OLT

2008

Proceedings of the

2nd International Workshop on
Equation-Based Object-Oriented
Languages and Tools

Paphos, Cyprus, July 8, 2008,
in conjunction with ECOOP

Editors

Peter Fritzson, Francois Cellier, David Broman

Copyright

The publishers will keep this document online on the Internet — or its possible replacement —
starting from the date of publication barring exceptional circumstances.

The online availability of the document implies permanent permission for anyone to read,
to download, or to print out single copies for his/her own use and to use it unchanged for non-
commercial research and educational purposes. Subsequent transfers of copyright cannot re-
voke this permission. All other uses of the document are conditional upon the consent of the
copyright owner. The publisher has taken technical and administrative measures to assure au-
thenticity, security and accessibility.

According to intellectual property law, the author has the right to be mentioned when
his/her work is accessed as described above and to be protected against infringement.

For additional information about Linkdping University Electronic Press and its proce-
dures for publication and for assurance of document integrity, please refer to its www home
page: http://www.ep.liu.se/.

Linkdping Electronic Conference Proceedings, No. 29
Linkoping University Electronic Press
Linkdping, Sweden, 2008

ISSN 1650-3740 (online, Linkdping University Electronic Press)
http://www.ep.liu.se/ecp/029/
ISSN 1650-3686 (print, Linkdping University Electronic Press)

© The Authors, 2008

Table of Contents

Preface
Peter Fritzson, Francois Cellier and David Broman...........c.ccoceeiiiinenenineniseseeeeees %

Session 1. Integrated System Modeling Approaches

Multi-Paradigm Language Engineering and Equation-Based Object-Oriented
Languages (keynote talk)
HaNS VaNGNEIUWE. ... 1

Seamlessly Integrating Software & Hardware Modelling for Large-Scale System
Toby Myers, Peter Fritzson, and Geoff DIOMEYccccvovverveieiiieieee e 5

The Impreciseness of UML and Implications for ModelicaML
Jorn Guy SuR, Peter Fritzson, and Adrian POPcccooviirrieie e 17
Session 2. Modeling for Multiple Applications

Multi-Aspect Modeling in Equation-Based Languages
DT QA T 411111 ST PR SR 27

Beyond Simulation: Computer Aided Control System Design Using Equation-Based
Object-Oriented Modeling for the Next Decade
Francesco Casella, Filippo Donida, and Marco LOVEra...........cccevveveiieneene e, 35

A Static Aspect Language for Modelica Models
Malte Lochau and Henning GUNTNETccveivoiiiiece e 47
Session 3. Modeling Language Design

Higher-Order Acausal Models
David Broman and Peter FTItZSONcoceeeeeeeeee et e e e e e ee e 59

Type-Based Structural Analysis for Modular Systems of Equations
HENETK NTISSON ...ttt bbbt b et ne et nns 71

Introducing Messages in Modelica for Facilitating Discrete-Event System Modeling
Victorino Sanz, Alfonso Urquia, and Sebastian Dormidocccooevereneneinnnsneieieen, 83

EcosimPro and its EL Object-Oriented Modeling Language
Alberto Jorrin, César de Prada, and Pedro Cobas............cccoveveieierenene e, 95
Session 4. Equation Handling, Diagnosis, and Modeling

Activation inheritance in Modelica

RaminNe NIKOUKNGNoooiic e e 105
Selection of variables in initialization of Modelica models

Y= 01U o I A= T PSS 111
Supporting Model-Based Diagnostics with Equation-Based Object Oriented Languages

Peter Bunus and Karin LUNGEcc.ooieiiiiiiic et va e 121

Towards an Object-oriented Implementation of von Mises” Motor Calculus
Using Modelica
Tobas Zaiczek and Olaf ENge-ROSENDIALEccveiiiiiiiiiiiieee e 131

Preface

Computer aided modeling and simulation of complex systems, using components from multi-
ple application domains, such as electrical, mechanical, hydraulic, control, etc., have in recent
years witnessed a significant growth of interest. In the last decade, novel equation-based ob-
ject-oriented (EOO) modeling languages, (e.g. Modelica, gPROMS, and VHDL-AMS) based
on a-causal modeling using equations have appeared. Using such languages, it has become
possible to model complex systems covering multiple application domains at a high level of
abstraction through reusable model components.

The interest in EOO languages and tools is rapidly growing in the industry because of their
increasing importance in modeling, simulation, and specification of complex systems. There
exist several different EOO language communities today that grew out of different application
areas (multi-body system dynamics, electronic circuit simulation, chemical process engineer-
ing). The members of these disparate communities rarely talk to each other in spite of the
similarities of their modeling and simulation needs.

The EOOLT workshop series aims at bringing these different communities together to dis-
cuss their common needs and goals as well as the algorithms and tools that best support them.

Despite the fact that this is a new not very established workshop series, there was a good
response to the call-for-papers. Thirteen papers were accepted to the workshop program out of
fifteen submissions. All papers were subject to rather detailed reviews by the program com-
mittee, on the average four reviews per paper. The workshop program started with a welcome
and introduction to the area of equation-based object-oriented languages, followed by the
keynote talk by Hans Vangheluwe and paper presentations. Discussion sessions were held af-
ter presentations of each set of related papers.

On behalf of the program committee, the Program Chairmen would like to thank all those
who submitted papers to EOOLT'2008. Special thanks go to Loucas Louca who helped with
the local on-site organization of the workshop. Many thanks go also to the program commit-
tee for reviewing the papers. The venue for EOOLT'2008 was Paphos, Cyprus, in conjunction
with the ECOOP'2008 conference.

Linkdping, July 2008

Peter Fritzson
Francois Cellier
David Broman

Program Chairmen

Peter Fritzson, Chair
Francois Cellier, Co-Chair
David Broman, Co-Chair

Program Committee

Peter Fritzson
Francois Cellier
David Broman

Bernhard Bachmann
Bert van Beek
Gilad Bracha

Felix Breitenecker
Jan Broenink

Peter Bunus

Ernst Christen
Sebastian Dormido
Olaf Enge-Rosenblatt
Peter Feiler

Stefan Jahnichen
Petter Krus

Loucas Louca
Jacob Mauss

Pieter Mosterman
Ramine Nikoukhah
Henrik Nilsson
Dionisio de Niz
Martin Otter

Chris Paredis
César de Prada
Juan José Ramos
Peter Schwarz

Paul Strooper
Michael Tiller
Martin Toérngren
Alfonso Urquia
Hans Vangheluwe

Linkdping University, Linkdping, Sweden
ETH, Zurich, Switzerland
Linkdping University, Linkdping, Sweden

Linkdping University, Linkdping, Sweden
ETH Zurich, Switzerland
Linkdping University, Linkdping, Sweden

University of Applied Sciences, Bielefeld, Germany
Eindhoven University of Technology, Netherlands
Cadence Design Systems, San Jose, CA, USA

Technical University of Vienna, Vienna, Austria
University of Twente, Netherlands

Linkoping University, Linkdping, Sweden

Lynguent, Inc., Portland, OR, USA

National University for Distance Education, Madrid, Spain

Fraunhofer Institute for Integrated Circuits, Dresden, Germany

SEI, Carnegie-Mellon University, Pittsburg, USA
Fraunhofer FIRST and TU Berlin, Berlin, Germany
Linkoping University, Linkdping, Sweden

University of Cyprus, Nicosia, Cyprus

QTronic GmbH, Berlin, Germany

MathWorks, Inc., Natick, MA, USA.

INRIA Rocquencourt, Paris, France

University of Nottingham, Nottingham, United Kingdom
Carnegie Mellon University, Pittsburgh, USA

DLR Oberpfaffenhofen, Germany

Georgia Institute of Technology, Atlanta, Georgia, USA
University of Valladolid, Valladolid, Spain

Autonomous University of Barcelona, Spain

Fraunhofer Inst. for Integrated Circuits, Dresden, Germany
University of Queensland, Brisbane, Australia

Emmeskay, Inc., Plymouth, MI, USA

KTH, Stockholm, Sweden

National University for Distance Education, Madrid, Spain
McGill University, Montreal, Canada

Workshop Organization

Peter Fritzson
David Broman
Francois Cellier
Loucas Louca

Linkoping University, Linkdping, Sweden
Linkdping University, Linkdping, Sweden
ETH, Zurich, Switzerland

University of Cyprus, Nicosia, Cyprus

Vii

Multi-Paradigm Language Engineering and
Equation-Based Object-Oriented Languages

(keynote abstract)

Hans Vangheluwe

School of Computer Science, McGill University, Montréal, Canada
Hans. Vanghel uwe@rcgi | | . ca

Abstract

Models are invariably used in Engineering (for design) and
Science (for analysis) to precisely describe structure as well
as behaviour of systems. Models may have components de-
scribed in different formalisms, and may span different lev-
els of abstraction. In addition, models are frequently trans-
formed into domains/formalisms where certain questions
can be easily answered. We introduce the term “multi-
paradigm modelling” to denote the interplay between
multi-abstraction modelling, multi-formalism modelling
and the modelling of model transformations.

The foundations of multi-paradigm modelling will be
presented. It will be shown how all aspects of multi-
paradigm modelling can be explicitly (meta-)modeled en-
abling the efficient synthesis of (possibly domain-specific)
multi-paradigm (visual) modelling environments. We have
implemented our ideas in the tool ATOMA Tool for
Multi-formalism and Meta Modelling) [3].

Over the last decade, Equation-based Object-Oriented
Languages (EOOLSs) have proven to bring modelling closer
to the problem domain, away from the details of numerical
simulation of models. Thanks to Object-Oriented structur-
ing and encapsulation constructs, meaningful exchange and
re-use of models is greatly enhanced.

Different directions of future research, combining multi-
paradigm modelling concepts and techniques will be ex-
plored:

1. meta-modelling and model transformation for domain-
specific modelling as a layer on top of EOOLS;

2. on the one hand, the use of Triple Graph Grammars
(TGGs) to declaratively specify consistency relation-
ships between different models (views). On the other
hand, the use of EOOLs to complement Triple Graph
Grammars (TGGs) in an attempt to come up with a fully

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkping University Electronic Press. Proceedings available at:
http://ww.ep.|iu.selecp/ 029/

EOOLT 2008 website:

http://ww. eool t. org/ 2008/

“declarative” description of consistency between mod-
els to support co-evolution of models;

3. the use of graph transformation languages describing
structural change to modularly "weave in” variable
structure into non-dynamic-structure modelling lan-

guages.

Keywords Multi-Paradigm Modelling, Meta-Modelling,
Model Transformation, Equation-Based Object-Oriented
Languages, Consistency, Variable Structure

1. Multi-Paradigm Modelling

In this section, the foundations of Multi-Paradigm Mod-
elling (MPM) are presented starting from the notion of a
modelling language. This leads quite naturally to the con-
cept ofmeta-modellings well as to the explicit modelling
of model transformations

Models are arabstractionof reality. The structure and
behaviour of systems we wish to analyze or design can
be represented by models. These models, at vateuads
of abstraction are always described in sorf@malismor
modelling languageTo “model” modelling languages and
ultimately synthesize (visual) modelling environments for

those languages, we will break down a modelling language

into its basic constituents [4]. The two main aspects of a
model are its syntax (how it is represented) on the one hand
and its semantics (what it means) on the other hand.

The syntax of modelling languages is traditionally par-

titioned into concrete syntaxand abstract syntaxin tex-
tual languages for example, the concrete syntax is made up

of sequences afharacterstaken from aralphabet These
characters are typically grouped intrdsor tokens Cer-

tain sequences of words eentenceare considered valid

(i.e., belong to the language). The (possibly infinge)of
all valid sentences is said to make up the language.

For practical reasons, models are often stripped of ir-
relevant concrete syntax information during syntax check-
ing. This results in an “abstract” representation which cap-

tures the “essence” of the model. This is called &ie

stract syntax Obviously, a single abstract syntax may be
represented using multiple concrete syntaxes. In program-
ming language compilers, abstract syntax of models (due to

the nature of programs) is typically representedbstract

Syntax Tree¢ASTSs). In the context of general modelling, cussed, this is achieved by providing a Semantic Domain
where models are often graph-like, this representation can and a semantic mapping functiod. Rule-based Graph
be generalized tdbstract Syntax Graph#®SGs). Transformation formalisms are often used to specify se-

Once the syntactic correctness of a model has been es-mantic mapping functions in particular and model transfor-
tablished, its meaning must be specified. This meaning mations in general. Complex behaviour can be expressed
must beuniqueandprecise Meaning can be expressed by very intuitively with a few graphical rules. Furthermore,
specifying asemantic mapping functiomhich maps every Graph Grammar models can be analyzed and executed.
model in a language onto an element seaantic domain) .

For example, the meaning of a Causal Block Diagram (e.g., 1-4 Formalism Transformation

a Simulink diagram) can be specified by mapping onto an |n an attempt to mimimize accidental complexity [2], mod-
Ordinary Differential Equation. For practical reasons, se- ellers often transform a model in one formalism to model
mantic mapping is usually applied to the abstract rather in another formalism, retaining salient properties.

than to the concrete syntax of a model. Note that the seman-

tic domain is a modelling language in its own right which - 2 Domain-specific Modelling

needs to be properly modelled (and so on, recursively). In
practice, the semantic mapping function maps abstract syn-
tax onto abstract syntax.

To continue the introduction of meta-modelling and e match the user's mental model of the problem domain;
model transformation concepts, languages will explictly
be represented as (possibly infinite) sets as shown in Fig-
ure 1. In the figure, insideness denotes the sub-set relation-
ship. The dots represent model which are elements of the
encompassing set(s).

As one can always, at some level of abstraction, repre-
sent a model as a graph structure, all models are shown as
elements of the set of all grapi@&aph. Though this re- e are able to exploit features inherent to a specific do-
striction is not necessary, it is commonly used as it allows main or formalism. This will for example enable spe-
for the design, implementation and bootstrapping of (meta- cific analysis techniques or the synthesis of efficient
)modelling environments. As such, any modellinglanguage (simulation) code exploiting features of the specific do-
becomes a (possibly infinite) set of graphs. In the bottom main.
centre of Figure 1 is the abstract syntaxAett is a set of
models stripped of their concrete syntax.

Domain- and formalism-specific modelling have the poten-
tial to greatly improve productivity as they [5].

e maximally constrain the user (to the problem at hand,
through the checking of domain constraints) making the
language easier to learn and avoiding modelling errors
“by construction”;

e separate the domain-expert’s work from analysis and
transformation expert’s work.

The time required to construct domain/formalism-specific
modelling and simulation environments can however be
1.1 Meta-models prohibitive. Thus, rather than using such specific environ-
ments, generic environments are typically used. Those are
necessarily acompromise. The above language engineering
techniques allow for rapid development of domain-specific
(visual) modelling environments with little effort if map-
ping onto a semantic domain (such as an EOOL) is done.

Meta-modelling is a heavily over-used term. Here, we will
use it to denote the explicit description (in the form of a fi-
nite model in an appropriate meta-modelling language) of
the Abstract Syntax set. Often, meta-modelling also cov-
ers a model of the concrete syntax. Semantics is however
not covered. In the figure, th&ébstract Syntax set is de- . . .
scribed by means of itmeta-model. On the one hand, a 3. Consistency/Co-evolution of Model Views
meta-model can be usede¢heckwhether a general model In the development of complex systems, multiple views on
(a graph)elongs tahe Abstract Syntax set. On the other the system-to-be-built are often used. These views typi-
hand, one could, at least in principle, use a meta-model to cally consist of models in different formalisms. Different
generateall elements of the language. views usually pertain to various partial aspects of the over-
all system. In a multi-view approach, individual views are
(mostly) less complex than a single model describing all
A model in the Abstract Syntax set (see Figure 1) needs aspects of the system. As such, multi-view modelling, like
at least one concrete syntax. This implies that a concrete modular, hierarchical modelling, simplifies model develop-
syntax mapping functior is neededs maps an abstract ment. Most importantly, it becomes possible for individual
syntax graph onto a concrete syntax model. Such a model experts on different aspects of a design to work in isolation
could be textual (e.g., an element of the set of all Strings), on individual views without being encumbered with other
or visual (e.g., an element of the set of all the 2D vector aspects. These individual experts can work masblycur-
drawings). Note that the set of concrete models can be rently, thereby considerably speeding up the development
modelled in its own right. process. This realization was the core of Concurrent En-
gineering. This approach does however have a cost associ-
ated with it. As individual view models evolve, inconsisten-
Finally, a modem in the Abstract Syntax set (see Figure 1) cies between different views are often introduced. Ensuring
needs a unique and precise meaning. As previously dis- consistency between different views requires periodic con-

1.2 Concrete Syntax

1.3 Meaning

Meta-Models

Transformations

model of transf

model of

model of [[.]]

Semantic Domain

Concrete Syntax

Abstract Syntax (set A)

Figure 1. Modelling Languages as Sets

certed efforts from the model designers involved. In gen- introduced by Schiir provides a procedure for automatically
eral, the detection of inconsistencies and recovering from deriving operational update transformations (in the form of
them is a tedious, error-prone and manual process. Auto- triple graph rewrite rules) from the declarative meta-model
mated techniques can alleviate the problem. Here, we focus[6]. If either the geometry or dynamics models change, the
on a representative sub-set of the problem: consistency be-association model can be used to determine what has been
tween geometric (Computer-Aided Design — CAD) models added or deleted from either side.
of a mechanical system, and the corresponding dynamics On the other hand, the use of EOOLs to complement
simulation models. We have selected two particular butrep- Triple Graph Grammars (TGGs) in an attempt to come
resentative modelling tools: SolidEdge for geometric mod- up with a fully “declarative” description of consistency
elling [8], and Modelica [1] for dynamics and control sim- between models to support co-evolution of models;
ulation.

The core geometric entities are Assemblies. Solid- 4. Modelling of Variable Structure
Edge Assemblies are composed of other Assemblies, Parts . . _ . .
and Relationships. Relationships describe mechanical con-Va“(?us formalisms have been devised to describe the dis-
straints between geometric features of two distinct parts, continuous change of the structure of systems. The rule-

and there can be many such relationships between parts. based description of graph transformations is ideal to .el-
On the dynamics side, to represent an equivalent struc- egantly describe structural change. A rule’s left-hand-side
ture in Modelica. we have a model which can be hierarchi- describes the conditions under which a state-event occurs.

cally composed of other models, bodies, relationships and g_‘ _modelllng I_arl;?uagles for hybnddsystems_, crossing con-
geometric features. This last type of model element is in- itions on variable values are used to speuifyena state-

troduced to have a counterpart to represent the geometriceyent occurs. The handl_lng of a state-everjt may introduce
information which is intrinsic to a SolidEdge part. discontinuous changes in the value of variables. The rule-

Associations (correpondences) that must exist between based approach adds detection of particular object configu-

SolidEdge and Modelica models are shown in a meta- rations to the low-level variable-value conditions. A rule’s
model triple in Figure 2. Note that this modeldsclarative right-hand-side de_scribes tth‘ handling of the state-event.
as it does not specify how and what to modify to correct This may not only include variable value changes, but also

possible inconsistencies. Triple Graph Grammar theory [7] creatlon./o_lestrucnon of entities and their |n_terconnect|0ns.
A promising avenue for future research is the modular

SolidEdge meta-model

Association meta-model

Modelica meta-model for
SolidEdge Library

b

SE-Assembly 1

Assembly-Model-Link

1 Mo‘delj

1
0

T

. L
constrai ns . . 1
2_,—1 Relationship 1
SE-Part +has | Body
+Geonetr —|1 A Lo Geometric Feature . !
1 Part-Link EUE— Tyoe 2
Axial Align
g A sconst rlai ng —
1 Relationship
Planar Align 1| Relation-Link T 1 ﬁt
| Plane Axial Align
1
! 1
1 1 Planar mate
Planar mate .
'
1
- Axis/Line 1
1
— Planar Align

Figure 2. Relating SolidEdge and Modelica models

“weaving in” of rule-based variable structure description
language constructs into non-dynamic-structure modelling
languages such as EOOLSs.

References

[1] ModelicaTM Association. A unified object-oriented language
for physical systems modeling. Modelica homepage:
www. nodel i ca. or g, since 1997.

[2] F. P. Brooks. No silver bullet: Essence and accidents of
software engineeringComputey 20(4):10-19, 1987.

[3] Juan de Lara and Hans Vangheluwe. AToM tool for
multi-formalism and meta-modelling. |Buropean Joint
Conference on Theory And Practice of Software (ETAPS),
Fundamental Approaches to Software Engineering (FASE)
Lecture Notes in Computer Science 2306, pages 174 — 188.
Springer, April 2002. Grenoble, France.

[4

—_—

D. Harel and B. Rumpe. Modeling languages: Syntax,
semantics and all that stuff, part i: The basic stuff. Technical
report, Jerusalem, Israel, 2000.

[5] Steven Kelly and Juha-Pekka TolvaneBPomain-Specific
Modeling: Enabling Full Code GeneratioWiley, 2008.

[6] Alexander Kdnigs. Model Transformation with Triple Graph
Grammars. IrModel Transformations in Practice Satellite
Workshop of MODELS 2005, Montego Bay, JamaR&5.

[7] Andy Schirr. Specification of Graph Translators with Triple
Graph Grammars. In G. Tinhofer, editdlyG'94 20th
Int. Workshop on Graph-Theoretic Concepts in Computer
Sciencevolume 903 ofLecture Notes in Computer Science
(LNCS) pages 151-163, Heidelberg, 1994. Springer Verlag.

