculus approach.

2. Fundamentals of Motor Calculus
A motor

h =
(

g
ho

)
is an ordered pair of vectors, ho and g, that define a vector
field

h(r) = ho + g × r (1)

in the three-dimensional Euclidean space. In this definition,
r is the position vector of any point in space, while the
vectors h and g are called the moment and the resultant
vector of the motor, respectively. Accordingly, ho stands
for the moment of the motor at the originO of the reference
coordinate system.

For every motor, an infinite number of points exists, for
which the moment of the motor h is parallel to the resultant
vector g. All these points exhibit the same moment hn and
lie on a straight line N given by

rn(λ) =
g × ho

|g|2
+ λg , λ ∈ R.

Geometrical Interpretation A very strong goal of the
motor calculus is the fact that motors and all operations
with motors (that will be defined later on) can be inter-
preted as geometrical objects or constructions. Hence, all
motors can be seen as abstract objects that do not depend
on the choice of a reference frame. R. VON MISES empha-
sises this fact by giving the definition of motors in terms
of geometrical objects describing them. Here, just an inter-
pretation of the foregoing definition is given.

α

G1

G2

g

hn

N

with tan α = |g|

Figure 1. Geometrical interpretation of motors

For every pair of straight lines (G1 and G2) defined in
Euclidean space, there exists a straight line N connecting
them and being orthogonal to both of them (see Fig. 1). For
a pair of non-parallel lines, N is uniquely defined. Oth-
erwise, there exists an infinite number of such connect-
ing lines that are parallel to each other. Now, every or-
dered pair of straight lines (G1, G2) can be mapped to a

motor (see Fig. 1). In this case, N is denoted as motor
axis, according to VON MISES. The oriented segment of
the axis N between the intersection with G1 and the inter-
section with G2 can be interpreted as the moment hn of
the motor on its axis. The smaller one of both angles in-
cluded by the lines G1 and G2 is understood as a meassure
for the orientation and is simultaneously interpreted as the
length of the resultant vector g. The tangent of this angle α
is equal to the length of the resultant vector, while the di-
rection of the resultant vector is defined in such a manner
that G1 can be transferred into G2 by a mathematically pos-
itive screw motion across the resultant vector. The mapping
from an ordered pair of straight lines to a motor is not a one-
to-one mapping because all ordered pairs of straight lines
that can be transferred into each other by a screw motion
across N define the same motor.

2.1 Motor Calculus
In the following, some computational rules of motor calcu-
lus are recalled.

Let h, h1, and h2 be three motors given by

h =
(

g
ho

)
, h1 =

(
g1

ho1

)
, h2 =

(
g2

ho2

)
.

Then, according to VON MISES, the following mathemati-
cal operations can be defined:

2.1.1 Addition
The addition of motors is performed component-wise ac-
cording to

h1 + h2 =
(

g1 + g2

ho1 + ho2

)
.

The neutral element of the addition is the zero motor

0 =
(

0
0

)
.

2.1.2 Multiplication
For the multiplication of motors the following three cases
can be distinguished:

Multiplication with a scalar The scalar multiplication is
defined component-wise

αh =
(
αg
αho

)
, α ∈ R.

Inner product The result of the inner product of two
motors is a scalar. Thus, the product corresponds to the
scalar product of the vector calculus. The definition is

(h1, h2) = (g1,ho2) + (g2,ho1) , (2)

while (g,h) is the scalar product of two vectors. Using
matrix notation, the equation

(h1, h2) =
(
gT

1 hT
o1

)
Γ
(

g2

ho2

)
holds, where Γ is a well chosen matrix according to

Γ =
(

0 I3

I3 0

)
and I3 denotes the (3× 3) identity matrix.
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Outer product The outer product of two motors results in
another motor, which is composed as follows:

h1 × h2 =
(

g1 × g2

g1 × ho2 + ho1 × g2

)
. (3)

The outer product is also referred to as motorial product or
as dual motor product [6]. In terms of vectors and vector
dyads, the product can be written as

h1 × h2 =
(

0 G1

G1 Ho1

)
Γ
(

g2

ho2

)
,

where G1 and Ho1 are the cross product matrices1 of the
vectors g1 and ho1, respectively.