[8] SolidEdg@. www. sol i dedge. com

Short Biography

Hans Vangheluwe is an Associate Professor in the School
of Computer Science at McGill University, Montreal,
Canada. He heads the Modelling, Simulation and Design
(MSDL) research lab. He has been the Principal Inves-
tigator of a number of research projects focused on the
development of a multi-formalism theory for Modelling
and Simulation. Some of this work has led to the WEST++
tool, which was commercialised for use in the design and
optimization of bioactivated sludge Waste Water Treat-
ment Plants. He was the coordinator of the "Simulation
in Europe” Basic Research Working Group. He was also
one of the original members of the Modelica design team.
His current interests are in domain-specific modelling and
simulation and more in general, tool support for Multi-
Paradigm modelling. MSDL’s tool ATof (A Tool for
Multi-formalism and Meta-Modelling) developed in col-
laboration with Prof. Juan de Lara uses meta-modelling and
graph grammars to specify and generate domain-specific
environments. He has applied model-driven techniques in
a variety of areas such as modern computer games, de-
pendable and privacy-preserving systems (the Belgian elec-
tronic ID card), embedded systems, and to the design and
synthesis of advanced user interfaces.

Seamlessly Integrating Software & Hardware Modelling for
Large-Scale Systems

Toby Myers!

Peter Fritzson> R. Geoff Dromey!

1School of Information and Computing Technology, Griffith University, Australia,
toby.myers@student.griffith.edu.au, g.dromey@griffith.edu.au
2Department of Computer and Information Science, Linkoping University, Sweden, pet fr@ida.liu.se

Abstract

Large-scale systems increasingly consist of a mixture of
co-dependent software and hardware. The differing nature
of software and hardware means that they are often mod-
elled separately and with different approaches. This can
cause failures later in development during the integration
of software and hardware designs, due to incompatible
assumptions of software/hardware interactions. This pa-
per proposes a method of integrating the software engi-
neering approach, Behavior Engineering, with the math-
ematical modelling approach, Modelica, to address the
software/hardware integration problem. The environment
and hardware components are modelled in Modelica and
integrated with an executable software model designed
using Behavior Engineering. This allows the complete
system to be simulated and interactions between software
and hardware to be investigated early in development.

Keywords software-hardware codesign, large-scale sys-
tems, Behavior Engineering, Modelica.

1. Introduction

The increasingly co-dependent nature of software and
hardware in large-scale systems causes a software/hardware
integration problem. During the early stages of develop-
ment, the requirements used to develop a software specifi-
cation often lack the quantified or temporal information
that is necessary when focusing on software/hardware
integration. Also early on in development, the hardware
details must be specified, such as the requirements for the
sensors, actuators and architecture on which to deploy
the software. There is a risk of incompatibility if the
software and hardware specifications contain contradicting
assumptions about how integration will occur. Even if the
software and hardware specifications are compatible, it is
possible that a software/hardware combination with an

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkoping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:

http://www.eocolt.org/2008/

alternative form of integration exists that would be more
advantageous.

One approach of evaluating software/hardware integra-
tion is to build prototypes of the software and hardware.
This approach allows software/hardware interactions to be
investigated, but also diverts attention away from the indi-
vidual modelling of the respective software and hardware
models. Investigating integration using software/hardware
prototypes also has the disadvantage of occurring later
in development, requiring decisions to have already been
made as to how integration will occur.

Addressing the issues involved with integrating software
and hardware models of systems earlier in development can
reduce the risk of incompatibilities between the software
and hardware specifications. Earlier investigation of soft-
ware/hardware interactions minimises changes that must be
made later in development when they are harder and more
expensive to fix. If the method of investigating integration
uses simulation of specifications, it allows many different
integration configurations to be evaluated to assist in find-
ing the best solution. The simulation of software/hardware
co-specifications uses abstract models of the software and
hardware to focus on timing of the interactions between
the hardware and software. Co-specification simulation is
used by many system design tools such as STATEMATE
and MATLAB [6].

The principle of separation of concerns advocates that
due to the differing nature of software and hardware,
different modelling techniques should be used. Software
modelling consists of capturing the required functionality,
and how the functionality can best be organised to facilitate
future reuse, extensibility, etc. Hardware modelling focuses
on interactions with the physical environment through sen-
sors and actuators which is best described mathematically.
Currently, UML is the dominant graphical modelling nota-
tion for software, whereas Modelica is the major equation-
based object-oriented (EOO) mathematical modelling lan-
guage for modelling complex physical systems.

Previous work in this area resulted in the ModelicaML
UML profile [15} [14] partly based on the SysML profile
[L3]. ModelicaML combined the major UML diagrams
with Modelica graphic connection diagrams. However,
there are problems with this approach. The imprecise

http://www.ep.liu.se/ecp/029/
http://www.eoolt.org/2008/

semantics and portability problems of UML create diffi-
culties for executable specifications. Moreover, there is no
well-defined process of precisely capturing and converting
informal software requirements into more formal represen-
tations that can be analysed and further transformed into
executable models.

Fortunately, the Behavior Engineering (BE) approach
(see Section [3) addresses several of these problems. BE is
a systems & software engineering approach of modelling
software-intensive systems that has precise requirements
capture. The behavioral view of BE has a formal se-
mantic described in process algebra. BE also supports
model-checking, simulation, and the code-generation of
executable models.

Thus, we propose an integrated approach, where BE is
used to model and capture requirements of the software
aspects of a product, whereas Modelica is used for high-
level modelling of the system’s environment and hard-
ware components. We consider the integration method
to be seamless, as the software and hardware models
are combined in an inconspicous way which allows both
formalisms to focus independently on their respective do-
mains. We also propose this method is suited to be applied
to large-scale systems, as both BE and Modelica have
been used independently to model large-scale systems
[L6} [7]. This distinguishes this approach from co-design
approaches such as COSMOS[9] and Polis[2]] which are
focused towards the more fine-grained software/hardware
interactions of embedded systems.

Adoption of an integrated approach to product/system
design should allow for a much more effective product
development process since a system can be analysed and
tested in all stages of development. The integration of BE
and Modelica models supports this through allowing dif-
ferent hardware/software configurations to be investigated,
such as:

e The periodic/aperiodic sampling of sensors and the
action of actuators on the physical environment can be
simulated to determine the effect on the software of the
system. This may also involve simulating the failure of
a sensor/actuator or errors in communication.

e The capabilities of the various combinations of hard-
ware and software platforms on which the software
could be deployed can be simulated by choosing pe-
riodic/aperiodic frequencies at which to allow interac-
tions between the Modelica and BE models.

e The hardware and software can be tested in different
simulated environments and scenarios.

In this paper we combine these two formalisms for the
first time, in a study of the integrated software/hardware
modelling of an Automated Train Protection (ATP) system.
BE is used to model the control software of the ATP
system, and Modelica is used to model physical compo-
nents like the train, the driver, actuators, sensors, etc. The
modelled ATP system is used to illustrate the benefits of
investigating the integration of software/hardware specifi-
cations early in development.

In Section [2] & [3] we first give some background on
Modelica and BE, before presenting the details of our
integration method in Section] The integration method
is then applied to a case study of the system modelling and
simulation of an ATP system in Section 3]

2. Modelica Background

Modelica [12, 17, [8] is an open standard for system
architecture and mathematical modelling. It is envisioned
as the major next generation language for modelling and
simulation of applications composed of complex physical
systems.

The equation-based, object-oriented, and component-
based properties allow easy reuse and configuration of
model components, without manual reprogramming in
contrast to today’s widespread technology, which is mostly
block/flow-oriented modelling or hand-programming.

The language allows defining models in a declarative
manner, modularly and hierarchically and combining of
various formalisms expressible in the more general Mod-
elica formalism.

A component may internally consist of other connected
components, i.e., as in Figure | showing hierarchical mod-
elling.

The multidomain capability of Modelica allows com-
bining of systems containing mechanical, electrical, elec-
tronic, hydraulic, thermal, control, electric power or
process-oriented components within the same application
model. In brief, Modelica has improvements in several
important areas:

® Object-oriented mathematical modelling. This tech-
nique makes it possible to create model components,
which are employed to support hierarchical structuring,
reuse, and evolution of large and complex models
covering multiple technology domains.

® Physical modelling of multiple application domains.
Model components can correspond to physical objects
in the real world, in contrast to established techniques
that require conversion to “signal” blocks with fixed
input/output causality. That is, as opposed to block-
oriented modelling, the structure of a Modelica model
naturally corresponds to the structure of the physical
system.

Figure 1. Hierarchical Modelica model of an industrial
robot

® Acausal modelling. Modelling is based on equations
instead of assignment statements as in traditional in-
put/output block abstractions. Direct use of equations
significantly increases re-usability of model compo-
nents, since components adapt to the data flow context
for which they are used.

Several tools support the Modelica specification, rang-
ing from open-source products such as OpenModelica [12]],
to commercial products like Dymola [5] and MathModel-
ica [[11]].

3. Behavior Engineering Background

BE [3] is an integrated approach that supports the engineer-
ing of large-scale dependable software intensive systems
at both the systems engineering and software engineering
level. BE has been proven as a useful technique in require-
ments analysis of large-scale industry projects, detecting
defects at a rate approximately two to three times higher
than conventional techniques [16]. The BE approach uses
the Behavior Modelling Language (BML) and the Behavior
Modelling Process (BMP) to transform a system described
in natural language requirements to a design composed of
a set of integrated components.

3.1 The Behavior Modelling Language

The BML is a graphical, formal language consisting of
three tree-based views: Behavior Trees, Composition Trees
and Structure Trees]

A Behavior Tree (BT) is a “formal, tree-like graphical
form that represents behavior of individual or networks
of entities which realize or change states, make decisions,
respond-to/cause events, and interact by exchanging infor-
mation and/or passing control.” [4]. The formal semantics
of BTs are described in the Behavior Tree Process Algebra
(BTPA) language [1]]. BTPA supports simulation, formal
verification by model-checking and is a foundation for BT
execution. BTs can describe multiple threads of behavior.
Coordination is achieved using either message-passing
(events), shared variable blocking or synchronisation. A
summary of the BT notation is shown in Figure[2]

Composition Trees (CTs) contain the complete system
vocabulary, which is consistent with the vocabulary used in
BTs as they both originate from the same natural language
requirements. CTs are a tree of components arranged into
a compositional hierarchy using structural and functional
aggregation or specialisation relations. Each component in
the BT contains the complete set of states, attributes, events
and relations in which the component is responsible for.
CTs are an important tool in resolving defects not visible
in individual Requirement Behavior Trees, such as aliases.

3.2 The Behavior Modelling Process

The BMP is closely tied with the BML. The BMP consists
of a number of distinct stages: Translation, Integration, Re-
finement and Design. Each of these stages utilises the BML
to address the problems of scale, complexity and imperfect

! Due to space restrictions Structure Trees will not be discussed

knowledge that arise when dealing with systems described
by a large number of natural language requirements.

Translation proceeds one requirement at a time, re-
sulting in a Requirement Behavior Tree (RBT) that is
created from the original natural language description. As
each RBT is translated, the Requirement Composition Tree
(RCT) should be updated to include any new information
such as additional components, states, etc. Also, in order to
ensure the translation process is as rigorous as possible, it is
important not to add or remove information but to capture
the intention that is expressed in the natural language
description.

Being able to deal with one requirement at a time,
localises the information that the modeller must absorb and
helps to control the complexity of modelling the system.
It also makes it possible for a team of translators to work
on modelling the system in parallel, using the RCT to
coordinate their work.

Two example RBTs are shown in Figure |4 Discussion
of the translation of an example RBT from the original
requirements is discussed in section [5.1]

Once all the requirements have been translated they are
integrated to form an Integrated Behavior Tree (IBT) which
can then be used to gain a holistic understanding of the
problem space. The process of integration itself also helps
to discover imprecise, conflicting and missing requirements
in the description of the system. This is because forming
the IBT is a fitness test for the requirements, if require-
ments cannot integrate it indicates there are problems with
the description of the system.

When the IBT has been completed, the integrated view
of the system’s behavior helps to detect further defects in
the original natural language requirements. Resolution of
these defects produces a specification of the system, known
as a Model Behavior Tree (MBT).

As the specification is still in the problem space, design
decisions must be made to move to the solution space.
The result is a Design Behavior Tree (DBT). Important
design decisions include determining the boundaries be-
tween the system and the environment and the system
and the components. The system-environment boundary
determines how the system described by the DBT interacts
with the environment, essentially determining the interface
of the system. The system-component boundary involves a
tradeoff between shifting complexity to either the DBT or
to the components.

An example DBT is shown in Figure 5] The design
decisions used to make this DBT are described in Section

51

3.3 Executing a BE Model

BTs contain a description of the functionality of the system
which makes them the primary interest when discussing
executable models.

One approach to execute a BE model is to consider a
BT as a set of interconnected interleaved state machines.
Each component can be implemented by decomposing its
individual state machine and implementing it. The BT is

Basic Nodes Branching

Component . .
tag Behavior] (a) State Realisation

Component :
tag ? Condition ? (b) Se|eCtI0n | | eA] | | | e |

Component (k) Parallel Branching
tag 7 et 7 (c) Event

Component %
tag 722 Condition 777 (d) Guard

Component * | | e ? | | | o7
tag > Message < (e) lnPUt

" . (I) Alternate Branching

omponent
tag < Message > (f) OUtPUt

Composition
Nodes with Thread Control
L[t |
=>
tag (g) Reference
tag (h) Branch-Kill (m) Sequential Composition
A . . c
tag (i) Reversion e
5
e

t =
* (j) synchronisation (n) Atomic Composition

(a) State Realisation: Component realises the described behavior; (b) Selection: Allow thread to continue if
condition is true; (¢) Event: Wait until event is received; (d) Guard: Wait until condition is true; (e) Input
Event: Receive message™® (f) Output Event: Generate message” (g) Reference: Behave as the destination tree;
(h) Branch-Kill: Terminate all behavior associated with the destination tree; (i) Reversion: Behave as the
destination tree. All sibling behavior is terminated; (j) Synchronisation: Wait for other participating nodes; (k)
Parallel Branching: Pass control to both child nodes; (/) Alternate Branching: Pass control to only one of the
child nodes. If multiple choices are possible make a non-deterministic choice; (m) Sequential Composition:
The behavior of concurrent nodes may be interleaved between these two nodes; (n) Atomic Composition: No

interleaving can occur between these two nodes.

* Note: single characters (> <) / (< >) mean receive/send message internally from/to the system, double characters
(>> <<) / (<< >>) mean receive/send message from/to the environment.

Figure 2. Summary of the Core Elements of the Behavior Tree Notation

also implemented as a state machine which coordinates the
component state machines.

Another approach to execute a BE model is to con-
sider BTs as a model to describe multiple-threaded behav-
ior, making each BT node a process. This allows tradi-
tional process control schedulers consisting of New, Ready,
Blocked, Running, and Exit states to be applied to BTs.

For example, a state realisation node would take the
following path through the scheduler: New, Ready, Run-
ning, Exit. Moving from the Ready to Running State is
determined by a scheduling algorithm, ranging from simple
examples such as First In, First Out (FIFO) to more com-
plex priority-based schedulers. When a state realisation
node is in the running state any encapsulated computation
associated with the component’s state is executed. Upon

reaching Exit its child nodes are added to the scheduler in
the New state to continue execution.

Alternatively, a guard node would take the following
path through the scheduler: New, Blocked, Ready, Run-
ning, Exit. The guard node stays in the Blocked state
until a change in another thread of behavior causes its
condition to become true, upon which it changes to the
Ready state and progresses similarly to the state realisation
node. The scheduler also consists of more complex rules
for BT execution such as alternative branching and atomic
composition.

The benefit of the process control approach is that code
generation from a BT is easily automatable. All that is
required in addition to the automatable code generation is
a version of the scheduler for the platform on which the
executable BE model is deployed.

(Modelica)

Modelica

("Modelica Model (C++)\

when initial() then

(" Behavior Engineering)

-
BE
Model

Y

(" BE Model (C++))
4 N

startBT();
end when;

(" External Functions

when condition1 then 4
cycleBT();
end when;

when condition2 then
updateSensor(value)
end when;

when condition3 then
state = pollActutator();

end when;

- -,

k\ J /) -

startBT
cycleBT
updateSensor

pollActuator L\ /)

A
A
Y

update

Y
G
query

Scheduler

) L\)

Figure 3. Interactions between Modelica and BE Models

4. Integrating Modelica & BE Models

Integration of Modelica and BE models occurs after the
models are compiled/code generated into C++ source files.
Integration between the Modelica model and BE model is
performed using Modelica external functions mapped to C
source code. The ‘C’ external functions are then linked to
the ‘C++’ implementation of the BE model. This method
of integration makes the Modelica model responsible for
managing all interactions with the BE model.

Figure [3|shows the integration of a Modelica model and
a BE model. There are three possible types of interaction:
starting/cycling the BT scheduler; adding an event to the
scheduler containing sensor information; or, polling the
scheduler for an actuator command. The initial() function
is used to start the execution of the BT. Boolean conditions
are then used to determine when to cycle the BT scheduler,
pass on sensor information or receive actuator commands.

If interactions are periodic, a boolean clock setup with
a sample function can be used to set the frequency with
which the interaction will occur. If the interaction should
occur based upon a physical event simulated in Modelica,
the event can change the boolean condition which will
initiate the interaction with the BE model. More complex
aperiodic, randomised, or interactions with losses in com-
munication or failures of components can also be simulated
using Modelica constructs. Failures of sensors, actuators
or the communication between them and the software can
be simulated by mearly not performing the interaction that
would normally occur.

This method of interaction ensures that the details of the
interactions that are simulated are documented as part of
Modelica model. It also allows many possible designs to be
simulated by considering how they will effect the timing of
the interactions between the physical and software systems.
For example, if the software is to be run on a multi-

threaded operating system, the boolean condition could
consist of a timing profile which emulates at what times
the BT scheduler will be executed. This timing profile
could be randomised to determine how the system operates
under different loads, or may just address one specific or
worst-case scenario. If more than one operating system
is being considered, a timing profile could be setup for
each operating system and multiple simulations peformed
to determine the differences, if any, on the system as a
whole.

5. Case Study: An Automated Train
Protection System

Most rail systems have some form of train protection
system that use track-side signals to indicate potentially
dangerous situations to the driver. The simplest train pro-
tection systems consist of signals with two states: green
to continue along the track and red to apply the brake to
stop the train. More sophisticated systems include detailed
information such as speed profiles for each section of the
track.

Accidents still occur using a train protection system
when a driver fails to notice or respond correctly to a signal.
To reduce the risk of these accidents, Automated Train
Protection (ATP) systems are used that automate the train’s
response to the track-side signals by sensing each signal
and monitoring the driver’s reaction. If the driver fails to
act appropriately, the ATP system takes control of the train
and responds as required.

The ATP system used for this paper has three track-side
signals: proceed, caution and danger. When the ATP system
receives a caution signal, it monitors the driver’s behavior
to ensure the train’s speed is being reduced. If the driver
fails to decrease the train’s speed after a caution signal or
the ATP system receives a danger signal then the train’s

ATP_Controller
> Value <

l

R6 ATP_Controller
+ |?Value =1:: CAUTION ?

l

ALARM
[Enabled]

R6

R6

where

(withiny Driver's_Cab

]

ATP_CONTROLLER
+ ? NOT(Observed) ?

P
o

TRAIN
[Speed[Decreasing]]

l

ATP_CONTROLLER
[Activates]

what

R

o

what| BRAKING_SYSTEM

\what

(o) TRAIN

[

BRAKING_SYSTEM
+ [Activated]

(a) RBT for Requirement 6

P
o

BRAKING_SYSTEM
[Activated]

|

R

©

RS ATP_CONTROLLER R8 RESET_MECHANISM
> Value < ?? Resets ??
""':at ATP_CONTROLLER
R8 |ATP_CONTROLLER R8 |ATP_CONTROLLER R8 ATP—C%NTFiOLLER
+ ? Reset ? + ? NOT (Reset) ? [RE=3]
R8 ATP—ﬁor':‘;Fe*S]LLER R8 | ATP_CONTROLLER
9 + [Accepts]
what INPUT what e
where 3
he
(from) ST“SOR (m)| SENSOR®
R8 ATP_CONTROLLER "
+ > Value <

(b) RBT for Requirement 8

Figure 4. Example Requirement Behavior Trees of the
ATP System

brakes are applied. The complete requirements of the ATP
system can be found in Table [I| The requirements of the
ATP system have been used previously in related work to
demonstrate composition of components using exogenous
connnectors [10]].

Section 5.1l discusses the construction of the BE model
of the ATP system from the requirements and Section
discusses the Modelica model of the ATP systems physical
components and environment.

5.1 ATP - Behavior Engineering Model

Figure [shows two example RBTs of the ATP system.
Consider the RBT of requirement 6 (RBT6) with reference
to the system requirements. The first two nodes show
the ATP controller receiving a value and a condition to
determine if the value is a caution signal. The second
node has a ‘+’ in the tag to indicate this behavior is

10

implied from the requirements as they do not explicitly
state it is necessary to check the signal is a caution signal.
The next node shows that the Alarm is enabled, and
captures that there is a relation between the Alarm and the
Driver’s Cab. Relations should be read as questions that
can be asked of the primary behavior, which the associated
relational behavior answers. For example, “Where is the
Alarm enabled? Within the Driver’s Cab”. Capturing the
information about the Driver’s Cab ensures that the original
intent of the requirements is not removed. The next BT
node assumes that it is implied that the ATP Controller
observes whether the speed of the train is decreasing.
The final two BT nodes of RBT6 describe the relation
between the ATP Controller and the Braking System, and
the Braking System realising the activated state.

During integration of the RBTs of the ATP system the
following problems were found:

e Conflicting Behavior (R7-RS8). After the Braking Sys-
tem is activated, R7 states that a proceed signal disables
the Alarm whereas R8 states all sensor input is ignored
until the ATP Controller is reset.

e Conflicting Behavior (R7-R9). After the Braking Sys-
tem is activated, R7 states that a proceed signal disables
the alarm whereas RS states that the Reset Mechanism
deactivates the Train’s Brakes and disables the Alarm.

e Missing Behavior (R6). What should the ATP Controller
do if the Train’s speed is observed to be decreasing?

e Missing Behavior. What should the ATP Controller do
if an undefined signal is returned to the ATP Controller?

Each of these problems would need to be resolved with
the client to ensure that the system behaves as is desired.
However for the purposes of this case study the following
assumptions were made:

e R8 and R9 were given priority over R7. That is, a
proceed signal can only disable the Alarm after the
Alarm has been enabled but prior to the Brakes being
activated. After the Brakes have been activated all
sensor input is ignored until the ATP Controller is reset.
Also, resetting the ATP Controller after the Brakes
have been activated causes the Train’s Brakes to be
deactivated and disables the Alarm.

o If the ATP Controller observes the train’s speed to
be decreasing then: if a danger signal is received the
Brakes are immediately activated; or, if a proceed signal
is received the Alarm is disabled. However, if the
train’s speed increases before either of these signals are
received then the ATP Controller should activate the
Train’s Braking System.

Figure [5] shows the DBT of the ATP system resulting
from design decisions made to the MBT. A (M) in the tag
shows the nodes of the DBT where interaction occurs with
the Modelica model. The following design decisions were
made to the MBT:

[pareanov] -
_ sayelg 9y
<=
paads => paadsaaid /
ieéée -
J919Wopaads 94

>(aNeA)YOSNIS< | +
. dlv 84
>(aneA)4OSNIS< | - [parennoeaq] w)
div L4 sayelg 64
vl
9 poads => peadsnaid | 9
>(aneA)OSNIs< |+ [paiqesial . (22N R 222 - [pareanoy] - [pajqesial -~
div L9 wireyy __ I1o19wopaads Pas} .. Sopeig 28 wrepy
¢3AST3 ¢ + éT=9NeA¢ P (0=3neA¢ - >> 19Sal << o
div 24 div div 24 div
> (anfeA)4OSNIS < | + [pareanov] w)
dlv L4 soyelg 9
¢ paads < paadsaaid ¢ a ¢ paads => paadsnaid ¢ |+
J919WoOpaads 94 J919Wwopaads 9d
>> aneApaadsmau <<| -
Jajawopaads 94
- >(aneNMOSNIS< | - [paigeus] o
;, dLv sy wrepy
>> (paads)paadsiab << | - () _, 9
J919Wwopaads 94
¢3S13 ¢ + ¢T=28NneA¢ +
[paads =: paadsnaaud] 5 dlv & div &
Ja18wopaads 9y
>> anfeApaadsmau << | - () >(aneA)4OSNIS< v
Jajawopaads 94 T dlv
[BuiresadQ] +
dlv cd

[reubis 10812a]
J0Suas &
<(enenNYosSNIS > |
10SUBS
anjea /
>>())4OSN3S Josuss<<| +
10SUBS XS]
€anjeA ‘zanfen ‘Tanea|
[(NAwioley ayenofed] |+
Josuas I
[pareAnoy] + >> (£aN[eA)19318p << | + (W)
.. soprg as| 10SUBS €y
[paiqeus] e >> (zan[eA)osiap << | +(w)
wiely J0suas XS]
¢ 0=9nen¢ >> (Tan[eA)19918p << | + (W)
div o 10suas €y
[reubis 10818@]
Josuas &

Figure 5. Design Behavior Tree of ATP system

11

e Train, Signal, the individual Sensors, Driver’s Cab,
Reset Mechanism, and Noise components are outside
the boundaries of the DBT.

e A Speedometer component is required to receive the
train’s speed and store the previous speed value so that
changes in the speed of the train may be determined.

e Alternative branching and atomic composition was
added to ensure appropriate threaded behavior. Atomic
composition is required for when the speedometer
component’s speed value is updated. This is because
for a small period of time the current speed equals
the previous speed causing the prevSpeed<=speed
guard to evaluate to true, regardless of the new speed
value. Alternative branching ensures that once one of
the mutually exclusive branches has been taken (e.g.
value=0), none of the other branches can be executed
(e.g. value=1, ELSE).

5.2 ATP - Modelica Model

The Modelica model describes the physical components
that make up the environment in which the ATP system
will operate. It consists of components such as the Train,
the Driver, the Train Track, and the Sensors of the track-
side signals. Figure [6] shows the component diagram of
the Modelica model. The Driver component is responsible
for controlling the Train’s speed and resetting the ATP
system. The Train component simulates its velocity and
position on the Track based upon its mass, maximum
acceleration power and maximum brake force. The Train
Track provides the signal sensors with the signal value
at the signal position. The signal sensors then simulate
the presence of noise, occasionally misreading a signal
value. The sensor values, Train speed and driver reset are
all provided to the ATP controller which in turn provides
whether to apply the Train’s Brakes. A simplified version
of the Modelica textual model of the ATP environment is
shown in Figure

5.3 Integration of the Modelica and BE Models

Simulating the integrated Modelica/BE models provides
plots which graphically show the interactions between
software and hardware in reference to time. This allows

signalPosition,
signalValue

Train Tracks
signalPosition, signalValue

Signal Sensors <]

sensor values

desired
speed

Driver
desiredSpeed, reset

Train
position, speed

apply brake

VAV
ATP System
(BE Model)

Figure 6. Component diagram of the Modelica ATP
Environment model

12

the investigation and documentation of scenarios in a clear
way. The types of scenarios that can be investigated are:

e The frequency of the execution of the BE model rela-
tive to the Modelica model simulates the performance
capabilities of the hardware platform on which the BE
model will be deployed.

e The sampling frequency/response time of sensors and
actuators can be simulated by the frequency of interac-
tion between the Modelica model and the BE model.

e The system can be tested with different Trains, Drivers,
Train Tracks, etc.

Figure [§] shows four example simulations of the inte-
grated model of the ATP System. All the simulations are
performed with a train model based on a British Rail Class
57 diesel locomotive, which has a mass of 120 tonnes, a
maximum speed of 120.7 km/h, a maximum brake force of
80 tonnes and a power at rail of 1860 kW with an assumed
80% efficiency due to losses in pressure and friction.

The train’s braking time of two seconds is due to its low
velocity (approximately 45km/h) and small weight due to
the absence of carriages. The same train operating at 100
km/h would take approximately eight seconds to brake,
and at 200 km/h would take 32 seconds. The addition of
carriages would further increase the time the train would
take to brake to a complete stop. These braking times
highlight the need to test software-hardware integration
under numerous circumstances.

The simulations performed on this case study show
the ATP system operating with the same configuration of
sensors, actuators and hardware platform. The change that
is tested is the driver’s response to the signals on the track,
the results of which now ensures that the ATP system
is functioning as specified by the requirements. Further
simulations could now be performed to investigate the
ATP system operating both in different scenarios and also
the suitability of different sensors, actuators and hardware
platforms.

6. Conclusion

This paper investigates the software/hardware integration
problem caused by the increasing codependancy of soft-
ware and hardware in large-scale systems. An integrated
approach is described, which integrates separate software
and hardware models to aid the investigation of soft-
ware/hardware interaction through simulation. An ATP
system is used as a case study to describe both separate
software/hardware modelling with BE and Modelica and
software/hardware integration and investigation. This inte-
grated approach allows various software/hardware interac-
tions to be investigated such as software execution speed,
sensor sampling frequencies, and actuator response times.
It also provides a graphical and documentable output of the
investigation the behavior of the software and hardware in
different scenarios.

Acknowledgments

This work was produced with the assistance of funding
from the Australian Research Council (ARC) under the
ARC Centres of Excellence program within the ARC
Centre of Complex Systems (ACCS), the Swedish Vinnova
under the Safe and Secure Modeling and Simulation project
and the Swedish Research Council (VR).

References

[1] Robert Colvin and 1. J. Hayes. A Semantics for Behavior
Trees. ACCS Technical Report ACCS-TR-07-01, ARC
Centre for Complex Systems, April 2007.

[2] Tullio Cuatto, Claudio Passeronge, Luciano Lavagno,
Attila Jurecska, Antonino Damiano, Claudio Sansoe,
A. Sangiovanni-Vincentelli, and Alberto Sangiovanni-
Vincentelli. A case study in embedded system design:
an engine control unit. In Proceedings of the 35th annual
conference on Design automation (DAC "98), pages 804—
807, New York, NY, USA, 1998. ACM.

[3] R. G. Dromey. Formalizing the Transition from
Requirements to Design. In Jifeng He and Zhiming Liu,
editors, Mathematical Frameworks for Component Software
- Models for Analysis and Synthesis, pages 156—187. World
Scientific Series on Component-Based Development, 2006.
Invited Chapter.

[4] R.G. Dromey. From Requirements to Design: Formalizing
the Key Steps. In IEEE International Conference on
Software Engineering and Formal Methods, pages 2—
11, Brisbane, Sept 2003. SEFM-2003. Invited Keynote
Address.

[5] Dynasim. Dymola. http://dynasim.com.

[6] Rolf Ernst. Codesign of embedded systems: Status and
trends. IEEE Design and Test, 15(2):45-54, 1998.

[7] Peter Fritzon, Vadim Engelson, Andreas Idebrant, Peter
Aronsson, Hakan Lundvall, Peter Bunus, and Kaj Nystrom.
Modelica 4AS A Strongly Typed System Specification
Language for Safe Engineering Practices. In Proceedings of
the SimSAFE Conference, Kralskoga, Sweden, June 2004.

[8] Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-1EEE Press, 2004.

[9] Tarek Ben Ismail, Mohamed Abid, and Ahmed Jerraya.
Cosmos: a codesign approach for communicating systems.
In Proceedings of the 3rd international workshop on
Hardware/software co-design (CODES ’94), pages 17—
24, Los Alamitos, CA, USA, 1994. IEEE Computer Society
Press.

[10] Kung-Kiu Lau, Ling Ling, and Zheng Wang. Composing
Components in Design Phase using Exogenous Connectors.
In Proceedings of the 32nd EUROMICRO Conference
on Software Engineering and Advanced Applications
(EUROMICRO ’06), pages 12—-19, 2006.

[11] MathCore. Mathmodelica. http://www.mathcore.com,

[12] Modelica Association. Modelica: A Unified Object-
Oriented Language for Physical Systems Modeling:
Language Specification Version 3.0, Sept 2007.
http://www.modelica.org.

[13] OMG. System Modeling Language (SysML).
http://www.omgsysml.orgl

13

[14] Adrian Pop, David Akhvlediani, and Peter Fritzon.
Integrated UML and Modelica System Modeling with
ModelicaML in Eclipse. In Proceedings of the 11th IASTED
International Conference on Software Engineering and
Applications (SEA’07), 2007.

[15] Adrian Pop, David Akhvlediani, and Peter Fritzon. Towards
Unified System Modeling with the ModelicaML UML
Profile. In Proceedings of the Ist International Workshop
on Equation-Based Object-Oriented Languages and Tools
(EOOLT’07), pages 13-24, 2007.

[16] Danny Powell. Requirements evaluation using behavior
trees - findings from industry. In Australian Software
Engineering Conference (ASWEC’07), April 2007.

[17] Michael Tiller. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.

http://dynasim.com
http://www.mathcore.com
http://www.modelica.org
http://www.omgsysml.org

// External Functions included here

model Track
discrete Integer currentSignalValue "Value of Last Signal displayed to Driver/ATP System";

parameter Real[:] signalPosition "Positions of Signals on the Track";
parameter Integer[:] signalValue "Values of Signals on the Track";
equation

// Determine current signal value
end Track;

model Train
Real s, v, m, maxSpeed, maxBrakeForce, maxAccelerationPower, maxAccelerationForce;

parameter Real accPowerEff = 0.80 "Engine Efficiency in &";
equation
maxAccelerationPower/accPowerEff = maxAccelerationForcexv;

end Train;

record Driver
Real desiredAcceleration;
parameter Real[:] desiredSpeed;
parameter Real[:] position;

end Driver;

model Main
// Define track, train, driver parameters

parameter Real[l10] sensorl = {0,0,1,2,0,0,2,2,0,0} "Sensorl value at signalPosition";
Real sensorlReading "Current Sensorl reading”;
// Similar for Sensor 2 & 3

Real fa, fd, doBrake(start=0), minAccelerationForce, desiredAccelerationForce;
discrete Boolean clockl, clock2, ...;
// Define clock frequencies

equation
when initial() then startBT(0); end when;
when clockl then cycleBT (0); end when;
when clock2 then doBrake = if (trainl.v >= 0) then getBrake(0) else 0;
// if driver reset’s ATP send message
// if signal changes send new sensor values

fa = if doBrake>0 then 0

elseif // ensure not over maximum Acceleration force
else desiredAccelerationForce;

fd = if doBrake>0 then trainl.maxBrakeForce else 0;

a = (fa-fd)/trainl.m;

der (v) = a;

der (trackl.s) = trainl.v;

// if train passing signal then update sensors

// determine driver’s desired acceleration (a = (desiredSpeed - trainl.v)/ (2xdistance))

end Main;

Figure 7. Simplified Textual Modelica model of the ATP Environment

14

- 6\ (a) 15 6\ [=] Train Velocity
12.5 12.5] [--] signalValue
Velocity 10.0 Velocity 10.0 [~] ATP Reset
(m/s) 7.5] (m/s) 7.5 5
5.0 5.0
PROCEED PROCEED
RESET ATP lz\e /ARt RESET ATP \k ----------------
/ CAUTION / : : | : | — 3y /CAUTION / ; . | : | —_
DANGER 0 50 100 150 200 250 DANGER 0 50 100 150 200 250
Time (s) Time (s)
A A
15.0] (c) 15.0 (d)
12.5] 12.5]
Velocity ¢ o Velocity ¢ ol
(m/s) 75 (m/s) 75
5.0 5.0|
PROCEED PROCEED
RESET ATP \2\0 - RESET ATP\kO -
/ CAUTION / : ; : : | — 3 /CAUTION | : | . | LLEN
DANGER 0 50 100 150 200 250 DANGER 0 50 100 150 200 250

Time (s) Time (s)

@ Driver ignores caution signal and increases speed, brakes are activated
® Driver sees caution signal and reduces speed but then increases speed, brakes are activated

© Danger
@ Danger

signal, brakes are activated regardless of driver already decreasing speed
signal, brakes are activated, ATP is reset and brakes are deactivated

Figure 8. Simulation of the ATP System

Requirement

Description

R1

The ATP system is located on board the train. It involves a central controller and five boundary subsystems
that manage the sensors, speedometer, brakes, alarm and a reset mechanism.

R2

The sensors are attached to the side of the train and detect information on the approach to track-side
signals, i.e. they detect what the signal is displaying to the train driver.

R3

In order to reduce the effects of component failure three sensors are used. Each sensor generates a value in
the range O to 3, where 0, 1 and 2 denote the danger, caution, and proceed signals respectively. The fourth
sensor value, i.e. 3, is generated if an undefined signal is detected, e.g. may correspond to noise between
the signal and the sensor.

R4

The sensor value returned to the ATP controller is calculated as the majority of the three sensor readings.
If there does not exist a majority then an undefined value is returned to the ATP controller.

RS

If a proceed signal is returned to the ATP controller then no action is taken with respect to the train’s
brakes.

R6

If a caution signal is returned to the ATP controller then the alarm is enabled within the driver’s cab.
Furthermore, once the alarm has been enabled, if the speed of the train is not observed to be decreasing
then the ATP controller activates the train’s braking system.

R7

In the case of a danger signal being returned to the ATP controller, the braking system is immediately
activated and the alarm is enabled. Once enabled, the alarm is disabled if a proceed signal is subsequently
returned to the ATP controller.

R8

Note that if the braking system is activated then the ATP controller ignores all sensor input until the system
has been reset.

R9

If enabled, the reset mechanism deactivates the train’s brakes and disables the alarm.

Table 1. Requirements of the ATP system

15

The Impreciseness of UML and Implications for ModelicaML

Jorn Guy SiiB!

Peter Fritzson?

Adrian Pop?

UITEE, The University of Queensland, Australia, jgsuess@itee.uqg.edu.au
1Link(ipings Universitet, Sweden, {petfr, adrpo}@ida.liu.se

Abstract

The Modelica community has long pursued the vision of
Integrated Whole Product Modelling. This implies the abil-
ity to integrate best practice modelling languages and tech-
niques. With ModelicaML a first step towards an open inte-
gration within the sphere of the Eclipse Modelling Frame-
work exists. This paper argues for a development direction
of ModelicaML that creates a small core with well-defined
semantics, instead of the current version that is based on an
extension of SysML. To this end, modelling standards and
their practicabilities are discussed and exemplified through
a usage scenario.

Keywords EMF, UML, ModelicaML, design

1. Introduction

Modeling in general and object-oriented modeling in par-
ticular have shown themselves to be useful tools on a soft-
ware engineer’s workbench. With ever more software be-
ing produced for increasingly complicated application ar-
eas, adequate semantics and languages gain in importance.
The term Model is heavily overloaded, even in software
engineering. In general, a model is a purpose-built abstrac-
tion of something. It exhibits properties that are essential to
the abstraction and can hence be treated like the modelled
object with regards to those properties.

Very often, a model is used as for simulation. Here, we
take ’simulation’ to mean an experiment carried out on a
model, as opposed to the modelled subject itself [11]. For
example, the sentence “a heart is an open book™ defines
a model for human emotional behaviour that may imply a
certain mode of access, changeability, etc. As the heart is
not a book, the model can only be used to make predictions
for the intended purpose, i.e. to explain human emotional
behaviour. This model will fail as a simulation of biolog-
ical behaviour. The example also shows that the frame of
reference or school of thought defines the allowable shapes

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkoping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:

http://www.eocolt.org/2008/

17

of a model and the predictions it will make. In the exam-
ple, whatever our mind expects of an open book, we will
ascribe to the emotional behaviour of the heart. People will
differ in their expectation of the structure and behaviour of
books. Hence their mental simulations of the behaviour of
the human heart will differ.

While the contemplation of human emotions based on
such private mental models is useful and enjoyable, sys-
tems engineering is a collaborative task, involving a lot of
interaction. The communication about the subject has to be
adequate for this use. If we communicate about systems
in order to build them effciently, safely and correctly, our
school of thought or language to express our models needs
to be unambiguously standardised. It also needs to practi-
cally usable, which implies terseness and focus on the task
at hand.

In this spirit this paper proposes a refactoring of the
ModelicaML modelling language that is used to fashion en-
gineering models based on the Modelica language in order
to simulate them. We propose that in order to expose Mod-
elica in models, a specific object-oriented approach known
as Meta-modeling should be used to create the interface.
This involves both creation of visual editors, and storage
facilities. We will introduce Meta-Modelling and the asso-
ciated Meta-Object Facilities as we go along.

The rest of the paper is structured as follows: Section 2
provides an overview of the current version of Modeli-
caML. Section 3 explains MOF and metamodelling in
broad terms. Section 4 describes metamodelling in more
detail and argues for a specific product as the basis of Mod-
elicaML. Section 5 gives reasons why certain parts of the
current version of ModelicaML should be removed. Sec-
tion 6 describes how ModelicaML can be used to model an
engineering problem and predict relevant properties. Sec-
tion 7 summarizes the recommendations.

2. Overview of ModelicaML

The current version of ModelicaML is a customisation
or profile of SysML, which in turn is a customisation or
profile of UML.

In industrial practice, the term profile is taken to mean
an alteration of an existing modelling language, that is tran-
sitively related to UML through through profiling; Modeli-
caML is a profile of SysML, which is a profile of UML.

http://www.ep.liu.se/ecp/029/
http://www.eoolt.org/2008/

Every alteration step can affect the semantics or the visual
representation of concepts. They can narrow, refine, extend
and change concepts of the profiled source language. Effec-
tively, the term profile only means that the new language is
somehow related to UML, in order to increase its popular-
ity. As a result, there are no technically standardised means
to capture this wider notion of profiles. The stricter notion
of profiles is discussed in Subsection 5.5.

With respect to SysML, ModelicaML reuses, extends
and provides several new diagrams. The ModelicaML dia-
gram overview is shown in Figure 1. Diagrams are grouped
into four categories: Structure, Behavior, Simulation and
Requirement. The ModelicaML profile is presented in [1],
[29], and [30]. The most important properties of the Mod-
elicaML profile are the following:

e The ModelicaML profile supports modeling with all
Modelica constructs and properties i.e. restricted classes,
equations, generics, variables, etc.

e Using ModelicaML diagrams it is possible to describe
most of the aspects of a system being designed and thus
support system development process phases such as re-
quirements analysis, design, implementation, verifica-
tion, validation and integration.

e The profile supports mathematical modeling with equa-
tions since equations specify behavior of a system. Al-
gorithm sections are also supported.

e Simulation diagrams are introduced to model and docu-
ment simulation parameters and simulation results in a
consistent and usable way.

e The ModelicaML meta-model is consistent with SysML
in order to provide SysML-to-ModelicaML conversion.

The current version of ModelicaML is based on SysML,
which in turn is promoted as a variant of UML. This pa-
per proposes that the next revision of ModelicaML should
be reduced and made independent of SysML and UML. To
support this argument, we give an introduction to the rele-
vant technologies and then turn to a usage example.

3. Why expose Modelica through MOF?

This section of the paper proposes that Modelica should be
represented through MOF (Meta Object Facility) for all its
technical external representation, because MOF is easy to

ModelicaML Diagram

n [om------e- 1
Behavior Reguirement Structure : Simulation !
diagram diagram Diagram . diagram j
[RE]
:l New diagram type
DMudiﬁedfrDm SyshdL Class Internal Class Package
diagram diagram diagram
Same as SyshL
| = talata
Activity || Sequence | ! Equation + State Machine Use Case Parametric
disgram | | disgram |1 disgram diagram diagram diagram

Figure 1. ModelicaML diagram overview.