2.1.3 Motor dyads
In analogy to the vector calculus, VON MISES declared
dyads for the motor calculus by linear vector functions
mapping motors to motors. Referred to a concrete coordi-
nate system, such a dyad can be represented as a (6 × 6)
matrix.

The mapping can be described in the following manner:

T ◦ h1 =
(

T 11 T 12

T 21 T 22

)
Γ
(

g1

ho1

)
=
(

T 11ho1 + T 12g1

T 21ho1 + T 22g1

)
. (4)

For multiple applications of different linear vector func-
tions, it is useful to introduce the product of two motor
dyads as

T1 ◦ T2 = T1ΓT2. (5)

The neutral element of the dyadic multiplication in motor
calculus is the identity motor dyad G that can be repre-
sented in every frame as

G =
(

0 I3

I3 0

)
.

Now, all calculation rules for the motor calculus can be
derived readily, some of which are presented here for any
arbitrarily chosen motors h1, h2, h3 and α ∈ R:

(h1, h2) = (h2, h1)

h1 × h2 = −h2 × h1

(h1, (h2 + h3)) = (h1, h2) + (h1, h3)

h1 × (h2 + h3) = h1 × h2 + h1 × h3

(αh1, h2) = α (h1, h2)

αh1 × h2 = α(h1 × h2)

(h1, (h2 × h3)) = (h2, (h3 × h1)) = (h3, (h1 × h2))

1 The cross product matrix A for a vector a =

a1

a2

a3

 is given by

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

.

Remark: Due to the definition of addition and scalar mul-
tiplication, motors span a vector space over the field of
real numbers. Moreover, by the introduction of the outer
product, motors form a Lie-Algebra2 since all the follow-
ing conditions are fulfilled:

1. The bilinearity of the motorial product is given, i. e. for
all real α and β, the motors h1, h2, and h3 satisfy the
equations

(αh1 + βh2)× h3 = αh1 × h3 + βh2 × h3

and

h1 × (αh2 + βh3) = αh1 × h2 + βh1 × h3.

2. The motorial multiplication is skew commutative, i. e.

h1 × h2 = −h2 × h1.

3. The Jacobian Identity holds, i. e. for arbitrarily chosen
motors h1, h2, and h3, the equation

h1 × (h2 × h3) + h2 × (h3 × h1)+

h3 × (h1 × h2) = 0

is true.

2.1.4 Coordinate transformations
For concrete calculations with motors, it is necessary to
introduce a coordinate system, also called frame, in which
the components of the motor are given. Considering two
different frames F1 and F2, it may be of interest how to
transform the components of a motor h given in frame F1

into the components referred to frame F2 and vice versa.
So let vector r12 denote the position vector of the origin
of F2 declared in frame F1. Furthermore, let the rotation
from frameF1 to frameF2 be given by the direction cosine
matrix A. Then, the transformation is performed by the
equation

[h]F2
=
[(

0 A
A −AR12

)
◦ h

]
F1

.

Here, the matrix R12 is the cross product matrix of the
vector r12

2.1.5 Differentiation with respect to real-valued
parameters

Consider a motor h that depends on a real parameter t
(e. g. the time). Then, the first derivative of this motor with
respect to t can be computed component-wise:

dh

dt
=

(
dg
dt

dho

dt

)
.

2 Named after the mathematician SOPHUS LIE (∗1842, †1899).
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2.1.6 Differentiation in moving frames
The temporal change of a motor seen from two different
frames will, in general, lead to differing results if one
frame, say F1, moves relatively to the other frame, say F0.
The relative motion of the origin of frame F1 measured in
frame F0 shall be given by the velocity vector vo, while
the angular velocity vector of frame F1 with respect to
frame F0 is denoted by ω. Then, the equation

ḣ =
o
h +

(
ω
vo

)
× h (6)

holds for the derivation with respect to time observed in
frame F0. In Equ. (6),

o
h denotes the derivation w. r. t. time

of the motor h observed in frame F1.