18

understand, and hence to integrate and is backed by solid
technology.

The MOF is a technical framework built on the assump-
tion that engineering languages can be described well in
the ontological terms that underlie object orientation: The
world consists of complex objects with primitive attributes.
These belong to homogenous classes. The class may be re-
lated through an is-a relationship (sub-classing), an is-part-
of relationship (aggregation), or via simple association. The
latter two may be constrained by cardinalities.

With this tenant, every engineering language can be de-
scribed as a class diagram. Figure 2 shows such a diagram
for a database. An instance of this meta-model, would be a
model for a database. Some details of the diagram read like
this: ForeignKey, Column, Table and Key are all ModelEle-
ments and hence have the attributes ‘name’ and ‘kind’. A
Table is made up of ForeignKeys, Columns and Keys. A
ForeignKey is associated with a Key. The API generated
by a MOF service would allow to create the four mentioned
elements and to set their relationships.

Essentially, MOF can be thought of as a standard for
defining the cores of domain-specific software engineer-
ing tools, much like SQL is a standard for defining cores
of relational databases. With MOF, schemas are compiled
and the resulting machinery provides a low-volume storage
facility and a rich API-based interface. We will describe
MOF in more detail in the next section.

MOF combines the natural ‘ontological” way of describ-
ing a technical area with a powerful generator framework
which reduces the cost of building and maintaining a do-
main specific modeling tool. The ontological description
can be represented in diagrams, which is easier to under-
stand than the code of a hand-written modelling tool. In
MOF the model-handling code of the tool is generated
directly from the diagrams, which avoids errors and te-
dious manual translation work. For this reason we argue,
that Modelica should primarily be exposed through a MOF
metamodel for integration with other software engineering
tools; This metamodel should be used in the future as its
external representation for tool integration purposes.

4. Why should EMF be Modelica’s MOF?

This section of the paper proposes that ModelicaML should
be based on the MOF variant provided by the Eclipse Mod-
elling Framework, EMF. Before we unfold the argument
for this proposition, we will need to inspect MOF in greater
detail, as the previous section only presented MOF in fairly
abstract terms. This section will provide a bit more detail
about the history and practicabilities of MOF. Like SQL,
all MOF variants are basically similar, but differ in detail.
Hence tools connected to and data defined based on dif-
ferent versions of a MOF variant, say MOF 1.2 and MOF
1.4, are incompatible if one assumes the use of all expres-
sive features. Traditionally the dependencies of MOF are
shown as a pyramid, as seen in Figure 3. Normally, this
pyramid has three levels. For this paper, we have added a

Figure 2. Example of a simple database metamodel. (INRIA)

fourth level as a means to explain the versioning problems
that MOF suffers from.

4.1 Philosophy, Standards and Products

At the top of the stack at meta-level four (M4) we find
the idea that was introduced in the previous section: ob-
ject orientation is good for presenting domain-specific lan-
guages. This level does not have an equivalent in software.
It is purely philosophical and we will call it the philosophy
level.

Inspired by this philosophy, developers create imple-
mentations of MOF services. Some of the implementation
guidelines they adopt are shared in the technical standards
of the OMG. However, these standards have never substan-
tially guaranteed exchangeability of services or interchange
of artefacts and are thus omitted from the diagram [32, 12].
The OMG is a vendor-based organization. Modelling tools,
including MOF implementations, were and are high-price
margin software and hence vendors are not interested in in-
teroperability in order to achieve customer lock-in. This is
reflected in the nature of the OMG standards, which usu-
ally exclude concrete technical detail. Hence, standards in
the OMG sense are not standards in a product compliance
sense, rather guidelines and inspiration for implementation.
In order to submit a standard, a vendor has to show an im-
plementation, but that implementation is not required to
work together with reference implementations of related
standards. We will call this meta-level three the product

19

level, rather than the standards level. The differences be-
tween the implementations usually result in incompatible
storage formats, incompatible primitive data types, and in-
compatible event models of APIs. Thus, A MOF imple-
mentation from IBM, from SUN and from SAP would
likely be incompatible in these respects.

With the help of a MOF product, software architects
can express the domain-specific languages (DSLs) in meta-
models. This level is known as the meta-level two, and
we will call it the language level. The meta-models of the
DSLs are expressed using the features and semantics of a
particular MOF implementation that is in turn defined at
the product level. Consequently, DSLs cannot generally be
exchanged among MOF services.

Once an APT has been generated from a metamodel with
the help of a MOF product, it can be dressed up with a user
interface and serve as a modelling tool for an engineer who
is familiar with the corresponding DSL. Following the ex-
ample above, we could now write the graphic interface to a
database design tool. The engineer can now model an engi-
neering problem — the design of a particular database, e.g.
for a library - and store and retrieve that model from disk.
The well-formedness conditions that have been defined for
the engineering language in form of the constraints on the
languages class schema help the engineer to design a cor-
rect model by vetoing models that cannot have an equiva-
lent in the practice of that engineering domain. Following
the example, the engineer could not store a model with a

column that was not part of a table, because the composi-
tion relationship enforces this behavior. This level is known
as meta-level one and we will call it the model level.

If the engineering language actually describes physical
artefacts, then a model can have a correspondence in the
real world. For example, for the model of a car, one could
point to an actual car in the parking lot. Or alternatively, for
the modelling of a non-physical, but still existing, software
library, one could identify and point to a software library
installed inside an actual computer. This meta-level zero is
also known as the real-world level. It is often represented
in literature, but is actually an artifact of the underlying
philosophy of class-based thinking, which implies instanti-
ation.

Figure 3 aims to summarize the four levels by giving ex-
amples of popular models' at different levels. The original
MOF was developed more then ten years ago for server-
side use, but recent developments in the last five years have
made its desktop use ubiquitously feasible. The Eclipse
Modeling Framework (EMF) is the most recent and ar-
guably most popular variant of MOFand is well-integrated
with the Eclipse IDE.

4.2 EMF Offers Generated User Interfaces

In addition to the manipulation and storage API generated
by all MOF products, EMF provides a library for interac-
tive manipulation that plugs directly into the Eclipse IDE.
This substantially reduces on the time it takes to create
an interactive graphical editor for a specific DSL. For this
reason the current implementation of ModelicaML already
uses EMF as its basis.

In addition, EMF offers a related facilities knowns as
the Graphic Modelling Framework (GMF). GMF allows
the definition of diagrammatic editors in a model-based
fashion. In other words, the tool-designer creates a model
of how the diagram editor should look for a specific DSL,
and the generator builds the diagrammatic interface. For
our example, Tables could be defined as being shown as
boxes, Attributes as text lines within the boxes and Keys as
arrows pointing among the Attributes.

4.3 EMF has the largest base of reusable editors

As a result the number of (graphical) editors built on EMF
is far greater than that of any previous MOF product. This
also affects the availability of developers that can create
Modelica integrations, if ModelicaML is based on the same
platform.

4.4 EMEF has the most Models

Because there are more EMF-based tools in actual use, the
number of models transitively defined based on EMF via
different meta-models also outnumbers those in any other

! The diagram also clarifies why different versions of the popular model-
ing language UML cannot actually be exchanged, leading to a breakup in
the space of artefacts. The next section will treat UML in more detail.

20

MOF product. The atlantic EMF model zoo is a great exam-
ple of this http://www.eclipse.org/gmt/am3/
zoos/atlanticZoo/ We hence have a good base of
engineering models that could be connected to Modelica
models.

4.5 EMF can Glue Large (Meta-) Models easily

In addition to this, the architecture of EMF contains a de-
sign feature that resolves an issue that plagued previous
MOF products. How do you integrate elements of two
pre-existing meta-models? The OMG MOF standards do
not address this issue, as it is seen as a technicality. Ear-
lier MOF products required the meta-models to be loaded
and all references resolved before models could be created.
This practically limited the use of large combined models;
EMF is lazy and knows the concept of a proxy, which only
resolves if necessary. EMF also introduces a mapping be-
tween external resources and the model contents based on
the concept of a Uniform Resource Identifier (URI). Ex-
ploiting this EMF can glue heterogenous models: A model
stored in several files appears as one structure to the user of
the model interface API. In this way, existing model files
can be linked to new model files that reference them. This
simplifies version control, as it avoids duplicate storage of
data.

4.6 Other MOF Versions Do not Offer as much MDA

The critical mass of EMF use has fostered the growth of
general facilities for the manipulation of models. For ex-
ample, given a model of a building’s floor plan and a model
of a wiring plan for buildings, it would be feasible to derive
a partial wiring plan from the floor plan. This model trans-
formation could be written as a special-purpose Java pro-
gram using nested iteration loops, but maintenance effort of
this solution would be high. In databases, the maintenance
problem has led to the development of SQL-DML, where
the desired manipulation to the table entries are declara-
tively expressed by referencing the defined table structure.
Within the MOF philosophy a generalizing approach can
be adopted to create a general purpose model transforma-
tion language that allows to express the desired manipula-
tion of instance models with reference to their asscoiated
meta-models.

With such general facilities at hand the development
of specialised engineering tools turns from a program-
ming task into the art of defining a set interrelated models,
their relationships and connecting model transformations
and their visualizations. This idea of small interrelated
models is at the heart of the Model-Driven Architecture
(MDA) [15, 35]. However, general facilities are expensive
tools to build, so the practice of MDA is strongly linked to
EMF and its critical mass.

For the reasons presented, we see EMF as the best basis
for the representation and integration of Modelica models.

http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/
http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/

The MOF Philosophy (M4)

SEEpEE

Language-Level (M2)

UML 1.4.2 mode! of Business Case

Modd-Level (M1)

UML 1.4.2 model of HTTP server specific Rose model

installed HTTP server

System-Level (MO)

Figure 3. Four layer metamodel pyramid.

5. Why should ModelicaML not be UML?

When people talk about modeling in the context of soft-
ware engineering they very quickly turn to talk about the
Unified Modeling Language (UML). What they usually
mean, is the language of class diagrams which only ac-
counts for a very small part of the of the UML. UML
comprises a number of modeling languages; It was con-
ceived as a vehicle for the reuse of object-oriented mod-
els and a commercially-motivated merging approach to
the three competing OO-modeling philosophies of Booch,
Rumbaugh and Jacobsen. UML has been very successful
in unifying the different graphical notations of these lan-
guages; Today’s software engineers will always represent
class is a rectangle with three partitions: name, attributes
and methods.

In the following subsections we will present a number
of arguments why ModelicaML should not reuse UML, but
rather be a small well-defined core.

5.1 UML Standard Models are not Available,
Exchangeable or Reusable

UML was conceived independently of MOF. Consequently
UML tools were not built on any MOF core. They were
implemented directly ad hoc. As a result, the semantics,
the file formats and the APIs of the model manipulation
facilities all became different. Since the tools themselves
were expensive and specialized, there was little incentive
for third parties to produce extensions that would allow the
use of models for any purpose in the further development
process. Hence the models were cut off from the rest of the
development process and remained artifacts of documen-
tation, typically created in the initial phases of projects.
Consequently, errors found in later phases of projects were
not fed back into the models and the quality of the models
remained low. Finally, due to the high cost of their cre-
ation, models were treated as expensive intellectual prop-
erty and hence not made available outside companies using
UML. Although UML’s inventors used class diagrams to
describe UML’s semantics, and this approach allowed the

21

use of MOF products for the implementation of UML tools,
most UML tools are still custom-built; Low availability,
exchangeability, and reuse is hence typical for UML tools
these days. The tool list available at http://galaxy.
andromda.org/docs/case-tools.html gives a
good impression of this situation. While an exchange of
UML models is defined in a standard called XMI, this
standard only exchanges the model data, but not the cor-
responding diagrams, and the document format varies by
UML version and MOF product. Consequently, the ex-
change of data among tools is almost impossible. We
want ModelicaML models to be easily exchangeable and
reusable; So these properties of UML are undesirable and
a reason not to base ModelicaML on UML.

5.2 UML is too Big

UML is the result of a merger of three modelling ap-
proaches, combining their diagram techniques and mod-
elling concepts. Even at the start UML was already a
sizable specification. From version 1.3, the first OMG-
authorized release, to the current version 2.1 the size of
the specification has expanded almost fourfold to over
2000 pages. Figure 4 shows this development. As a result
of its substantial size, the UML standards are very hard
to implement. Developers simply get lost in the text that
mixes models, semi-formal specification in Object Con-
straint Language (OCL) and informal text descriptions.
Very often, developers implement the bits they think they
understand, and ignore the rest.

5.3 UML is not defined for EMF

None of the UML standards released through the OMG ref-
erence EMF as the underlying MOF version. For UML2.0
an implementation for MOF exists, but it is not officially
endorsed as compliant with the standard. Instead, the cur-
rent version of UML is defined against a sub-standard of
the MOF 2.0 standard known as Complete MOF (CMOF).
CMOF has a number of complex features [2]. To this date,
the author knows of no working implementations of CMOF

http://galaxy.andromda.org/docs/case-tools.html
http://galaxy.andromda.org/docs/case-tools.html

1400

1200 -
1000 -

Vi1

V2.0

V13 V14 V1.5 V2.0

Figure 4. UML Version Development: size of the standard in pages and chapters.

or implementations of UML based on such a MOF variant.
If ModelicaML is based on EMEF, it cannot be based on the
current specification version of UML at the same time.

5.4 UML is Semantically Unsound

Further, the UML standards shy away from defining several
important technological matters, which would be necessary
to make UML models reusable and exchangeable. For ex-
ample, the standards do not successfully define what a valid
UML model is, and at what point a UML tool would need
to assert such validity. There is no test suite and no clearing
house. The precise UML group, a think-tank of computer
scientists, has worked for ten years on defining the precise
meaning and consistency of UML and has yet to deliver
a joint and clear statement. As Modelica requires precise
semantics, it would suffer from problems of inconsistency
and ambiguity, whenever a UML model was to be reused.

5.5 UML’s Profiles are a Problem

The UML contains a mechanism known as “Profile”. Pro-
files were originally defined as a mechanism to constrain
the relatively weak semantics of UML through the applica-
tion of a constraint language at the level of the UML meta-
model. Unfortunately the Profile concept is often misused,
in that additional semantics are added that are not necessar-
ily compatible with UML.

According to the original definition of a profile as a con-
strained UML subset, the predicates of that constraint lan-
guage would be evaluated against the content of a model. If
a predicate was violated, the modeller would be provided
with appropriate feedback. It is important to note, that this
approach does not change the UML meta-models at all. For
this reason, profiles are called light weight meta-model ex-
tensions. Hence the technical application of a profile im-
plies that an OCL interpreter is present in every UML tool
that can use a profile. The authors to this date know of no
tool that satisfies this requirement. Consequently, anything
called a profile is either relying on a proprietary tool ex-
tension, or it is a mere paper artifact, that does not actually
support portable modeling.

The next problem with profiles is the desire of certain
UML users to change, rather than to constrain, the meta-
models of the UML. In other words, these users, often aca-
demics, want something that looks like UML, but is seman-

22

tically incompatible with the UML metamodel . The profile
becomes as a means of advertising one’s own modelling
language under the sales label of the UML. The UML stan-
dard version 2.0 vaguely describes mechanisms to alter the
meta-model via a profile. There has been little interest in
investigation or treatment of the resulting problems, as the
mere size of UML 2.0 defeats a complete implementation
in a tool anyway. During the closing panel of the last UML
conference, the experts agreed that no tool was ever going
to implement the UML 2.0 completely.

Today, profiles are mostly perceived as a means to de-
scribe visual alterations to UML diagram types. This use
of profiles is even further removed from practical portable
modeling, as there is no standardized algorithm that de-
scribes the allowable graphical renderings of a UML model
in diagrams. Hence, there is also no portable amendment
interface to this rendering algorithm. If profile-based alter-
ations to rendering would be portable, they would need to
be standardized parameters to the well-defined rendering
algorithm. Hence even the use of amended diagram fea-
tures is either proprietary or a suggestion on the manual
use of drawing tools.

If ModelicaML was based on UML, it would need to
implement a correct UML infrastructure including the ill-
defined profile mechanism. This effort seems to be unjus-
tified for the ModelicaML project, which aims at effective
technical integration.

5.6 UML‘s Sublanguages are a Problem

In addition to the meta-model, the UML standard also in-
cludes two additional languages. The previously mentioned
Object Constraint Language is used to define predicates
against class diagrams and for pre- and post-conditions of
methods. The Action Language is a slightly abstracted im-
perative language intended for a more precise description
of behavior of systems. In order to be a sub-language of
UML, ModelicaML would need to implement these other
two languages as well. Both languages have little to do with
Modelica’s philosophy of equation-oriented modelling.

5.7 UMDL’s children are not UML

Because standard-based UML is practically unmanageable
in a tool for the reasons outlined above, vendors have begun
to offer tools that offer reduced domain-specific languages

with well-defined syntaxes that are shown in diagram types
resembling those of the UML. For the embedded systems
domain, these are primarily class diagrams, sequence dia-
grams and state charts. In order to describe constraints and
state transitions, the tools are often augmented with a tex-
tual constraint and action language.

Executable UML (xtUML) is such a sub-language. It
revives and implements the OO-methodology of Shlaer-
Mellor. This methodology was the fourth important con-
tender at the time of UML’s inception. However, it did not
find its way into the commercial UML venture. xtUML
is seeing increasing use in industry as a specification lan-
guage. For example it is used for the specification of em-
bedded controller software at Saab Bofors Dynamics AB
(SB). Other UML sublanguages for system design are
SysUML (Boeing, Saab) and RealTimeUML (RTUml) (Er-
icsson).

It is important to understand that none of these UML-
named languages are actually UML since they are not
based on CMOF or MOF. Their metamodels differ from
that of the UML, and their models would not be inter-
changeable with standard-compliant UML tools or prod-
ucts, if these existed. They are proprietary engineering lan-
guages, branded “UML” for sales purposes. Apart from this
misnomer, they can be used well for systems engineering
and in collaboration with Modelica.

The current version of ModelicaML is based on SysML.
As with any UML derivative, the metamodel of SysML
is very large and contains a number of concepts that do
not have a correspondence in Modelica. These elements
do not form the focus of Modelica. They are superflu-
ous and hence should not be part of ModelicaML. If they
were kept, they would need to be fully expressed in dia-
grams, and their associated well-formedness rules from the
SysML standard would need to be enforced. Further, the
semantics of Modelica and SysML differ in some core ar-
eas. There, the SysML metamodel was altered to support
Modelica semantics. As a result, standard SysML cannot
be imported or exported from ModelicaML. Also, names
of meta classes are all taken from SysML, even though
the concepts may carry different names in Modelica. Con-
sequently, there is a semantic mismatch and a long-time
Modelica user will not easily find familiar concepts in the
ModelicaML API, because they carry SysML names.

It seems advisable that the next version of ModelicaML
should be defined via a meta-model that is as small as pos-
sible and independent of that of SysML or UML. Such con-
solidation will also help to improve quality, as the same
amount of maintenance time will be applied to fewer arte-
facts and less code.

6. Usage Scenario and Proposal

The previous sections have outlined the next generation of
ModelicaML as the integration interface of Modelica re-
garding EMF-based tools and IDEs. The revised Modeli-
caML will be based on EMF, but it will be smaller, and

23

independent of SysML, UML and its children. What can
we do with such an interface? How can it help Modelica to
collaborate with other engineering languages?

The following sections examine a hypothetical scenario
of collaboration between modelling tools using xtUML and
Modelica. xtUML and Modelica have different strengths ,
and we will highlight these differences first. The rest of
the section sketches a scenario around a real application of
xtUML present at Saab Bofors.

6.1 xtUML and Modelica

xtUML describes state transitions of a model in the way
most software engineers find natural: The state of the sys-
tem is changed by explicitly defined actions and kept con-
sistent by declarative constraints that should never be vio-
lated during its existence. Modelica on the other hand, due
to its origin as a simulation framework, describes the be-
havior of a system’s parts through equations. Apart from
this, Modelica and xtUML know the same concepts of lo-
cal attributes, generalization and aggregation, as they exist
in all other object-oriented languages.

Summarily, xtUML is a language used to explicitly de-
scribe and drive the behavior of a system, Modelica is a
language to implicitly describe and observe the behavior
of a system. xtUML’s strength is construction, Modelica’s
strength is analysis. Of course, both languages can be used
in the respective other domain, but they will be less natu-
ral. For example, Modelica can also be used for expressing
algorithmic or block-based controller code.

6.2 Missile Control at Saab-Bofors

Concretely, Saab-Bofors uses xtUML to describe the pro-
grams that drive the control of anti-aircraft missiles. The
process is a typical application of MDA. It begins with a
set of models related through model transformations and
kept sound by validation procedures. Saab-Bofors uses an
xtUML tool called Bridgepoint to create its models of the
anti-aircraft missile software, validate it and to generate
ADA program code that can be compiled into object-code
that can be linked into an executable. The approach is
special because software is flexibly apportioned to pro-
grammable hardware or controller software. The artifact
flow is shown in an informal diagram in Figure 5.

6.3 Testing using Modelica

As stated above, Modelica is very useful for simulation.
Testing of engineerng systems regularly involves building
simulations of complex reactive environments of systems
to explore system behaviour in different scenarios [34].
Among other things Modelica has been used in the past to
simulate aerodynamic behavior of military aircraft. Model-
ica is special in comparison with other simulation systems,
because Modelica can blend physical, electrical and elec-
tronic characteristics of a system seamlessly. So, Modelica
lends itself well to designing and simulating the functions

Executable & Translatable
Specifications

(Models)
Model Compiler Model Compiler
_ High-Level High-Level _
Compllel‘ Language Language SyntheS|Zer
Adags, C, ... (VHDL, ...)

Assembler/ Assembly Netlist Placer &

: Router

Code File

Object Code

Programming

File

Figure 5. Model-Driven Process at Saab-Bofors. [36]

of a robotic arm, including torque, step motors, sensors,
and control.

The following subsection describe three strategies for
using Modelica with an engineering language like xtUML.:
Simulation of the environment, co-simulation of the subject-
under-test, generation of simulation parameters, and imple-
mentation.

6.3.1 Linking Modelica to xtUML as an Environment

To integrate Modelica with a different modelling technique,
the integration has to be modelled and rendered to exe-
cutable code. Figure 6 shows one example of how xtUML
and Modelica would collaborate: Bridgepoint is an Eclipse-
based product, which is also internally built on EMF. As
a result, its metamodels can be exported and referenced
as part of other metamodels, implicitly making the data
in the xtUML model available by navigation from other
models. On the other side, a Modelica model of the envi-
ronment of the missiles processor is prepared. This model
only uses standard Modelica features. Its description uses
the efficient diagrammatic features that Modelica users are
familiar with. As is customary with Modelica, the model
is translated into C code, which can also be compiled into
object code for linking. Now, the features of the two soft-
ware components have to interface. This connection infor-
mation is encoded in a link-model that references features
in the xtUML model and relates them to the correspond-
ing features in the Modelica model. Now, a source code
for the overall simulation can be generated, using this ref-
erential information. The source code is translated and the
object codes of the environment simulator and missile con-
trol logic tied in. The resulting binary can then be run and
will produce a simulation with good performance charac-
teristics, due to the compilation of the code, as opposed to
model interpretation. This approach can be extended for the

24

special case of hardware-software splitting by providing a
Modelica model of the programmable logic in addition to
the processor model.

6.3.2 Modelica as Co-Simulator

In the previous scenario Modelica is used exclusively to
describe the environment. However, Modelica could also
be used to produce a specification of the expected test re-
sponse: A sort of test oracle. This is also known as a peer
model. A peer model is a model, that describes the SUT
by different modelling means, in order to validate the be-
haviour. In the case of a peer model of Modelica for an
xtUML component, the Modelica component describes the
expected behaviour of the xtUML component in mathemat-
ical terms. The peer model can be used to check margins
of error on the behaviour of the component, while going
through the scenarios.

6.3.3 Modelica as Scenario Generator

Scenario coverage and test driving can be another target of
Modelica modelling. This involves fashioning a model to
describe what scenario initialisation data should be created
and in which order the simulations should be run. In this
context, Modelica is used to create mathematical models
of the variant parameters.

6.3.4 Modelica as Implementation

Finally, Modelica could be used to provide implementa-
tions for components of interest. Modelica’s semantics pro-
vide good clarity for all mathematical interactions, and its
flow concepts allow natural modelling of component con-
nections. This makes Modelica useful for the definition of
components that resemble filters, pipes and streams. The
Modelica standard is open and technically well-defined. As

SB Link

/Bridgepoint UML To$

Control Program
RS

|
|
|
xtUML of |
|
|
|

o AN

Micro Controller
Link-Model

/I\/Iodelica Developer\
Tooling (MDT)

ModelicaML of
Environment

Control Program

(Ada) !

Micro Controller
Environment
Connector (?)

Environment
Simulator (C)

Figure 6. Link between ModelicaML and xtUML in the Saab-Bofors Scenario.

a consequence, model compilers can be written with con-
fidence. For the Saab-Bofors scenario, part of the code for
the driver application could be modelled in an imperative
xtUML style, another part could be modelled in a reactive
fashion in Modelica. The resulting object-codes could sub-
sequently be linked and executed.

7. Summary and Outlook

In this paper we have reasoned about the further develop-
ment strategy for ModelicaML and its core metamodel. We
have argued that EMF is the the most effective choice as the
implementation framework, but have discarded the use of
full UML and its descendants and profiles for practical rea-
sons. Instead, we have proposed an architecture based on a
direct reflection of Modelica with a small footprint. Finally
we have discussed four integration strategies in the context
of the motivating example of the Saab-Bofors model-based
workbench.

We will bring these considerations into the Modelica
community as a basis for further discussion towards the
standardization of the higher-level Modelica tooling and
integration interface.

References

[1] David Akhvlediani. Design and implementation of a UML
profile for Modelica/SysML. Technical Report LITH-IDA-
EX-06/061-SE, Linkopings Universitet, April 2007. Final
Thesis.

[2] Marcus Alanen and Ivan Porres. Difference and union of
models. In Perdita Stevens, Jon Whittle, and Grady Booch,
editors, UML, volume 2863 of Lecture Notes in Computer
Science, pages 2—17. Springer, 2003.

25

[3] Marcus Alanen and Ivan Porres. Differences and Union of
Models. In Perdita Stevens, Jon Whittle, and Grady Booch,
editors, UML 2003 - The Unified Modeling Language.
Model Languages and Applications. 6th International
Conference, San Francisco, CA, USA, October 2003,
Proceedings, volume 2863 of LNCS, pages 2—17. Springer,
2003.

[4] Alex E. Bell. Death by UML Fever. ACM Queue, 2(1):72—
80, March 2004.

[5] Fadi Chabarek. Development of an OCL Parser for UML
Extensions. Diplomarbeit, Technical University Berlin,
Computation and Information Structures, TU Berlin Fak.IV
Franklinstra3e 28/29 - D-10587 Berlin, March 2003.

[6] Dan Chiorean and Dragos Cojocari. Implementation
of OCL Support in UML CASE Tools - the ROCASE
Experience. Information Systems Modelling ISM °01,
May 9 - 11, 2001 Hradec nad Moravici, Czech Republic,
November 2001.

[7] Andy Evans. Making UML Precise. In Luis Andrade,
Ana Moreira, Akash Deshpande, and Stuart Kent, editors,
Proceedings of the OOPSLA’98 Workshop on Formalizing
UML. Why? How?, 1998.

[8] Martin Fowler. What Is the Point of the UML? In Perdita
Stevens, Jon Whittle, and Grady Booch, editors, UML 2003
- The Unified Modeling Language. Model Languages and
Applications. 6th International Conference, San Francisco,
CA, USA, October 2003, Proceedings, volume 2863 of
LNCS, page 325. Springer, 2003.

[9] Robert B. France, Sudipto Ghosh, Trung Dinh-Trong, and
Arnor Solberg. Model-Driven Development Using UML
2.0: Promises and Pitfalls. /EEE Computer, 39(2):59—-66,
2006.

[10] Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nys-
trom, Adrian Pop, Levon Saldamli, and David Broman. The

OpenModelica Modeling, Simulation, and Development
Environment. In Proceedings of the 46th Conference on
Simulation and Modeling, pages 83-90, 2005.

[11] Peter Fritzson and Peter Bunus. Modelica-A General
Object-Oriented Language for Continuous and Discrete-
Event System Modeling and Simulation. In Annual
Simulation Symposium, pages 365-380. IEEE Computer
Society, 2002.

[12] Anna Gerber and Kerry Raymond. MOF to EMF: there
and back again. In Michael G. Burke, editor, OOPSLA
Workshop on Eclipse Technology eXchange, pages 60—64.
ACM, 2003.

[13] Martin Gogolla, Jean-Marie Favre, and Fabian Biittner. On
Squeezing M0, M1, M2, and M3 into a Single Object Dia-
gram. In Thomas Baar, Dan Chiorean, Alexandre Correa,
Martin Gogolla, Heinrich Humann, Octavian Patrascoiu,
Peter H. Schmitt, and Jos Warmer, editors, Proc. MoD-
ELS’2005 Workshop Tool Support for OCL and Related
Formalisms. In: Satellite Events at MoDELS 2005 Con-
ference. Jean-Michel Bruel (Ed.). Springer, LNCS 3844.
Long Version: EPFL (Switzerland), Technical Report LGL-
REPORT-2005-001, 2005.

[14] Martin Gogolla and Brian Henderson-Sellers. Analysis of
UML Stereotypes within the UML Metamodel. Lecture
Notes in Computer Science, 2460:84-99, 2002.

[15] Object Management Group. OMG Unified Modeling
Language 2.0. OMG, http://www.omg.com/uml/, 2005.

[16] The Precise UML Group. The Precise UML Group
Homepage.

[17] Mario Jeckle. UML Profiles und sonstige UML-bezogene
Aktivititen. http://www. jeckle.de/uml_spec.
htm, 2004.

[18] Mario Jeckle. Unified Modeling Language (UML) Tools.
http://www. jeckle.de/umltools.html, 2004.

[19] Mario Jeckle, Chris Rupp, Barbara Zengler, Stefan Queins,
and Jirgen Hahn. UML 2.0 - Neue Moglichkeiten und alte
Probleme. Informatik Spektrum, 27(4):323-331, 2004.

[20] Cris Kobryn. UML 2001: A Standardization Odyssey.
Communications of the ACM, 42(10):29-37, October 1999.

[21] Cris Kobryn. Will UML 2.0 be agile or awkward? Commun.
ACM, 45(1):107-110, 2002.

[22] Haohai Ma, Weizhong Shao, Lu Zhang, Zhiyi Ma, and
Yanbing Jiang. Applying OO Metrics to Assess UML
Meta-models. In Thomas Baar, Alfred Strohmeier, Ana
Moreira, and Stephen J. Mellor, editors, UML 2004 -
The Unified Modeling Language. Modeling Languages
and Applications. 7th International Conference, Lisbon,
Portugal, October 2004, Proceedings, volume 3271 of
LNCS, pages 12-26. Springer, 2004.

[23] OMG. Requirements for UML Profiles, 1.0 edition, June
1999.

[24] OMG. Model Driven Architecture (MDA), July 2001.

[25] OMG. Meta Object Facility(MOF) Specification, April
2002. Version 1.4.

[26] OMG. Unified Modeling Language Specification, Version
1.3, March 2003.

[27] OMG. Unified Modeling Language Specification, Version

26

1.4, July 2004.
[28] OMG. SysML, May 2006.

[29] Adrian Pop, David Akhlevidiani, and Peter Fritzson.
Towards Unified System Modeling with the ModelicaML
UML Profile. In EOOLT 2007, Berlin, July 2007.

[30] Adrian Pop, David Akhvlediani, and Peter Fritzson.
Integrated UML and Modelica System Modeling with
ModelicaML in Eclipse. In The 11th IASTED Int. Conf
on Software Eng. and Appl. (SEA 2007), Cambridge, MA,
USA, Nov 19-21 2007.

[31] Arnor Solberg, Robert France, and Raghu Reddy. Navigat-
ing the MetaMuddle. In Proceedings of the 4th Workshop in
Software Model Engineering (WiSME 2005), Montego Bay,
Jamaica, 2005.

[32] Prawee Sriplakich, Xavier Blanc, and Marie-Pierre Gervais.
Collaborative software engineering on large-scale models:
requirements and experience in modelbus. In Roger L.
Wainwright and Hisham Haddad, editors, SAC, pages 674—
681. ACM, 2008.

[33] Jim Steele. UML2 gripes, May 2004. Blog on MOF2
inconsistencies. Snapshot on 11/19/04.

[34] Jorn Guy SuB, Adrian Pop, Peter Fritzson, and Luke
Wildman. Towards integrated model-driven testing of
scada systems using the eclipse modeling framework and
modelica. In Australian Software Engineering Conference,
pages 149-159. IEEE Computer Society, 2008.

[35] Jos Warmer. MDA Explained. Addison-Wesley, to appear,
2003.

[36] Erik Wedin. Model-Based Development of Embedded
Systems with MDA and xtUML. Presentation at the MOD-
PROD Workshop on Model-based Product Development at
the University of Linkoping, Sweden, Feb 2007.

http://www.jeckle.de/uml_spec.htm
http://www.jeckle.de/uml_spec.htm
http://www.jeckle.de/umltools.html

Multi-Aspect Modeling in Equation-Based Languages

Dirk Zimmer

Institute of Computational Science, ETH Ziirich, Switzerland, dzimmer@inf.ethz.ch

Abstract

Current equation-based modeling languages are often
confronted with tasks that partly diverge from the original
intended application area. This results out of an increasing
diversity of modeling aspects. This paper briefly describes
the needs and the current handling of multi-aspect
modeling in different modeling languages with a strong
emphasis on Modelica. Furthermore a small number of
language constructs is suggested that enable a better
integration of multiple aspects into the main-language. An
exemplary implementation of these improvements is
provided within the framework of Sol, a derivative
language of Modelica.

Keywords language-design, object-oriented modeling

1. Motivation

Contemporary equation-based modeling languages are
mostly embedded in graphical modeling environments
and simulators that feature various types of data-
representation. Let that be for instance a 3D-visualization
or a sound module. Consequently the corresponding
models are accompanied by a lot of information that
describes abundantly more than the actual physical model.
This information belongs to other aspects, such as the
modeling of the iconographic representation in the
schematic editor or the preference of certain numerical
simulation techniques. Hence, a contemporary modeler
has to cope with many multiple aspects.

In many modeling languages such kind of information
is stored outside the actual modeling files, often in
proprietary form that is not part of any standard. But in
Modelica [6], one of the most important and powerful
EOO-languages, the situation has developed in a different
way. Although the language has been designed primarily
on the basis of equations, the model-files may also
contain information that is not directly related to the
algebraic part. Within the framework of Modelica, the
most important aspects could be categorized as follows:

e Physical modeling: The modeling of the physical
processes that are based on differential-algebraic
equations (DAEs). This modeling-aspect is also
denoted as the primary aspect.

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkoping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
htto://www.eoolt.ora/2008/

27

e System hints: The supply of hints or information for
the simulation-system. This concerns for example
hints for the selection of state-variables or start values
for the initialization problem.

¢ 3D Visualization: Description of corresponding 3D-
entities that enable a visualization of the models.

¢ GUI-Representation: Description of an icono-
graphic representation for the graphical user-interface
(GUI) of the modeling environment.

¢ Documentation: Additional documentation
addresses to potential users or developers.

that

We will use this classification for further analysis, since it
covers most of the typical applications fairly well.
Nevertheless, this classification of modeling aspects is of
course arbitrary, like any other would be.

Let us analyze the distribution of these aspects with
respect to the amount of code that is needed for them.
Figure 1 presents the corresponding pie-charts of three
exemplary models of the Modelica standard library. These
are the “FixedTranslation” component for the MultiBody-
library, the PMOS model of the electrical package and the
“Pump and Valve” model in the Thermal library. The first
two of them represent single components; the latter one is
a closed example system.

In the first step of data-retrieval, all unnecessary
formatting has been removed from the textual model-files.
For each of these models, the remaining content has then
been manually categorized according to the classification
presented above. The ratio of each aspect is determined
by counting the number of characters that have been used
to model the corresponding aspect.

The results reveal that the weight of the primary aspect
cannot be stated to be generally predominant. The
distribution varies drastically from model to model. It
varies from only 14% to 53% for these examples.

Yet one shall be careful by doing an interpretation of
the pie-charts in figure 1. The weight of an aspect just
expresses the amount of modeling code with respect to
the complete model. This does not necessarily correlate
with the invested effort of the modeler and even less it
does correlate with the overall importance of an aspect. It
needs to be considered that code for the GUI-
representation is mostly computer-generated code that
naturally tends to be lengthy. On the other hand side, the
code that belongs to the primary aspect of equation-based
modeling is often surprisingly short. This is due to the
fact that this represents the primary strength of Modelica.
The language is optimized to those concerns and enables

Translation

A41%

PMOS

6%

Pump and Valve

33%

3%
3%

0%

0%

M Physical Modeling

System Hints B 3D Visualization [GUI-Representation

Documentation

Figure 1. Code-Distribution of aspects in Modelica-models

convenient and precise formulations. Unfortunately, this
can hardly be said about the other aspects in our
classification.

The discussion about the Modelica and other EOO-
language is often constrained to its primary aspect of
physical modeling. But in typical models of the Modelica
standard-library this primary aspect often covers less than
25% of the complete modeling code. Any meaningful
interpretation of figure 1 reveals that the disregard on
other modeling aspects is most likely inappropriate -
especially when we are concerned with language design.
For any modeling language that owns the ambition to
offer a comprehensive modeling-tool, the ability to cope
with multiple aspects has become a definite prerequisite.

It is the aim of this paper to improve modeling
languages with respect to these concerns. To this end, we
will suggest certain language constructs that we have
implemented in our own modeling language: Sol. The
application of these constructs will be demonstrated by a
small set of examples. But first of all, let us take a look at
the current language constructs in Modelica and other
modeling languages.

2. Current handling of multiple aspects

2.1 Situation in VHDL-AMS, Spice, gPROMS, Chi

The need for multiple aspects originates primarily from
industrial applications. Hence this topic is often not
concerned for languages that have a strong academic
appeal. One example for such a language is Chi [3]. For
the sake of simplicity and clarity, this language is very
formal and maintains its focus on the primary modeling
aspect.

In contrast, languages like SPICE3 [9] or VHDL-AMS
[1,10] and Verilog-AMS[12] are widely used in industry.
Unlike Modelica, these languages do typically not
integrate graphical information into their models. The
associated information that describes the schematic
diagram and the model icons is often separately stored,
often in a proprietary format. For instance, the
commercial product Simplorer [11] generates its own

28

proprietary files for the model-icons. The corresponding
VHDL-code does not relate to these files.

However, different solutions are possible: both AMS-
languages contain a syntax-definition for attributes. These
can be used to store arbitrary information that relate to
certain model-items. Since there is only a small-number
of predefined attributes (as unit descriptors, for instance),
most of the attributes will have to be specified by the
corresponding processing tools.

Furthermore these two languages and SPICE3 own an
extensive set of predefined keywords. This way it is
possible to define output variables or to configure
simulation parameters. The situation is similar in
ABACUSS 1I [5], which is the predecessor to gPROMS
[2]. This language offers a set of predefined sections that
address certain aspects of typical simulation run like
initialization or output.

2.2 Multiple aspects in Modelica

The Modelica language definition contains also a number
of keywords that enable the modeler to describe certain
aspects of his model. For instance, the attributes
stateSelect or fixed represent system-hints for the
simulator. In contrast to other modeling languages,
Modelica introduced the concept of annotations. These
items are placed within the definitions of models or the
declarations of members and contain content that directly
relates on them. Annotations are widely used within the
framework of Modelica. The example below presents an
annotation that describes the position, size and orientation
of the capacitor icon in a graphic diagram window.

Capacitor Cl(C=cl) “Main Capacitor”
annotation (extent=[50,-30;
rotation=270);

70,-107],

Example 1. Use of an annotation in Modelica.

Since annotations are placed alongside the main modeling
code, they inflate the textual description and tend to spoil
the overall clarity and beauty. A lot of annotations contain
also computer-generated code that hardly will be
interesting for a human reader. Thus, typical Modelica-

editors mostly hide annotations and make them only
visible at specific demand of the user. However, this
selection of code-visibility comes with a price. First it
reduces the convenience of textual editing, since cut, copy
and paste operations may involve hidden annotations.
Second, the selection of visibility happens on a syntactical
level not on a semantic level.

Storing data for GUI-representation or other specific
hints and information has been initially a minor topic in
the design process of Modelica. Still, there was a
compelling need for it. To meet these urgent
requirements, the Modelica community decided to
introduce the concept of annotations into the modeling
language. Already the first language definition of
Modelica contained the concept of annotations and also
presented some applications for GUI-representation and
documentation. The corresponding annotations have been
used as a quasi-standard despite the fact that they only
have been weakly documented. Annotations served also
as an official back-door entrance to non-official,
proprietary functionalities. Since it happens frequently in
software engineering that certain things just grow
unexpectedly, many further annotations have been
introduced meanwhile. Nowadays, annotations contain a
lot of crucial content that revealed to be almost
indispensable for the generation of effective portable
code. Therefore it is no surprise that just recently a large
set of annotations had to be officially included in version
3 of the Modelica language definition [8]. This way, what
started out as a small, local and semi-proprietary solution,
became now a large part in the official Modelica standard.

To store the information that belongs to certain aspects,
different approaches are used in Modelica and often more
than one language-tool is involved. The following list
provides a brief overview on the current mixture of data-
representation:

e The physics of a model is described by DAEs and is
naturally placed in the main Modelica model.

e Hints or information for the simulation-system are
mostly also part of the main Modelica language but
some of them have to be included in special
annotations.

e Information that is used by the GUI is mostly
included in annotations. But the GUI uses also uses
information from textual descriptions that are part of
the main-language.

e The description of 3D-visualization is done by
dummy-models within main-Modelica code.

e Documentation may be extracted from the textual
descriptions that accompany declarations and
definitions, but further documentation shall be
provided by integrating HTML-code as a text-string
into a special annotation. Other annotations store
information about the author and the library version.

29

2.3 Downfalls of the current situation

Obviously, this fuzzy mixture of writings and language
constructs reveals the lack of a clear, conceptual
approach. As nice as the idea of annotations appears in
the first moment, it also incorporates a number of
problematic insufficiencies.

The major drawback is that only pre-thought
functionalities are applicable. The modeler has no means
to define annotation by its own or to adapt given
constructs to his personal demands. Furthermore, syntax
and semantics of each annotation needs to be defined in
the language definition. Since there is always a demand
for new functionalities, the number of annotations will
continue to increase. This leads to a foreseeable inflation
of the Modelica language definition.

2.4 Lack of expressiveness

These downfalls originate from a lack of expressiveness
in the original Modelica language. Whenever one is
concerned with language design [7], it is important to
repetitively ask some fundamental questions. How can it
be that a language so powerful to state highly complicated
DAE-systems is unable to describe a rectangle belonging
to an iconographic representation? Why do we need
annotations at all?

These questions are clearly justified and point to the
fact that the development scope of the Modelica language
might have been too narrowly focused on the equation
based part. Therefore, extension that would have been of
great help in other domains, have been left out:

1. There is no suitable language construct that enables
the declaration of an interface to an environment that
corresponds to a certain aspect.