2.2 Applications of Motor Calculus
The most important application of motor calculus is the de-
scription and analysis of the static and dynamic behaviour
of rigid bodies subject to external forces and torques. Fol-
lowing the ideas of VON MISES, the next paragraphs will
give an overview, how to describe the rigid body move-
ments in the three-dimensional space in a very effective
way using the motor calculus.

Before that, some definitions have to be explained that
are essential for the succeeding subsections. To describe
the motion of a rigid body in three-dimensional space, one
chooses a reference point O of the body. The motion of
point O can be expressed w. r. t. a reference frame F by the
position vector ro (see Fig. 2). The origin of frame F is
denoted by O.

P

A

ω

F

B

r0

r

r

O

O

Figure 2. Definition of vectors at the rigid body

For the description of all other points of the rigid body,
it is suitable to introduce a body fixed frame, called body
frame B, with the origin located in the reference point O.
To distinguish the position vectors of both frames, the posi-
tion vectors of the inertial frame are underlined. The posi-
tion of an arbitrarily chosen point P of the body is therefore
given by

r = ro + r .

The motion of the rigid body is fully described by the
velocity of the reference point vo = ṙo and the angular
velocity ω the body frame B is rotating w. r. t. I.

2.2.1 Definition of physically motivated motors
The introduction of motor calculus is justified by the
comfortable applicability to mechanical rigid body issues
in three-dimensional space. As already described before,
some physical quantities for the description of rigid body
movements can be composed to motors. Hence, the motion
laws of rigid body mechanics can be written in a very com-
pact and clear form. This will be shown in the subsequent
paragraphs.

We introduce some motors, that are able to describe
the motion sequence of a rigid body as well as the acting
torques and forces in a physically meaningful manner.

The first motor is called the force motor f combining the
resulting force f and torque do (referred to the reference
point O) acting on the rigid body, i. e.

f =
(

f
do

)
.

For any rigid body, every single force f i and torque dj

can be assigned to a force motor according to

ff,i =
(

f i

ri × f i

)
and

fd,j =
(

0
dj

)
,

respectively. The resulting force motor can then be simply
calculated as the sum of all single force motors

f =
∑
(i)

ff,i +
∑
(j)

fd,j .

Please note that the overall torque do as well as the repre-
sentation of the motor depend upon the chosen reference
point O. Hence, the torque referred to any other point with
the position vector r is calculated by

d(r) = do + f × r .

That is exactly the relationship stated in Equ. (1). This
characteristic can be interpreted as a force screw (see e.g.
[1]), since there always exists an instantaneous line on
which the force and the torque vectors act parallel.

A second motor, the so-called velocity motor, is able to
describe the whole motion of a rigid body. It consists of the
velocity vector vo of the chosen reference point O and the
angular velocity vector ω representing the rotation of the
body w. r. t. an inertial frame:

v =
(

ω
vo

)
.

This motor is able to describe the velocity v of any point r
of the rigid body by the equation

v(r) = vo + ω × r .
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Two other important vectors in the description of dy-
namic mechanical systems are the momentum vector p and
the angular momentum vector lo. Both are combined in the
momentum motor p with

p =
(

p
lo

)
.

Similar to the force motor, the representation of momentum
motor depends upon the chosen reference point. Between
the angular momentum lo referred to O and the angular
momentum vector l(r) referred to any other point at posi-
tion r, the relationship

l(r) = lo + p× r .

holds. This statement can be proven by using the definition
of the vectors p and lo according to

p =
∫

ṙ dm = ṙo

∫
dm+ ω ×

∫
r dm

= mṙo −mrs × ω = mvo −mrs × ω

and

lo =
∫

r × ṙ dm

=
∫

r dm × ṙo +
∫

r × (ω × r) dm

= mrs × vo + Θoω ,

where m denotes the mass of the body and Θo the inertia
tensor w. r. t. the reference point O. The vector rs is the
position vector of the centre of mass referred to the body
frame given by rs =

∫
r dm∫
dm

.

2.2.2 Some fundamental laws of mechanics in terms
of motor calculus

With the definitions above, a relationship between the ve-
locity motor v and the momentum motor p can be derived
by introducing the inertia dyad M for the motor calculus:

p =
(
mI −mRs

mRs Θo

)
︸ ︷︷ ︸

M

◦ v . (7)

The new symbol Rs describes the cross product dyad of
the vector rs.

Referred to a concrete frame in u, v, and w, the dyad
can be written as a (6× 6) matrix of the following form

M =


m 0 0 0 mws −mvs

0 m 0 −mws 0 mus

0 0 m mvs −mus 0
0 −mws mvs Θuu Θuv Θuw

mws 0 −mus Θvu Θvv Θvw

−mvs mus 0 Θwu Θwv Θww

 ,

where us, vs, and ws are the coordinates of centre of mass.
Choosing the body frame parallel to the body’s principal
axes of inertia and selecting the centre of mass as the
reference point, M becomes a diagonal matrix.

With the help of the foregoing motor relations, the main
mechanical laws can be rewritten in terms of motors.

The first law describes the change of momentum and
angular momentum in the presence of external forces and
torques in a very efficient and short way, namely

ṗ = f .

Here, ṗ denotes the time derivative of the momentum mo-
tor p observed in an inertially fixed reference frame.

The unique simplicity and shortness of this equation is
doubtless a goal of this calculus, even more considering
that it formally takes exactly the form of Newton’s Sec-
ond Law for mass points. Unfortunately, this formula is not
very practical, since the derivation has to be done w. r. t.
the inertial frame. However, the momentum motor is much
easier to determine in a body fixed frame, because the iner-
tia dyad M is therein constant. So, a much more applicable
form for concrete calculations can be derived using (6) to
express the time derivation w. r. t. the body frame

o
p + v× p = f , (8)

where p, v, and f are referred to the origin of the body
frame.

Replacement of the momentum motor using Equ. (7)
yields the following relationship

M ◦ o
v + v× (M ◦ v) = f

if all components are given in the body frame.
The kinetic energy of a rigid body can be expressed by

means of motor calculus as follows:

T =
1
2

(v, p) with p = M ◦ v .

Again, this expression agrees formally with the equation
of the kinetic energy of a mass point, if therein the mass
is substituted by the inertia dyad M and the vectors are
substituted by their corresponding motors.

Similarly, the equation for the power performed by the
applied forces and torques is given by

P = (f, v)

so that the energy law for a rigid body results in

dT

dt
=

1
2
d

dt
(v,M ◦ v) = (f, v) .

3. Object-oriented Implementation
The test implementation presented here is based on the
Modelica Multibody Standard Library. Hence, it fully cor-
responds with the paradigm of object-oriented modelling.
Due to some limitations of the Modelica language, compro-
mises had to be made during implementation of the motor
calculus. Because of the necessarily used functions, the re-
alisation is not a completely equation-based formulation.
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3.1 Motor Library
The first step of the implementation towards a description
of rigid body motion by means of motor calculus is the
realisation of a general motor class. From the view of data
structure, motors are nothing more than a combination of
six scalars. According to the definition of motors provided
above, the first idea of arranging these scalars within the
motor class was to group them into two vectors of type
Real. The first vector would represent the resultant vector
and the second vector would be the moment vector of the
motor at the reference point:

record Motor "Motor"
Real[3] res "resultant vector";
Real[3] mom "moment vector at O";

end Motor;

Unfortunately, this approach, similar to the implementation
of the complex numbers in [7], prohibits the use of basic
mathematical operators on the newly defined data types. A
solution would be the overloading of these operators as it
is possible in C++ [17]. However, Modelica does still not
support this feature. Thus, an alternative implementation
has been chosen, where all six scalars are stored within one
vector:

type Motor = Real[6]
"Motor: [Resultant;Moment at r0]";

The reason for the chosen implementation was the ability to
keep at least the operators "+" and "−" as well as the mul-
tiplication with scalars for the motor calculus in its original
sense. Within the context of inheritance, no real special-
ization concerning the physical units of the quantities can
be made. Hence, the child classes of velocity motor, force
motor, and momentum motor have also a quite simple def-
inition, namely:

type V e l o c i t y M o t o r = Motor "Velocity motor";
type ForceMotor = Motor "Force motor";
type MomentumMotor = Motor "Momentum motor";