2. Instances of objects cannot be declared anonymously
within a model.

3. The language provides no tool for the user that
enables him or her to group statements into semantic
entities.

4. The language offers no means to refer on other
(named) objects. Neither statically nor dynamically.

By removing these four lacks, we will demonstrate that
the use of annotations can be completely avoided and that
the declarative modeling of multiple aspects can be
handled in a conceptually clear and concise manner. The
following section will discuss this in more detail and
provide corresponding examples.

3. Multi-aspect modeling in Sol

Sol is a language primarily conceived for research
purposes. It owns a relatively simple grammar (see
appendix) that is similar to Modelica. Its major aim is to
enable the future handling of variable-structure systems.
To this end, a number of fundamental concepts had to be
revised and new tools had to be introduced into the
language. The methods that finally have become available

suit also a better modeling of multiple aspects. These
methods and their application shall now be presented.

3.1 Starting from an example

In prior publications on Sol [13,14] the “Machine”
model has been introduced as standard example. It
contains a simple structural change and consists of an
engine that drives a flywheel. In the middle there is a
simple gear box. Two versions of an engine are available:
The first model Enginel applies a constant torque. In
the second model Engine2, the torque is dependent on
the positional state, roughly emulating a piston-engine.
Our intention is to use the latter, more detailed model at
the machine’s start and to switch to the simpler, former
model as soon as the wheel’s inertia starts to flatten out
the fluctuation of the torque. This exchange of the engine-
model represents a simple structural change on run-time.

model Machine

implementation:
static Mechanics.FlyWheel F{inertia<<l};
static Mechanics.Gear G{ratio<<1.8};
dynamic Mechanics.Engine2 E {meanT<<10};

connection cl(a << G.f2,
connection c2(a << E.f,
when F.w > 40 then
E <- Mechanics.Enginel{meanT << 10};
end;
end Machine;

b << F.f);
b << G.f1);

Example 2. Simple machine model in Sol.

The first three lines of the implementation declare the
three components of the machine: fly-wheel, gear-box and
the engine. The code for the corresponding connections
immediately follows. The third component that represents
the engine is declared dynamically. This means that the
binding of the corresponding identifier to its instance is
not fixed and a new instance can be assigned at an event.
This is exactly what happens in the following declaration
of the when-clause. A new engine of compatible type is
declared and transmitted to the identifier E. The old
engine-model is thereby implicitly removed and the
corresponding equations are automatically updated.

This model contains the physics part only. We now
want to add other aspects to the model. We would like to
add a small documentation and to specify the simulation
parameters. Furthermore we want to add information
about model’s graphical representation in a potential,
graphical user-interface. The following sub-sections will
present the necessary means and their step by step
application.

3.2 Environment packages and models

Many modeling aspects refer to an external environment
that is supposed to process the exposed information. This
environment may be the GUI of the modeling
environment or a simulator program. Therefore it needs to
be specified how a model can address a potential
environment. To this end, Sol features environment
packages and models that enable to define an appropriate
interface. Let us take a look at an example:

30

environment package Documentation

model Author
interface:

parameter string name;
end Author;

model Version
interface:

parameter string v;
end Version;

model ExternalDoc
interface:

parameter string fname;
end ExternalDoc;

end Documentation

Example 3. Environment package.

This example consists in a package that contains models
which can be used to store relevant information for the
documentation of arbitrary models. The keyword
environment does specify that the models of the
corresponding package address the environment and are
therefore not self-contained. They merely offer an
interface instead. The actual implementation and
semantics of the package remains to be specified by the
environment itself.

It is important to see that stipulating the semantics
would be a misleading and even futile approach. Different
environments will inevitable have to feature different
interpretations of the data. For instance, a pure simulator
will complete ignore the “Documention” models whereas
a modeling editor may choose to generate an HTML-code
out of it. Nevertheless it is very meaningful to specify a
uniform interface within the language. This provides the
modeler with an overview of the available functionalities.
Furthermore the modeler may choose to customize the
interface for its personal demands using the available
object-oriented means of the Sol-language.

3.3 Anonymous Declaration

The language Sol enables the modeler to anonymously
declare models anywhere in the implementation. The
parameters can be accessed by curly brackets whereas
certain variable members of the model’s interface are
accessible by round brackets. This way, the modeler can
address its environment in a convenient way just by
declaring anonymous models of the corresponding
package. An application of this methodology is presented
below in example 4 for the Machine model.

Anonymous declarations are an important element of
Sol, since they enable the modeler to create new instances
on the fly, for example at the execution of an event. This
is very helpful for variable-structure systems. However,
within the context of multi-aspect modeling, anonymous
declarations serve primarily convenience. It is of course
possible to assign names to each of the documentation
items. They can be declared with an identifier like any
other model, but this is mostly superfluous and would
lead to bulky formulations.

model Machine
implementation:
[..]
when F.w > 40 then
E <- Mechanics.Enginel{meanT << 10 };
end;

Documentation.Author {name<<"DirkZimmer"};
Documentation.Version{v << "1.0");
Documentation.ExternalDoc
{fname<<"MachineDoc.html"};

end Machine;

Example 4. Use of anonymous declarations.

3.4 Model sections

Sol has been extended by the option for the modeler to
define sections using an arbitrary package name. Sections
incorporate three advantages: One, code can be structured
into semantic entities. Two, sections add convenience,
since the sub-models of the corresponding package can
now be directly accessed. Three, section enable an
intuitive control of visibility. A modern text editor may
now hide uninteresting sections. The user may then be
enabled to toggle the visibility according to its current
interests. This way, the visibility is controlled by semantic
criteria and not by syntactical or technical terms.

model Machine
implementation:
[..]
when F.w > 40 then
E <- Mechanics.Enginel{meanT << 10 };
end;

section Documentation:
Author {name << "Dirk Zimmer"};
Version{v << "1.0"};
ExternalDoc{fname<<"MachineDoc.html"};
end;

section Simulator:
IntegrationTime{t << 10.0};
IntegrationMethod{method<<"euler",
step << "fixed", value << 0.01};
end;

end Machine;

Example 5. Sections.

The documentation part of the machine model has now
been wrapped within a section. A second section
addresses another environment called “Simulator” and
shows an exemplary specification of some simulation
parameters. Both sections could be hidden by an editor if
the user has no interest in their content.

3.5 Referencing of model-instances

The provided methods so far, are fully sufficient for
simple application cases. The proper implementation of a
GUI-representation is yet a more complex task that
demands a more elaborate solution.

31

In the classic GUI-framework for object-oriented
modeling, each model owns an icon and has a diagram
window that depicts its composition from sub-models.
Figure 2 displays the aspired diagram of the exemplary
machine-model that contains the icons of its three sub-
models. The connections are represented by single lines.
The following paragraphs outline one possible solution in

O—

Engine Flywheel

Figure 2. The diagram representation.

The problem is that many models will own GUI-
information but only the information of certain model-
instances shall be acquired. This originates in the need for
language constructs that enable hierarchical or even
mutual referencing between model-instances. Sol meets
these requirements by giving model-instances a first-class
status [4]. This means that model-instances cannot only
be declared anonymously but also these instances can be
transmitted to other members or even to parameters.

This capability had already been applied in example 2

to model the structural change of the engine. The
statement

E <- Mechanics.Enginel{meanT << 10};
declares anonymously an instance of the model

“Enginel” and then transmits this instance to the dynamic
member E. Hence the binding of the identifier to its
instance gets re-determined which causes a structural
change.

A similar pattern will occur in our solution for the
GUI-design. Let us take a look at the corresponding
environment-package.

e environment package Graphics
o model Line
o model Rectangle
o model Ellipse
o model Canvas
* model Line
. model Rectangle
* model Ellipse
o model GraphicModel

Figure 3. Structure of the “Graphics” package.

Figure 3 gives a structural overview of the environment-
package Graphics. This package provides rudimentary
tools for the design of model-icons and diagrams. These
are represented by models for rectangles, ellipses and
lines. The package contains also a Canvas model that
enables drawings on a local canvas. Furthermore the
package contains a partial model GraphicModel that
serves as template for all models that support a graphical
GUI-representation. It defines two sub-models: one for

the icon-representation and one for the diagram
representation. Models that own a graphical
representation are then supposed to inherit this template
model. Please note that the icon has a canvas model as
parameter.

model GraphicModel
interface:
model Icon
interface:
parameter Canvas c;
end Icon;

model Diagram
end Diagram;

end GraphicModel;

Example 6. A template for graphical models.

A graphical modeling environment may now elect to
instantiate one of these sub-models. This will cause
further instantiations of models belonging to the
“Graphics”-package that provide the graphical
environment with the necessary information. Below we
present an exemplary icon model for our engine that
corresponds to the icon in Figure 2.

model Engine2 extends Interfaces.OneF
//that T

extends Graphi

interface:
parameter Real meanT;

redefine model Icon

implementation:
c.Ellipse(sx<<0.0,sy<<0.2,

dx<<0.6,dy<<0.8);
c.Rectangle (sx<<0.9,sy<<0.45,
dx<<1.0,dy<<0.55);
c.Line (sx<<0.3,sy<<0.3,
dx<<0.9,dy<<0.5);
end Icon;

implementation:
[..]

end Engine2;

Example 7. An implementation of an icon

The icon of example 7 “paints” on a local canvas that is
specified by the corresponding parameter c. The
transmission of this parameter is demonstrated in
Example 8 that represents the whole diagram of figure 2.
This model declares the icons of its sub-models and
creates a local canvas for each of them by an anonymous
declaration. The two connections cl and c2 also own a
Line-model for their graphical representation.

32

model Machine
extends Graphics.GraphicalModel;
interface:

redefine model Diagram
implementation:
section Graphics:
F.Icon{c<<Canvas{x<<1l0,y<<10,
w<<10,h<<10}};
G.Icon{c<<Canvas{x<<30,y<<10,
w<<10,h<<10}};
E.Icon{c<<Canvas{x<<50,y<<10,
w<<10,h<<10}};
cl.Line (sx<<20,sy<<15,
dx<<30,dy<<15);
c2.Line (sx<<40,sy<<15,
dx<<50,dy<<15);
c.Rectangle (0,0, 70,30);
end;
end Diagram;

implementation:

[..]

section Documentation:

[..]

section Simulator:

[..]

end Machine;

Example 8. An implementation of a diagram

The “GraphicalModel” involves another key-concept of
Sol. The language enables the modeler to define models
also as member-models in the interface section. When
instantiated, these models belong to their corresponding
instance and are therefore not independent. This means
that the Diagram or Icon model always refer to their
corresponding super-instance. Consequently, they also
have access to all the relevant parameters and can adapt.

Please note, that the resulting GUI-models are
potentially much more powerful than their annotation-
based counterparts in Modelica. All the modeling power
of Sol is now also available for the graphical models. For
instance, only a minimal effort is needed to make the look
of an icon adapt to the values of a model-parameter. No
further language construct would be required. A model
could even feature “active” icons that display the current
system-state and hence enable a partial animation of the
system within the diagram-window. Even the structural
change of the machine-model could be made visible in the
diagram during the simulation. Such extensions (if desired
or not) become now feasible and demonstrate the
flexibility of this approach.

However, the provided examples are merely a
suggestion and represent just one possible and convenient
solution within the framework of Sol. There are also
many other language constructs that would lead to
feasible or even more general solutions. Many of them
could easily be integrated into equation-based languages.
Some of them are featured in Sol. With respect to
Modelica, this is unfortunately not the case yet.

4. Conclusion

Handling complexity in a convenient manner and
organizing modeling knowledge in a proper form have
always been primary motivations for the design of
modeling languages. The introduction of object-oriented
mechanism has yield to a remarkable success and
drastically simplified the modeling of complex systems.
Object-orientation essentially enabled the modeler to
break models into different levels of abstraction. Hence,
the knowledge could be organized with respect to depth.

However, certain models combine many different
aspects that have to be linked together at a top level. Here
the knowledge needs to be organized with respect to
breadth. For those tasks, current mechanisms in EOO-
languages are underdeveloped.

This paper focuses on four conceptual language
constructs for EOO-languages that in combination
drastically increase the ability to deal with multiple
aspects. These are:

1. Environment-packages that enable the aspect-
specific declaration of interfaces.

Anonymous declarations of model instances.

Sections can be used to form semantic entities and
control visibility.

4. Referencing mechanisms between model-instances.
(In Sol, these mechanisms are provided by giving
model-instances a first class status and enabling so-
called member-models.)

The proposed constructs have been implemented in our
experimental language Sol and their application is
demonstrated by a set of corresponding examples. The
resulting advantages of this approach are manifold:

e The methods how to address a potential environment
are made available within the language. The modeler
may browse through the provided functionalities like
she or he is used to do it for standard libraries.

e The existing object-oriented mechanisms can be
applied on these environment-models. Hence the
modeler can customize the interface for its personal
demands and is not constrained to a predefined
solution.

® Anonymous declarations enable a convenient usage
of these models, anywhere in the implementation.
The resulting statements are naturally readable and
integrate nicely into the primary, equation-based part.

e User-defined sections help to organize the model and
offer an excellent way to filter for certain modeling
aspects. Uninteresting information may consequently
be hidden without hindering the editing of the code.
The filtering criteria are not based on syntax
anymore, there are based on semantic entities that
have been formed by the modelers themselves.
Furthermore sections enable a clear separation of
computer generated modeling code.

33

e The embedment into an existing object-oriented
framework enables a uniform approach for a wider
range of modeling aspects. Furthermore, it increases
the interoperability between these aspects.

However, the most important conclusion is that the ability
of the language to help and to extend itself by its own
means has been drastically improved with respect to other
languages like Modelica. Further development is now
possible within the language does not require a constant
update and growth of the language definition.

Appendix

The following listing of rules in extended Backus-Naur
form (EBNF) presents an updated version of the core
grammar for the Sol modeling language. The rules are
ordered in a top-down manner listing the high-level
constructs first and breaking them down into simpler
ones. Non-terminal symbols start with a capital letter and
are written in bold. Terminal symbols are written in small
letters. Special terminal operator signs are marked by
quotation-marks. Rules may wrap over several lines.

The inserted modifications concern solely the
modeling of multiple aspects. With respect to a prior
version of the grammar [13], the changes are minor and
concern only 3 rules: ModelSpec, Statement and Section.

Listing 1: EBNF-Grammar of Sol

Model = ModelSpec Id Header

[Interface] [Implemen] end Id ";"
ModelSpec = [redefine | partial | environment]

(model | package | connector | record)
Header = {Extension} {Define} {Model}
Extension = extends Designator ";"
Define = define (Const | Designator) as Id ";"
Interface = interface ":" {(IDecl | ParDecl) *;"} {Model}
ParDecl = parameter Decl
IDecl = [redelcare] LinkSpec [IOSpec] [CSpec] Decl
ConSpec = potential | flow
10Spec = in|out
Implemen = implementation ":" StmtList
StmtList = [Statement {";" Statement }]
Statement = [Section | Condition | Event |

Declaration | Relation]

Section = section Designator ":" StmtList end [section]
Condition = if Expression then StmtList ElseCond
ElseCond = (else Condition) | ([else then StmtList] end [if])
Event = when Expression then StmtList ElseEvent
ElseEvent = (else Event)|([else then StmtList] end [when]
Declaration = [redeclare] LinkSpec Decl
LinkSpec = static | dynamic
Decl = Designator Id [ParList]
Relation = Expression Rhs
Rhs = ("="|"<<"|"<-") Expression
ParList = "{"[Designator Rhs {"," Designator Rhs }] "}"
InList = "("[Designator Rhs {"," Designator Rhs }] ")"

Expression Comparis {(and|or) Comparis }

Comparis = Term [("<"|"<="|"=="|"<>"|">="|">")Term)]
Term = Product {("+"|"-") Product }
Product = Power {("™"|"/") Power }
Power = SElement {"\" SElement }
SElement = ["+"|"-"|not]Element
Element = Const | Designator [InList] [ParList]
| "(" Expression ")"
Designator = Id{""Id}
Id = Letter {Digit | Letter}
Const = Number | Text | true | false
Number = ["+"|"-"] Digit { Digit }
["." {Digit }] [e ["+"|"-"] Digit { Digit }]
Text = "\""{any character} "\""
Letter = "a"| . A
Digit = "0"|..]"9"
Acknowledgements

I would like to thank Prof. Dr. Francois E. Cellier for his
helpful advice and support. This research project is
sponsored by the Swiss National Science Foundation
(SNF Project No. 200021-117619/1).

References

[1] PJ. Ashenden, G.D. Peterson, and D.A. Teegarden. The
System Designer’s Guide to VHDL-AMS Morgan
Kaufmann Publishers. 2002.

[2] P.I. Barton and C.C. Pantelides. Modeling of Combined
Discrete/Continuous Processes. American Institute of
Chemical Engineers Journal. 40, pp.966-979, 1994.

[3] D. A. van Beek and J.E. Rooda. Languages and
Applications in Hybrid Modelling and Simulation:
Positioning of Chi. Control Engineering Practice, 8(1),
pp.81-91, 2000.

[4] Rod Burstall. Christopher Strachey - Understanding
Programming Languages. Higher-Order and Symbolic
Computation 13:52, 2000.

[5] J.A. Clabaugh, ABACUSS II Syntax Manual, Technical
Report. Massachusetts Institute of Technology.
http://yoric.mit.edu/abacuss2/syntax.html. 2001.

[6] Peter Fritzson. Principles of Object-oriented Modeling and
Simulation with Modelica 2.1, John Wiley & Sons, 897p.
2004.

[71 C.A.R. Hoare. Hints on Programming Language Design
and Implementation. Stanford Artificial Intelligence Memo,
Stanford, California, AIM-224, 1973.

[8] Modelica® - A Unified Object-Oriented Language for
Physical Systems Modeling Language Specification
Version 3.0. Available at www.modelica.org .

[9] Thomas L. Quarles. Analysis of Performance and
Convergence Issues for Circuit Simulation. PhD-
Dissertation. EECS Department University of California,
Berkeley Technical Report No. UCB/ERL M89/42, 1989.

[10] Peter Schwarz, C. ClauBl, J. Haase and A. Schneider.
VHDL-AMS und Modelica - ein Vergleich zweier
Modellierungssprachen. Symposium Simulationstechnik
ASIM2001, Paderborn 85-94, 2001.

[11] Ansoft Corporation: Simplorer
Avaiable at: http://www.simplorer.com .

[12] Verilog-AMS Language Reference Manual Version 2.2
Available at hitp://www.designers-guide.org/VerilogAMS/ .

[13] Dirk Zimmer. Introducing Sol: A General Methodology for
Equation-Based Modeling of Variable-Structure Systems.
Proceedings of the 6th International Modelica Conference,
Bielefeld, Germany, Vol.1 47-56, 2008.

[14] Dirk Zimmer. Enhancing Modelica towards variable
structure systems. Proceedings of the st International
Workshop on Equation-Based Object-Oriented Languages
and Tools, Berlin, Germany, 61-70, 2007.

Biography

Dirk Zimmer received his MS
degree in computer science from
the Swiss Federal Institute of
Technology (ETH) Zurich in 2006.
He gained additional experience in
Modelica and in the field of
modeling mechanical systems
during an internship at the German
Aerospace Center DLR 2005. Dirk
Zimmer is currently pursuing a
PhD degree with a dissertation
related to computer simulation and modeling under the
guidance of Profs. Francois E. Cellier and Walter Gander.
His current research interests focus on the simulation and
modeling of physical systems with a dynamically
changing structure. He is also interested in topic of
language-design and processing.

Beyond Simulation: Computer Aided Control System Design Using
Equation-Based Object Oriented Modelling for the Next Decade

Francesco Casella!

Filippo Donida®

Marco Lovera'

IPolitecnico di Milano, Dipartimento di Elettronica e Informazione, Italy
{casella,donida, lovera}l@elet.polimi.it

Abstract

After 20 years since their birth, equation-oriented and
object-oriented modelling techniques and tools are now
mature, as far as solving simulation problems is concerned.
Conversely, there is still much to be done in order to pro-
vide more direct support for the design of advanced, model-
based control systems, starting from object-oriented plant
models. Following a brief review of the current state of
the art in this field, the paper presents some proposals for
future developments: open model exchange formats, auto-
matic model-order reduction techniques, automatic deriva-
tion of simplified transfer functions, automatic derivation
of LFT models, automatic generation of inverse models for
robotic systems, and support for nonlinear model predictive
control.

Keywords Control system design, symbolic manipula-
tion, model order reduction, CACSD.

1. Introduction

Control system engineering requires to master the dynam-
ics of plants which are in general complex, interacting,
multi-physics and multi-disciplinary. This explains why
object-oriented modelling (OOM) and a-causal, equation-
based, object-oriented languages (EOOL) always had a
very strong connection with control system design. It is
by no means accidental that much pioneering work in the
OOM field was carried out within systems and control
departments and research groups: consider, for example,
the Omola language and the associated OmSim simula-
tion environment, developed at the Department of Auto-
matic Control of Lund Technical University [29, 30, 4], or
the MOSES environment developed at the Dipartimento di
Elettronica of Politecnico di Milano [26, 9]. During the *90,
OOM was considered a very promising tool for Computer
Aided Control System Design (CACSD), and there was a

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkoping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:

http://www.eoolt.org/2008/

35

lot of activity in this field, which eventually culminated in
the development of the Modelica Language [32].