All the other calculation rules introduced in section 2.1
had to be implemented using Modelica functions. The first
function has been written to perform the inner product
between two motors according to Equ. (2):

f u n c t i o n dot "Inner product of motor calculus"
input Motor m1 "First motor";
input Motor m2 "Second motor";
output Real r3 "Resulting scalar";

a lgor i thm
r3 := m1[1:3]*m2[4:6] + m1[4:6]*m2[1:3];

end dot;

Similarly, the outer product has been implemented as stated
in Equ. (3):

f u n c t i o n ’x’ "Outer product of motor calculus"
input Motor m1 "First motor";
input Motor m2 "Second motor";
output Motor m3 "Resulting motor";

a lgor i thm
m3 := v e c t o r([ c r o s s(m1[1:3],m2[1:3]);

c r o s s(m1[1:3],m2[4:6])
+ c r o s s(m1[4:6],m2[1:3])]);

end ’x’;

A function that returns the moment of the motor for any
position vector r has also been realised to simplify the
motor handling:

f u n c t i o n mom "Moment of the motor referred to
position vector r"

input Motor m "Motor";
input Modelica.SIunits.Position[3] r

"Position vector";
output Real[3] mom "Moment of the motor";

a lgor i thm
mom := m[4:6] + c r o s s(m[1:3],r);

end mom;

The foregoing reasons for the simple implementation of
the motor class apply for the implementation of the motor
dyads, too. Hence, a motor dyad given w. r. t. a given frame
can be expressed as a (6× 6) matrix:

type MotorDyad = Real[6,6] "Motor Dyad";

To apply a motor dyad to a motor, another function has
been created. Referring to Equ. (4), the function has been
defined by:

f u n c t i o n times "Application of a Motor Dyad on a
Motor"

input MotorDyad m1
"Motor dyad to be applied";

input Motor m2 "Input motor";
output Motor m3 "Output motor";

a lgor i thm
m3 := m1[:,1:3]*m2[4:6] + m1[:,4:6]*m2[1:3];

end times;

Finally, there exist two functions that are able to transform
the components of a motor from one frame to another and
vice versa (refer to section 2.1.4):

f u n c t i o n coordChange1 "Transforms motor from
frame a to frame b"
import F = Modelica.Mechanics.MultiBody.

Frames;
input Modelica.SIunits.Position[3] r_0

"Vector pointing from origin of frame a
to origin of frame b, resolved in

frame a";
input F.Orientation R "Orientation object of

frame b resolved in frame a";
input Motor m1 "Motor resolved in frame a";
output Motor m2 "Motor resolved in frame b";

a lgor i thm
m2 := v e c t o r([R.T*m1[1:3];R.T*mom(m1,r_0)]);

end coordChange1;

f u n c t i o n coordChange2 "Transforms motor from
frame b to frame a"
import F = Modelica.Mechanics.MultiBody.

Frames;
input Modelica.SIunits.Position[3] r_0

"Vector pointing from origin of frame a
to origin of frame b, resolved in

frame a";
input F.Orientation R "Orientation object of

frame b resolved in frame a";
input Motor m1 "Motor resolved in frame b";
output Motor m2 "Motor resolved in frame a";

a lgor i thm
m2 := v e c t o r([ t r a n s p o s e(R.T)*m1[1:3];

t r a n s p o s e(R.T)*m1[4:6]
+ c r o s s(r_0, t r a n s p o s e(R.T)*m1[1:3])]);

end coordChange2;
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3.2 Multibody Implementation
After implementing the most important operations of the
motor calculus, we were able to take advantage of the ef-
ficient description of the rigid body motion. Therefore, as
a first step, the existing implementation of a rigid body ob-
ject from the Modelica Multibody Standard Library was
adapted to the motor algebra. To simplify the implemen-
tation, all interfaces and all existing variables were kept.
Only some small changes had to be made within the so-
called Body class.