At the beginning of that decade, papers appeared on the
subject in the IEEE’s Control Systems Magazine [31, 10],
which discussed the potential of OOM for control sys-
tem design. Reading those papers in retrospect shows that
some of the promises where actually met or even exceeded:
OOM is now a mature field, both from a theoretical side
and from the point of view of available simulation tools.
On the other hand, much work still has to be done on
two fronts. The first one, which has a more “political”
nature, is spreading the OOM culture among in the con-
trol engineering community, which is still largely domi-
nated by block-oriented modelling, and by the (mis)use of
Matlab/Simulink for physical systems modelling; this chal-
lenge is of paramount importance, but it out of the scope
of this paper. The second one, instead, is to develop tools
which allow to use EOOL models and tools not only for
simulation, but also for the design of advanced control sys-
tems. The availability of such tools is crucial in order to
narrow the gap between the large body of highly sophis-
ticated control theory developed during the last 20 years,
and the application of this theory to real-life cases, beyond
textbook-sized examples. This is the topic of the present
paper.

Given the background and the past experience of the
authors, the discussion might be biased towards the Mod-
elica language and related tools. However, strictly object-
oriented features such as inheritance, encapsulation and hi-
erarchical composition do not play any significant role in
the analysis and proposals made within this paper, which
essentially focuses on transformations of flattened models.
On the contrary, the discussion is relevant for any equation-
based modelling language, provided that it is a-causal and it
allows symbolic manipulation of the equations by the com-
piler.

The paper is structured as follows: Section 2 gives a
high-level view of the modelling activities required for con-
trol system design, while the following Section 3 discusses
how currently available tools can help the control engineer
in his/her task, with particular reference to Modelica tools.
Sections 4 and 5, which are the core of the paper, pro-
pose several research and development directions to sub-
stantially increase the level of support to the control en-

gineer, willing to apply advanced control theory to real-life
problems. Section 6 concludes the paper with final remarks.

2. The role of mathematical models in
control system design

The design of control systems always requires some knowl-
edge about the dynamic behaviour of the plant under con-
trol. When the plant design is mature and well-known,
and the control system design is based on Proportional-
Integral-Derivative (PID) controllers, the latter is often
based on past experience and possibly on some empirical
measurements. In this case, which covers the vast majority
of installed industrial controllers, no (explicit) dynamical
modelling is needed.

On the other hand, in an increasing number of cases, the
performance of the control system is becoming a key com-
petitive factor for the success of innovative, high-tech sys-
tems. To name a few examples, consider high-performance
mechatronic systems (such as robots), vehicles enhanced
by active integrated stability, suspension, and braking con-
trol, aerospace system, advanced energy conversion sys-
tems. All these cases possess at least one of the following
features, which call for some kind of mathematical mod-
elling for the design of the control system:

e closed-loop performance critically depends on the dy-
namic behaviour, which is not well-known in advance;

e the system is complex, made of many closely interact-
ing subsystems, so that the behaviour of the whole sys-
tem is more than just the sum of its parts;

e advanced control systems are required to obtain com-
petitive performance, and these in turn depend on ex-
plicit mathematical models for their design;

e the system is very expensive and/or safety critical, re-
quiring extensive validation of good control perfor-
mance by simulation.

In most of these cases, two different classes of mathemati-
cal models are derived: compact models for control design
and detailed models for system simulation.

2.1 Compact models for control design

Models belonging to this class are directly used for con-
troller design, and are usually formulated in state-space

form:

() = f(z(t), u(t),p,1)

y(t) = g(z(t), u(t),p, 1)
where x is the vector of state variables, u is the vector of
system inputs (control variables and disturbances), y is the
vector of system outputs, p is the vector of parameters, and
t is the continuous time. A special case is that of linear,
time-invariant models (LTT), which can be described as:

(D

#(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t))
or, equivalently, as a transfer function:
G(s)=C(sI — A)"'B+D. 3)

36

In many cases, the dynamics of systems in the form (1) is
approximated by (2) via linearization around some equilib-
rium point. There is also a vast body of advanced control
techniques which are based on discrete-time models:

{,C(k + 1) = f(ac(k),u(k),p, k)
y(k) = g(z(k), u(k), p, k)

where the integer time step k usually corresponds to the
sampling time 7 of a digital control system. Many tech-
niques are available to transform (1) into (4).

These models must capture the fundamental dynamics
which is relevant for control system performance, while
remaining as simple as possible: most advanced control
design techniques start to become intractable for systems
of order greater than about ten. If the models are simple
enough, it is also sometimes possible to express the de-
pendence of key dynamic features (such as, e.g., the natu-
ral frequency and damping coefficient of an oscillating dy-
namics) from plant design data. This can be very important
to assess the impact of physical system design decisions
on controller performance. For example, if the natural fre-
quency of the first mode of oscillation limits the controller
bandwidth, and it is found that this frequency mainly de-
pends on the stiffness of a certain mechanical component,
then it might be reasonable to change the mechanical de-
sign of that component in order to improve the overall per-
formance.

In order to derive such simple models, it is usually
necessary to introduce many, sometimes drastic, simplify-
ing assumptions: all those phenomena that only marginally
affect the equilibrium values and/or the control-relevant
dynamics of the system are neglected. This activity re-
quires highly skilled and experienced modellers, with a
good knowledge of control design techniques, as well as
of domain-specific strategies for model simplification.

“

2.2 Detailed models for system simulation

At the other end of the modelling spectrum, detailed sim-
ulation models can be found. Although it is always neces-
sary to make reasonable modelling assumptions (a model
is always a focused and limited description of the physi-
cal world), simulation models can include a lot more detail
and second-order effects, since modern CPUs and simula-
tion environments can easily handle complex systems with
(tens of) thousands of variables. It is well-known that OOM
methodologies and EOOLSs provide very good support for
the development of such models, thanks to equation-based
modelling, a-causal physical ports, aggregation and inher-
itance. If the OOM model does not contain discrete vari-
ables and events, then it is basically equivalent to the set of
DAE:s:

Fa(t), &(t), ut), y(t),p, t) = 0 ©)

Many EOOLs and tools also allow to describe hybrid sys-
tems, with discrete variables, conditional equations or ex-
pressions, and events. For example, see [7, 8] and refer-
ences therein for hybrid system descriptions based on hy-
brid automata, or the Modelica language specification [41],
in particular Appendix C. Although hybrid system control

is an interesting and emerging field, for the sake of concise-
ness this paper will focus on purely continuous-time phys-
ical models, with application to the design of continuous-
time or sampled-time control systems.

These larger, more detailed models play a double role,
with respect to those described in the previous sub-section.
On one hand they allow to check how good (or crude) the
compact models is, compared to a more detailed descrip-
tion, thus helping to develop good compact models. On
the other hand, they allow to check the closed-loop perfor-
mance of the controlled system, once a controller design is
available. It is in fact well-known that validating the closed-
loop performance using the same simplified model that was
used for control system design is not a sound practice; con-
versely, validation performed with a more detailed model is
usually deemed a good indicator of the control system per-
formance, whenever experimental validation is not possible
for some reason.

3. Overview of current CACSD practice
with EOOLs

As of today, the practising control engineer already gets
much support from EOOL-based tools for his/her control
system design activities.

3.1 Support to control system synthesis

A typical starting point for the design of the control system
is the analysis of the linearized dynamics of the plant,
around one (or more) steady-state operating conditions.
If the EOOL tool only supports simulation, then one can
run open-loop simulations of the plant model, subject to
step or to, e.g., pseudo-random binary sequence inputs,
and then reconstruct the dynamics by system identification
procedures.

A more direct approach, supported by many tools, is to
directly compute the A, B, C, D matrices of the linearized
system around specified equilibrium points, using symbolic
and/or numerical techniques. The result is usually a high-
order linear system, which can then be reduced to a low-
order system by standard techniques for linear model order
reduction, such as, e.g., balanced truncation.

A non-trivial issue with both approaches is the compu-
tation of the equilibrium point (what is sometimes called
DC analysis in the field of electrical circuit simulation). In
a typical setting, the desired steady-state values of the out-
puts ¢ are known, and the tool must solve the steady-state
initialization problem for the system (5):

F(z,0,u,y,p,0) =0 (6)
in order to find out the corresponding equilibrium values
of the inputs « and of the states Z. This problem can be
numerically challenging, because it often requires solving
large systems of coupled nonlinear equations by iterative
methods, which might fail if the iteration variables are not
properly initialized. Currently available OOM tools (and,
in particular, Modelica tools) are still far from providing
general robust solutions to this problem. A sub-optimal
approach to find equilibrium points is to initialize system

37

(5) by giving tentative initial values to the state variables
(which makes the initialization problem easier to solve)
and then to simulate it until it reaches a steady state. If the
system is asymptotically stable and the inputs % are known,
this is relatively straightforward; otherwise, it is necessary
to add suitable feedback controllers to drive the outputs to
the desired values ¢ and/or to stabilize the system. In both
cases, the simulation of this initialization transient might
fail for numerical reasons before reaching the steady state,
due to a bad choice of the initial states.

3.2 Closed-loop performance assessment by
simulation

Regardless of the actual design methodology, once the con-
troller has been set up, an OOM tool can be used to run
closed-loop simulations, including both the plant and the
controller model. Many OOM tools provide model export
facilities, which allow to connect an OO plant model with
only causal external connectors (actuator inputs and sensor
outputs) to a causal controller model in a causal simulation
environment. From a mathematical point of view, this cor-
responds to reformulating (5) in state space form (1), by
means of analytical and/or numerical transformations.

3.3 Development of simplified models

The object-oriented approach, and in particular replaceable
components, allows to define and manage families of mod-
els of the same plant with different levels of complexity,
by providing more or less detailed implementations of the
same abstract interfaces. For example, consider a heat ex-
changer model: the abstract interface has four fluid connec-
tors, two for the hot fluid inlet and outlet, and two for the
cold fluid inlet and outlet. The corresponding implementa-
tion might range from a very simple static model based on
log-mean temperatures, with a few algebraic equations, up
to a very detailed finite volume model using nonlinear fluid
properties and empirical correlations for heat transfer, and
with dozens of state variables and a few hundred algebraic
equations.

This feature of OOM allows to develop simulation mod-
els with different degrees of detail (and CPU load) through-
out the entire life of an engineering project, from prelimi-
nary design down to commissioning and personnel train-
ing, within a coherent framework. However, this activity is
based on manual work by the modeller, who needs to de-
velop the different implementations explicitly. Moreover, it
is often not easy to obtain compact models such as (1), be-
cause this requires to apply simplifications that may not fit
well the abstract component boundaries.

3.4 Generation of real-time simulation code

An important step in the development of embedded control
systems is Hardware-In-the-Loop simulation (HIL), where
the real control hardware is tested by connecting it to a real-
time simulator, instead of the real plant. Many currently
available EOOL-based tools support automatic generation
of efficient real time code starting from fairly large simu-
lation models in the form (5). A common strategy for this
purpose is to apply inline integration [12, 11] to (5), i.e. to

substitute the derivatives with their approximation formu-
lae (e.g. Euler’s formula), and then solve the system using
all available numerical and symbolic techniques.

In order to provide real-time code which is fast enough,
it is usually important to reduce the model complexity with
respect to off-line simulation models - this can be done by
following the approach sketched in Section 3.3.

3.5 Optimization

Some EOOL and tools support some kind of optimization,
which might be useful for control system design. For ex-
ample, the gPROMS language [6] has allowed to declare
mixed-integer nonlinear optimization problems for a long
time. More recently, extensions to the Modelica language
were proposed to formulate optimization problems [2].

3.6 Future perspectives

It is the authors’ view that EOOL-based tools should sup-
port advanced control system design problems in a much
more direct way, by making extensive use of control-
oriented symbolic manipulation techniques. Ideally, it
would be good if the control engineer could develop a de-
tailed simulation model by using object oriented tools and
re-usable model libraries, then automatically obtain sim-
plified, compact models which are already formulated as
required by the specific control technique. The availability
of such tools might promote the application of advanced,
model-based techniques that are currently limited by the
model development process.

Being aware that this is a very long-term goal, which
might even require some kind of artificial intelligence,
some first steps in this direction are discussed in the fol-
lowing sections, with particular reference to the Modelica
language and Modelica compliant tools.

4. Basic enabling technologies

The advanced, control-oriented features of future EOOL
tools need some basic enabling technologies and method-
ologies to build upon. These are briefly discussed in this
section.

4.1 Open standards for model and data exchange

Advanced applications of OOM to control system design
will most likely require to use different specialized tools
in a coordinated fashion, rather than relying on one-fits-
all comprehensive software tools. In fact, during the last
decades, the number and the quality of simulation, design
and analysis tools has increased enormously: there is plenty
of open and closed source software for the simulation of
physical systems, control synthesis, data analysis, test, val-
idation, personnel training via a graphical user interface,
etc. Some of these tools are developed for specific pur-
poses, while other are more general in scope (e.g., sym-
bolic manipulation tools, differential equation solvers, data
analysis packages). Unfortunately, all this software devel-
opment activity did not follow any standardisation process,
leading to a great diversity in the representation of the in-
formation. The definition of standard interfaces will be use-
ful for the information exchange between different applica-

38

tions; as a consequence, by providing a representation for
all the stages of the model manipulation (starting from the
translation, going to the flattening, to the model order re-
duction and so forth) it will be possible to make all the ap-
plications interact at different levels, thus combining posi-
tive effects from different applications and obtaining better
results.

Exchange formats for model equations and for simula-
tion data should probably be based on the XML language,
for several reasons:

e the tree structure of XML documents easily allows to
represent complex data structures, including symbolic
representations of equations;

e XML documents can be read with standard text-editors
and browsers, thus avoiding all the problem usually
raised by obscure, ad-hoc binary formats;

e there exists a large base of software (open source and
commercial) for the handling of XML files;

e by re-using this existing software, it is quite straight-
forward to translate an XML document representing a
mathematical model into any other equation-based lan-
guage, and vice-versa;

¢ binary XML formats can be used to reduce the verbosity
of XML documents and the cost of parsing them;

e there exist some languages (e.g. DTD and XSD) to
formally specify the structure of the information the
XML file must contain.

Such standard interfaces for flattened Modelica models
and their corresponding simulation data are currently being
investigated at Politecnico di Milano using the OpenMod-
elica compiler [16, 1] as a host EOOL environment, and
symbolic manipulation tools such as Mathematica, Maple
or Maxima as target environments. If the model is purely
continuous-time, i. e., it is equivalent to the DAE (5), then
MathML [42] on one side, and ModelicaXML [35] on the
other side might constitute good starting points. If hybrid
models are considered, one may consider all the languages
developed for the description of hybrid automata in re-
cent years [8], even though the class of hybrid systems
which can be described in Modelica with when statements
is larger than just hybrid automata.

4.2 Model Order Reduction

Another key enabling technology is represented by mixed
numerical-symbolic Model Order Reduction (MOR) tech-
niques. These have already been successfully applied to the
analysis of electrical circuit models, which are based on
DAE models such as (5), see [40, 17], and are currently
available in commercial tools such as Analog Insydes [13].
The MOR strategies are based on the clever application of
three fundamental steps:

e specify an allowed error bound, e.g. in terms of per-
centage error of certain steady-state output values cor-
responding to given constant inputs, or in terms of max-
imum deviation of some outputs from a reference tra-
jectory obtained with given input signals, or in terms

of maximum error of small-signal frequency responses
around a certain operating point and within a given fre-
quency interval;

e derive a ranking of all terms in all equations, expressing
how much each term has a significant effect on the
required modelling accuracy;

e remove all terms in ascending order, until the specified
error bound is reached.

Other MOR techniques exist to reduce large linear sys-
tems, based on concepts such as modal analysis and pro-
jection methods; see [38] for a comprehensive overview.

The application of such MOR tools and techniques, pos-
sibly with extended functionality and algorithms, looks
very promising not only for the simplification of electrical
circuit models, but also for the order reduction of generic,
nonlinear DAE models, obtained from the flattening of
generic EOOL models. This kind of techniques should al-
low to automatically obtain approximated compact models
such as (1), starting from much more detailed simulation
models, by formulating specific approximation bounds in
control-relevant terms (e.g., percentage errors of steady-
state output values, norm-bounded additive or multiplica-
tive errors of weighted transfer functions, or ¢,,-norm er-
rors of output transients in response to specified input sig-
nals). Given the ever-increasing computation power that
can be expected by Moore’s law, the future of these tech-
niques for CACSD applications definitely appears bright.

4.3 Reliable steady-state initialization and static
model inversion

A reliable support to the control engineer’s activity requires
to improve the techniques to solve the steady-state equa-
tions (6), which are usually the starting point for any kind
of analysis, including MOR. As pointed out earlier, solv-
ing (6) requires iterative methods which might fail if not
properly initialized. Troubleshooting can be very frustrat-
ing and time-consuming, and calls for experts of both sim-
ulation methods and domain-specific models. This is not
acceptable in the envisioned framework, which is based on
automatic manipulation by EOOL tools.

One option, which is currently being investigated at Po-
litecnico, is to introduce extensions to the Modelica lan-
guage to support homotopy methods, in a way similar to
the approach followed by the SPICE circuit simulation pro-
gram. The basic idea is that each model has two versions:
the “easy” one, for which it is easier to find a steady-
state solutions, and the “true” version, which is the model
to be actually used for simulation. The two models share
the same variables, but use different equations. The system
model obtained by the aggregation of the “easy” models is
represented by

Fe(%@%%?ﬁ) =0, (7N
while the aggregation of the “true” models leads to
Ft(xajjayvu7p’t)zo7 (8)

The idea is now to first solve the initialization problem
for (7), which should not give rise to significant numerical

39

problems. The solution to this simplified problem consti-
tutes the first guess for a new problem:

(1 70‘)F€("f707ﬂvgap7 O) +OlFt(i’,0,72,g7p, 0) = Oa (9)

which will be solved by varying o from O to 1 in small
steps, eventually finding the steady-state solution of system
(8). In general, this approach should help to reduce (and
hopefully eliminate) the need to manually set initial guess
values for iteration variables of initialization problems.

5. New functionalities for control system
design
5.1 Simplified symbolic transfer functions

In many interesting cases, the performance of the control
system is limited by the dynamic behaviour of the con-
trolled plant. For example, poorly damped oscillations can
limit the bandwidth of motion control systems, as well as
non-minimum phase behaviour. The control engineer can
gain a lot of useful insight from approximated transfer
functions, where the dependence of the critical dynamic
features from a few physical parameters is clearly visible.
For instance, the natural frequency of a pair of complex
poles in a mechanical system might depend mainly on the
stiffness and on the mass of a certain physical component,
or, the time constant of a right-half-plan zero in a fluid sys-
tem might depend on the fluid velocity in a certain point.

This is a first case where automatic MOR techniques
could prove extremely useful. Ideally, the user should spec-
ify the steady-state operating point, the relevant inputs and
outputs, and some frequency-weighted error bounds, and
get low-order approximated transfer functions of the lin-
earized system, with approximated but explicit dependence
of the transfer function features (gains, poles and zeros)
from the physical model parameters. A suitable combina-
tion of EOOL tools (equipped with model import/export
interfaces) with existing MOR tools like Analog Insydes
[13] could provide very interesting results in this direction
without too much effort.

5.2 Automatic derivation of LFT models

Once a model has been reduced to a low-order state-space
form by the combined application of symbolic MOR tech-
niques and clever model simplifications as explained in
Section 3.3, it might be useful to automatically bring them
in the form required for advanced control system design,
using symbolic manipulation tools. Modern control theory
provides methods and tools in order to deal with design
problems in which stability and performance have to be
guaranteed also in the presence of model uncertainty, both
for regulation around a specified operating point and for
gain scheduled control system design.

Most of the existing control design literature assumes
that the plant model is given in the form of a Linear Frac-
tional Transformation (LFT) (see, e.g., [46, 27]), a mod-
elling paradigm which is currently an active research topic
in the control engineering and system identification com-
munities. In the robust control framework LFT models con-
sist of a feedback interconnection between a nominal LTI

plant and a (usually norm-bounded) operator which rep-
resents model uncertainties, e. g., poorly known or time-
varying parameters, nonlinearities, etc. A generic such LFT
interconnection is depicted in Figure 1, where the nominal
plant is denoted with P and the uncertainty block is de-
noted with A. Note that this representation is extremely
general, and by no means limited to uncertain LTI systems;
in fact, it is possible to describe any nonlinear DAE system
by putting all the nonlinear functions in the A block and
by providing an LTI model with direct feedthrough terms
to describe the algebraic equations.

LFT models can be used for the design of robust and
gain scheduling controllers, but they can also serve as a
basis for structured model identification techniques, where
the uncertain parameters that appear in the feedback blocks
are estimated based on input/output data sequences.

The process of extracting uncertain parameters from the
design model of the system to be controlled is a highly
complex one. Symbolic techniques play a very important
role in this process: the main use for such techniques is
to find, via suitable pre-processing steps, equivalent rep-
resentations of rationally dependent parametric matrices,
which automatically lead to lower-order LFT representa-
tions. Tools already exist to perform this task [27].

The LFT modelling problem in its simplest form is as-
sociated with the problem of designing a controller for op-
eration near a nominal operating point for the system. The
problem is then formulated on a local linearised represen-
tation of the plant to be controlled and is familiarly termed
“pulling out the As”, i.e., it consists of manually or sym-
bolically manipulating the linearised equations in order to
separate the nominal part of the plant from the uncertain
one, arranging them in a suitable feedback interconnection.
This reformulation of the plant model lies at the vary basis
of modern robust control theory and is currently supported
by a number of different symbolic manipulation tools. A
recent overview of the state-of-the-art in this research area
can be found in [18]. As an example, consider a time-
invariant, nonlinear state-space system in the form

@(t) = f(a(t),u(t),p)
y(t) = g(x(t),u(t),p),

where p denotes a vector of uncertain parameters, and as-
sume that the equilibrium condition Z, @, ¥, which solves
the steady-state equations

(10)

0= f(z,u,p) T
g:g(‘iaa»p) ()
u_ —= P oy

Figure 1. Block diagram of the typical LFT interconnec-
tion adopted in the robust control framework.