The first changes were the declaration of the following
physically motivated Motor and MotorDyad objects:

/ / Motor Dyads
/ / −−−−−−−−−−−
Real[3,3] I0 "Inertia dyad wrt. B";
MotorDyad I_mot "Motorial inertia dyad wrt. B";

/ / Motors
/ / −−−−−−
V e l o c i t y M o t o r vel_B "Velocity motor wrt. B";
MomentumMotor mom "Momentum motor wrt. B";
ForceMotor f_g "Gravity force motor wrt B";
ForceMotor f_a "Cut force motor wrt. B";

Afterwards, all declared motors and motor dyads had to
be defined using the following statements:

/ / f o r c e motors
/ / −−−−−−−−−−−−
f_g = v e c t o r([ m*frame_a.R.T*g_0;

c r o s s(r_CM, m*frame_a.R.T*g_0)]);
f_a = v e c t o r([frame_a.f; frame_a.t]);

/ / v e l o c i t y motor
/ / −−−−−−−−−−−−−−
vel_B = v e c t o r([ frame_a.R.w;

frame_a.R.T*der(frame_a.r_0)]);

/ / i n e r t i a m a t r i c e s
/ / −−−−−−−−−−−−−−−−
I0 = I + m*( d i ag o n a l(r_CM*r_CM*ones(3))

- [r_CM]* t r a n s p o s e([r_CM]));
I_mot = [ d i ag o n a l({m, m, m}), -skew(m*r_CM);

skew(m*r_CM) , I0];

/ / momentum motor
/ / −−−−−−−−−−−−−−
mom = v e c t o r(times(I_mot, vel_B));

Finally, the equations of motion originally implemented
according to

frame_a.f = m*(Frames.resolve2(frame_a.R,
a_0 - g_0)

+ c r o s s(z_a, r_CM)
+ c r o s s(w_a, c r o s s(w_a, r_CM)));

frame_a.t = I*z_a + c r o s s(w_a, I*w_a)
+ c r o s s(r_CM, frame_a.f);

have been replaced by the very clear and short Equ. (8):

f_a = der(mom) + ’x’(vel_B,mom) - f_g;

Because of the object-oriented structure of the Modelica
Standard Library, the changes had to be implemented only
once. All subclasses of the Body class, like BodyShape,
BodyBox, or BodyCylinder inherit the changes auto-
matically.

4. Examples and Verification
4.1 Movable Double Pendulum
As a first example, the movable double pendulum (Fig. 3)
was chosen to show the correctness of the implemented
body classes based on motor calculus. The pendulum con-

ts

M0

M1

M2

x

y

s

trolley
ϕ1

ϕ2

J1

J2

g

centre of mass
of body 2

Figure 3. Sketch of double pendulum

sists of a trolley with the mass M0 and two rigid bodies
with masses M1 and M2. The trolley is able to move hor-
izontally. The first body is suspended on the trolley by a
revolute joint. The second body is suspended on the first
body via a revolute joint, too. Both axes of rotation are par-
allel to the z-axis which lies perpendicular to the xy-plane
(see Fig. 3). The moments of inertia of both bodies around
the axis of rotation w. r. t. their particular centre of mass are
given by J1 and J2.

The pendulum moves from an initial deflection of
ϕ1(0) = 90 deg and ϕ2(0) = 0 deg due to the earth’s grav-
ity field. A viscous friction, acting in every joint, damps
the motion of the pendulum. As a reference, the same pen-
dulum system has been implemented using the Modelica
Standard Library. A sketch of the structure is shown in the
lower part of Fig. 5. The upper part of this figure shows the
pendulum using the modified Body objects adapted to the
motor calculus.

Fig. 4 shows the trajectory for the position s of the trol-
ley. Figs. 6 and 7 depict the time histories of the revolute
joint angles ϕ1 and ϕ2. In every diagram, the trajectory of
both systems, the double pendulum using the motor calcu-
lus and the double pendulum using the Modelica Standard
Library, were plotted together.

Figure 4. Trajectory of the trolley position s
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Figure 5. Implementation of double pendulum

Figure 6. Trajectory of the first pendulum angle ϕ1

Figure 7. Trajectory of the second pendulum angle ϕ2

Figure 8. Deviation of the most interesting coordinates
between the motor calculus and the Modelica Standard
Library implementation

Fig. 8 presents the deviation for all corresponding vari-
ables (residue_s, residue_phi1/2).

Apparently, the deviation of the position stays smaller
than 1.2 ·10−11m for the given simulation time of 10s. The
deviations of both pendulum angles are also very small.
They do not exceed 10−11rad. Hence, these differences can
be interpreted as numerical errors of the simulator, because
for simulations with a lower error tolerance, the deviations
decrease.

For a comparison even a third implementation within the
simulation system Matlab (refer to [21]) was consulted that
led to very similar results.

4.2 Fourfold Pendulum on Two Movable Sliders
The second example is a fourfold pendulum. It consists of
two trolleys and a chain of four rigid bodies between them.
Both trolleys are guided along straight tracks (see Fig. 10).
Hence, this example contains a closed kinematic loop. Sim-
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M4

M5

x

y
s1

s2

ϕ1

ϕ2

ϕ3

ϕ4

J1

J2

J3

J4

g

Figure 10. Sketch of fourfold pendulum

ilar to the foregoing example, the pendulum moves from an
initial deflection due to the gravity field of the earth and is
damped by a viscous friction in every joint. The initial val-
ues for the pendulum angles are

ϕ1(0) = 45 deg, ϕ2(0) = −15 deg,

ϕ3(0) = 30 deg, ϕ4(0) = −37.5 deg.
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t = 0 t = 1 t = 2 t = 3 t = 4

t = 5 t = 6 t = 7 t = 8 t = 9

Figure 9. Sequence of configurations of the fourfold pendulum

As before, the pendulum system was implemented
twice. The first pendulum system works on the basis of the
modified Mechanical Multibody Library, while the second
one uses the Multibody Standard Library and serves as a
reference. Hence, the deviations to the modified model can
be calculated. They have the same order of magnitude as in
the example before and can thus be explained by numerical
errors.

For the rough illustration of the simulation results, Fig. 9
shows the configuration of the pendulum at ten different
time instances (the time interval is 1 s). The dashed lines
show the tracks of both trolleys. The bold plotted polygon
consists of four segments. It represents the idealized shape
of the chain.

In Fig. 11, the position of both trolleys are plotted
against the time.

Figure 11. Position of both trolleys for the motor calculus
implementation

4.3 Fourbar Mechanism
The last example is a so-called fourbar mechanism from
the Modelica Standard Library, that, again, sets up a closed
kinematic loop (see Fig. 12). However, in this example,
the rigid bodies do not perform planar motions any more

Figure 12. Sketch of fourbar mechanism

and, hence, the whole complexity of the three-dimensional
mechanics is necessary.

The fourbar mechanism moves under the influence of
the earth’s gravitational field. The initial condition of the
angular velocity of the first revolute joint (j1) is set to
300 deg

s . In opposit to the foregoing examples, this system
is completely undamped.

As in the paragraphs before, the example was imple-
mented twice in one model. One system has just been
kept in its original form while in the second system, all
BodyCylinder objects have been replaced by the mod-
ified BodyCylinder objects. The difference between
both implementations is shown in Fig. 13. The numerical

Figure 13. Deviation of the slider position between the
motor calculus and the Modelica Standard Library imple-
mentation
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results of the simulation show an increasing deviation with
advancing time. The reason for this fact may be the absence
of any damping elements. Indicated by this result, further
investigations on numerical accuracy seem to be necessary
for the future.

5. Summary and Outlook
The paper traces the idea of applying the so-called mo-
tor calculus within Modelica modelling language to handle
models of spatial multibody systems in an efficient way.
This method represents an alternative approach to mod-
elling such systems. This approach is characterized by a
clear and concise formulation of the equations of motion.

To get some experiences with possibilities and limits of
this approach, a first test implementation was carried out.
The Modelica Multibody Standard Library was used to im-
plement appropriate extensions within some selected sub-
models. This implementation allows a comparison of the
standard library implementation and the motor calculus im-
plementation by means of simple simulation tasks. Appro-
priate results are presented in the paper.

These results seem to encourage the idea of motor cal-
culus usage within Modelica. Nevertheless, there are open
challenges to be solved in the future. Operand overload-
ing would be a very helpful feature in this context. Fur-
thermore, efficient methods have to be adapted to compute
actual position and orientation of a rigid body from its ve-
locity motor. That’s why further investigations as well as
implementation work will still have to be carried out for
a full support of rigid-body motion equation by means of
motor calculus in Modelica.
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