40

is available. Defining now the deviation variables

dx(t) =x(t) — T (12)
du(t) =u(t) —u (13)
dy(t) =y(t) — v, (14)

it is possible to approximate the dynamics of (10) with a
the following linear, parameter-dependent system

ox(t) = A(p)dz + B(p)ou

5y(t) = C(p)ox + D(p)ou (1

where the four matrices A, B, C, D are the Jacobians of the
two functions f and g:

0

A(p) = 87;];7 B(p) = %
0

Clp) = Tai’ D(p) = 52

Under suitable assumptions (such as that the state space
matrices are polynomial or rational functions of the ele-
ments of p, see, e.g., [46]) it is possible to transform the
system description (15) into an LFT representation (see,
again, Figure 1). As mentioned previously, converting (15)
into an LFT with a A block of minimum dimension is a
non-trivial symbolic manipulation problem.

An even more challenging formulation of the LFT mod-
elling problem is the one of simultaneously representing in
LFT form all the linearisations of interest for control pur-
poses of the given nonlinear plant. Indeed, in many control
engineering applications a single control system must be
designed to guarantee the satisfactory closed-loop opera-
tion of a given plant in many different operating conditions
in the presence of parametric and possibly non parametric
uncertainty. The gain scheduling approach to the problem,
which has been part of the engineering practice for decades,
can be roughly summarised as follows: find one or more
scheduling variables o which can completely parametrise
the operating space of interest (e.g., the flight envelope in
the case of aircraft control) for the system to be controlled;
define a parametric family of linearised models for the plant
associated with the set of operating points of interest; fi-
nally, design a parametric controller which can both en-
sure the desired control objectives in each operating point
and an acceptable behaviour during (slow) transients be-
tween one operating condition and the other. Many design
techniques are now available for this problem (see, e.g.,
[5, 22, 37]), which can be reliably solved, provided that
a suitable model in parameter-dependent form has been de-
rived for the system to be controlled. The goal here would
be to arrive at a representation of the dynamics of the non-
linear system in the form depicted in Figure 2, which is
usually denoted as an LPV-LFT system, where the LPV
acronym stands for Linear Parameter-Varying. The model
structure now includes two feedback interconnections: the
block A(p) takes into account the presence of the uncertain
parameter vector p, while the block O(«) models the effect
of the varying operating point, parametrised by the vector
of time-varying parameters c.

The state-of-the-art of modelling for gain scheduling
can be briefly summarised by defining two classes of mod-
elling approaches: analytical methods based on the avail-
ability of (relatively) reliable nonlinear equations for the
dynamics of the plant, from which suitable control-oriented
representations can be derived (see, e.g., [28] and the ref-
erences therein); experimental methods based entirely on
identification, i.e., aiming at deriving LPV models for the
plant directly from input/output data (see, among many
others, [21, 45, 23]). The methods belonging to the first
class aim at developing LPV models for the plant to be
controlled by resorting to, broadly speaking, suitable ex-
tensions of the familiar notion of linearisation, developed
in order to take into account off-equilibrium operation of
the system. As far as experimental methods are concerned,
most LPV identification techniques are based on the as-
sumption that the identification procedure can rely on one
global identification experiment in which both the control
input and the scheduling variables are (persistently) excited
in a simultaneous way. This assumption may not be a rea-
sonable one in many applications, in which it would be
desirable to try and derive a parameter-dependent model
on the basis of local experiments only, i.e., experiments in
which the scheduling variable is held constant and only the
control input is excited. Such a viewpoint has been consid-
ered in [43, 34, 23], where numerical procedures for the
construction of parametric models for gain scheduling on
the basis of local experiments and for the interpolation of
local controllers have been proposed.

To our best knowledge the only documented attempt at
deriving control-oriented LFT models automatically from
a nonlinear simulator is presented in [44], where the fo-
cus was on the automatic generation of LFT models for
aerospace applications. Much remains to be done. An
EOOL-based CACSD tool dealing with the generation of
control-oriented LFT models should allow to specify some
error bounds for the system approximation (with respect to
steady-state, transient, and frequency response), the choice
of input, output and scheduling variables, and the choice of
parameters to include in the LFT representation. Based on
that, it should be able to automatically compute the struc-
ture of the interconnections defined in Figures 1 and 2 for
the robust and gain-scheduling control design problems,
respectively, the state-space matrices of the nominal part P
of the model (either as analytical expressions, if possible,
or at least as algorithms for their computation) and analyt-

|

Figure 2. Block diagram of the typical LFT interconnec-
tion adopted in the robust LPV control framework.

41

ical or algorithmic representations of the feedback blocks
©(«) and A(p). Finally, it is apparent from the short liter-
ature review presented above that currently only physical
and black-box modelling methods are available, while no
general purpose CACSD tools capable of combining first
principles models and experimental data in a single control-
oriented model seem to exist. The convergence of the two
modelling approaches both in terms of methods and tools
would be a very desirable outcome of the research in this
field.

5.3 Automatic computation of inverse models for
robotic systems

The design of controllers for non-redundant robotic ma-
nipulators with NV degrees of freedom usually starts from
the equations of motion obtained from the Euler-Lagrange
equations [39]:

B(q)i+ H(q,4)d+g(q) =7 (16)
yp = K(q (17)

0K .
Yv = qu, (18)

where ¢ is the N-element vector of Lagrangian coordi-
nates, which usually correspond to the rotation angles of
the actuator motors, ¢ is the vector of the corresponding
generalized velocities, ¥, describes the position and ori-
entation vector of the end effector, y, contains the corre-
sponding generalized velocities, 7 is the vector of general-
ized applied forces corresponding to each degree of free-
dom (usually the torques applied by rotating actuators),
B(q) is the inertia matrix, H (g, ¢) is the matrix correspond-
ing to the centripetal, Coriolis, and viscous friction forces,
while the vector g(q) accounts for the effects of the gravi-
tational field; all vectors have dimension V.

The classical approach to write (16) requires to compute
the so-called direct kinematics (DK), i.e. how the values of
q and ¢ translate into the position and motion of the robot’s
end effector, then to compute the Lagrange function, i.e. the
difference between kinetic and potential energy, and apply
the Euler-Lagrange equations. This can be done manually,
or using one of the specialized tools available for this task.
Equations (16)-(18) can then be used as a basis for both
controller design and system simulation.

Within an OOM approach, it is possible to save much
time by developing an object-oriented model using an
EOOL, e.g. using the Modelica MultiBody library [33].
Due to the kinematic constraints imposed by the joints, the
original flattened model corresponds to an index-3 DAE,

F(z,&,y,u) =0, (19)
which is mathematically equivalent to the Lagrange model
(16)-(18).

Currently available Modelica tools tackle the prob-
lem by applying specialized algorithms, which exploit the
knowledge of the topology of the kinematic chain, as well
as standard techniques such as BLT partitioning, tearing,
dummy derivatives and symbolic solution of equations

Yy

A*

Figure 3. Block diagram of computed torque control

[33]. From a conceptual point of view, a change of state
variables z allows to transform (19) into an index-1 system

Fy(x,2,y,u) =0, (20)
where
~[2]-[5) o-[2]. e

Eventually, efficient procedures are produced to solve (20)
for # and y given z and u, thus actually bringing the system
into state-space form:

y = g(z,u). 22

This formulation can be used to solve simulation problems,
by linking it to any ODE/DAE solver. However, there are
several other interesting things that could be done with
(20), from a control engineer’s perspective.

Robot trajectories are originally defined in terms of
end effector coordinates as functions of time yg (). In or-
der to obtain the corresponding reference trajectories in
Lagrangian coordinates for the low-level robot joint con-
trollers, (17)-(18) must be solved for ¢, ¢, thus computing
the so-called inverse kinematics (IK):

¢ = K 'y

oK\ "
0 _ 0.
qa = <8q> Yo

note that the Jacobian of K(g) is also needed to solve
(23), since analytical inverses cannot usually be obtained.
Furthermore, two interesting approaches to model-based
robot control are based on suitable manipulations of eq.
(16): the pre-computed torque approach and the inverse
dynamics approach [39].

The pre-computed torque approach is a feed-forward
compensation scheme, where the theoretical torque re-
quired to follow the reference trajectory is directly fed to
the torque actuators (see Fig. 3) in order to obtain a good
dynamic response to the set point yg. The CT block per-
forms this task by solving (16) for 7, given the reference
trajectory and its derivatives:

7=B(¢")i" + H(¢",d")i" + 9(¢°).

A feedback controller (FC) is also included to deal with
uncertainties and disturbances.

The inverse dynamics approach is a feedback compen-
sation scheme, that uses the model in order to transform

(23)

(24)

(25)

42

TR R s [o]’ [] T
A A Tt o

Figure 4. Block diagram of inverse dynamics control

the non-linear control problem into a linear, time-invariant
one. Define a virtual input variable v, which satisfies the
following equation
™= Blg)v+ H(q,9)q + 9(a)- (26)
Since the inertia matrix B is structurally non-singular, it is
always possible to solve (26) for v:
v=B"Yq)(r - H(g,9)i—9g(q). @7

Plugging v in the robot dynamics equation (16), one ob-
tains:

§=n. (28)

The block diagram interpretation of these equations is
shown in Fig 4: thanks to the dynamic inversion (DI) block,
the dynamic relationship between the virtual input v and
the Lagrangian positions and velocities ¢ and ¢ (repre-
sented by the dotted block) is now described by a simple
integrator and a double integrator, respectively. It is then
easy to tune a fixed-parameter, linear feedback controller
(FC) in order to obtain the desired closed-loop dynamics.

Starting from the index-1 DAE robot model (20), it is
straightforward to derive the equations and then the explicit
algorithms to compute the DK, IK, CT, and DI, by using the
same techniques employed to bring (20) into state-space
form. The DK (17)-(18) is obtained by solving (20) for y,,
(and possibly y,,) given ¢ (and possibly ¢), while the IK is
obtained by solving (20) for ¢ (and possibly ¢) given y,,
(and possibly y,,); the subset of required equations is found
by suitable analysis of the incidence matrix. The CT (25) is
obtained by solving (20) for 7 given ¢, ¢, and §. Finally,
the DI (26) is obtained by solving (20) augmented with
(26) for T given v, q, and q. EOOL tools should then be
able to automatically generate the code corresponding to
the DK, IK, CT, and DI blocks in two forms: as algorithms
to compute the outputs given the inputs (e.g., C code for
direct inclusion in the robot controller), as well as equation-
based Modelica blocks, which could be used for closed-
loop simulation within a Modelica environment.

As a final remark, note that the method of inverse dy-
namics is a special case of the much more general theory
of feedback linearization [20], whose goal is to obtain a LTI
dynamics made by pure integrators from generic nonlinear
systems, by applying suitable feedback actions as shown
in Figure 4. It could also be interesting to investigate the
coupling between EOOL tools and symbolic manipulation
tools for the design of such controllers.

5.4 Fast and compact models for Model Predictive
Control

The Model Predictive Control (MPC) approach [25, 36] is
based on a few key ideas, that turn the control problem into
an optimization problem. The control variable is a discrete-
time variable, that changes periodically every T seconds:

u(t) =u(k), kTs <t<(k+1)Ts. (29)
At each time step k, an optimization problem is solved,
whose unknowns are the next values of the control variable
u(k + 1) over a finite horizon 1 < ¢ < N. The first sample
u(k + 1) is then applied to the actuators at the next time
step, the rest of the values are discarded, and the process
is repeated over and over, thus implementing a receding
horizon strategy.

There are different ways to formulate the MPC prob-
lem, depending on the specific technique used to solve the
problem. Generally speaking, the figure of merit to be min-
imized is a quadratic function, which suitably weights the
future deviations of the controlled variables from the set
point and the intensity of the control action, as well as any
other problem-specific performance index that has to be
minimized, e.g. the financial cost of running the process.
The constraints of the optimization problem are the dy-
namic relationship between the input and output variables,
typically in the form (4), and possibly other constraints,
such as upper and lower bounds of the state, control and
output variables and of their rate of change.

The main advantage of MPC is its intrinsic ability to
deal with highly interacting multivariable systems (many
control inputs and controlled outputs), while keeping into
account operating constraints such as actuator saturations
or hard bounds on controlled variables, and at the same
time meeting some problem-specific optimality criterion.
The main drawback is the high computational load, since
a (possibly non-linear and non-convex) constrained opti-
mization problem must be solved at each sampling time;
this makes MPC suitable for systems with slow dynamics,
e. g. chemical plants, where there is plenty of time to carry
out the required computations in real time. This limitation
is likely to become less and less stringent in the future,
thanks to Moore’s law.

The second issue is the requirement that a suitable plant
model is available, as the control system performance criti-
cally depends on the model quality. Models for linear MPC
can be obtained either by linearization of analytical models,
or by system identification from experimental and/or simu-
lation data, e. g. step responses; both cases are already sup-
ported by current EOOL tools. Nonlinear MPC (NMPC)
algorithms are preferably based upon analytical models in
state-space form (1), which are derived from physical first-
principles models. The conversion to discrete-time form (4)
is often performed internally by the NMPC algorithm it-
self, by standard ODE integration routines. This means that
the interface between the EOOL tool and the NMPC tool
is similar to the one used for simulation problems, i.e. the
state-space form (1), possibly augmented by the Jacobians
of the right-hand-sides of (1).

43

The main requirement for NMPC-oriented models is
that they must have the least possible number of state and
algebraic variables, in order to keep the complexity of the
optimization problem within acceptable limits, and that
they have good smoothness properties, in order to avoid
convergence problems of the iterative optimization algo-
rithms. The development of those models can be very time
consuming, and require highly skilled manpower; it is ap-
parent how better tool support could be extremely useful in
order to reduce the development effort and cost.

The potential of OOM for MPC was first noted by Ma-
ciejowski at the end of the *90 [24]. There are several re-
ported case studies [14, 15, 3, 19], where the model used in
the NMPC algorithm was derived from a Modelica model
of the physical plant, using the tool Dymola to produce
the code corresponding to the state-space form (1), i.e., the
dsmodel.c code that is usually linked to ODE/DAE solvers.
In order to derive suitably simplified models, the features
of Modelica discussed in Section 3.3 have been extensively
exploited. In general, this approach has proven much more
satisfactory than writing the C-code of the model from
scratch; however, it still requires a substantial investment
of time and effort for each new application.

The application of the automatic MOR techniques de-
scribed in section 4, possibly still combined with some
manual intervention in terms of replaceable models, looks
very promising in order to bring detailed simulation mod-
els into a form which is suitable for NMPC with a much
more limited effort by the developer.

Furthermore, [19] correctly points out that, although
the interface to NMPC algorithms is very similar to the
interface to ODE/DAE solvers, the former requires some
more flexibility. For example, advanced NMPC schemes
can provide on-line estimation of uncertain parameters
through the use of extended or unscented Kalman filters.
This means that some model parameters are no longer con-
stant throughout a transient, so that the C-code obtained
for simulation purposes must be manually adapted. A bet-
ter option would be to implement a code export interface
which makes it possible to turn selected parameters ap-
pearing in (5) (which are going to be estimated on-line)
into inputs, before transforming the system in state-space
form (1).

6. Conclusions

After a brief review of the different uses of models in con-
trol system design, the current state of the art of EOOL-
based tools for CACSD has been reviewed: apparently, cur-
rently available tools mainly focus on simulation tasks.
Several further directions for research and development
in EOOL tools where then discussed, which go beyond
the mere simulation problem. Results in these directions
could substantially improve the level of support to the con-
trol engineer willing to apply advanced, model-based con-
trol techniques to real-life problems, starting from object-
oriented models of the plant.

References

[1] OpenModelica home page. URL: http://www.ida.
liu.se/labs/pelab/modelica/OpenModelica.
html.

[2] J. Akesson. Optimica - An extension of Modelica
supporting dynamic optimization. In Proceedings 6th
International Modelica Conference, pages 57-66, Bielefeld,
Germany, Mar. 3—4 2008.

[3] J. Akesson and O. Slitteke. Modeling, calibration and
control of a paper machine dryer section. In Proceedings
5th International Modelica Conference, pages 411-420,
Vienna, Austria, Sep. 4-5 2006.

[4] M. Andersson, S. E. Mattsson, D. Briick, and T. Schontal.
OmSim - an integrated environment for object-oriented
modelling and simulation. In Proceedings of the IEEE/IFAC
Joint Symposium on Computer-Aided Control System
Design, CACSD’94, pages 285-290, Tucson, Arizona,
March 1994.

[5] P. Apkarian and R. J. Adams. Advanced Gain-Scheduling
Techniques for Uncertain Systems. IEEE Transactions on
Control System Technology, 6:21-32, 1998.

[6] P. 1. Barton and C. C. Pantelides. The modeling of combined
continuous and discrete processes. AIChE Journal, 40:966—
979, 1994.

[7] D.A. van Beek, M.A. Reniers, J.E. Rooda, and R.R.H.
Schiffelers. Foundations of an interchange format for hybrid
systems. In A. Bemporad, A. Bicchi, and G. Butazzo,
editors, Computation and Control, 10th International
Workshop, volume 4416 of Lecture Notes in Computer
Science, pages 587-600. Springer Verlag, 2007.

[8] D.A. van Beek, M.A. Reniers, J.E. Rooda, and R.R.H.
Schiffelers. Concrete syntax and semantics of the composi-
tional interchange format for hybrid systems. In Proc. 17th
IFAC World Congress, Seoul, Korea, Jul 6-11 2008.

[9] E. Carpanzano and C. Maffezzoni. Symbolic manipulation
techniques for model simplification in object-oriented
modelling of large scale continuous systems. Mathematics
and Computers in Simulation, 48(2):133-150, 1998.

[10] E. E. Cellier and H. Elmqvist. Automated formula
manipulation supports object-oriented continuous-system
modeling. IEEE Control Systems Magazine, 13(2):28-38,
1993.

[11] H. Elmgvist, S. E. Mattsson, and H. Olsson. New methods
for hardware-in-the-loop simulation of stiff models. In
Proceedings 2nd International Modelica Conference, pages
59-64, Oberpfaffenhofen, Germany, Mar. 18-19 2002.

[12] H. Elmgqvist, M. Otter, and F. Cellier. Inline integration:
A new mixed symbolic /numeric approach for solving
differential-algebraic equation systems. In Proc. ESM’95,
European Simulation Multiconference, pages XXiii—XxXiv,
Prague, Czech Republic, Jun. 5-8 1995.

[13] The Fraunhofer-Institut fiir Techno-und Wirtschafts-
mathematik. Analog Insydes. URL: http://www.
analog-insydes.de/.

[14] R. Franke. Formulation of dynamic optimization problems
using modelica and their efficient solution. In Proceedings
2nd International Modelica Conference, pages 315-323,
Oberpfaffenhofen, Germany, Mar. 18-19 2002.

[15] R. Franke, M. Rode, and K. Kriiger. On-line optimization
of drum boiler startup. In Proceedings 3rd International
Modelica Conference, pages 287-296, Nov. 3—4 2003.

[16] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom,
L. Saldamli, D. Broman, and A. Sandholm. OpenModelica -
A free open-source environment for system modeling, sim-
ulation, and teaching. In Proceedings IEEE International
Symposium on Computer-Aided Control Systems Design,
Munich, Germany, Oct. 4—-6 2006.

[17] T. Halfmann and T. Wichmann. Symbolic methods in
industrial analog circuit design. In Scientific Computing in
Electrical Engineering, Mathematics in Industry. Springer
Verlag, 2006.

[18] S. Hecker and A. Varga. Symbolic manipulation techniques
for low order LFT-based parametric uncertainty modelling.
International Journal of Control, 79(11):1485-1494, 2006.

[19] L. Imsland, P. Kittilsen, and T. S. Schei. Model-based
optimizing control and estimation using modelica models.
In Proceedings 6th International Modelica Conference,
pages 301-310, Bielefeld, Germany, Mar. 3—4 2008.

[20] H. K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition,
2002.

[21] L. Lee and K. Poolla. Identification of linear parameter-
varying systems using nonlinear programming. Journal of
Dynamic Systems, Measurement and Control - Transactions
of the ASME, 121(1):71-78, 1999.

[22] D. J. Leith and W. E. Leithead. Survey of gain-scheduling
analysis and design. International Journal of Control,
73(11):1001-1025, 2000.

[23] M. Lovera and G. Mercere. Identification for gain-
scheduling: a balanced subspace approach. In 2007
American Control Conference, New York, USA, 2007.

[24] J. M. Maciejowski. Modelling and predictive control:
enabling technologies for reconfiguration. Annual Reviews
in Control, 23(1):13-23, 1999.

[25] J. M. Maciejowski. Predictive control: with constraints.
Prentice Hall, 2002.

[26] C. Maffezzoni and R. Girelli. Modular modelling in
an object-oriented database. Mathematical Modelling of
Systems, 4:121-147, 1998.

[27] J.-F. Magni. Linear fractional representation toolbox.
Technical Report TR 6/08162 DCSD, ONERA, 2004.

[28] A. Marcos and G. Balas. Development of linear-parameter-
varying models for aircraft. Journal of Guidance, Control
and Dynamics, 27(2):218-228, 2004.

[29] S. E. Mattsson, M. Andersson, and K. J. Astrom. Modeling
and simulation of behavioral systems. In Proceedings of the
32nd IEEE Conference on Decision and Control, volume 4,
pages 3636-3641, San Antonio, Texas, Dec. 1993.

[30] S. E. Mattsson, M. Andersson, and K. J. Astrom. Object-
oriented modelling and simulation. In D. Linkens, editor,
CAD for Control Systems, pages 31-69. Marcel Dekker
Inc., New York, 1993.

[31] S. E. Mattsson and H. Elmqvist. Simulator for dynamical
systems using graphics and equations for modeling. /EEE
Control Systems Magazine, 9(1):53-58, Jan. 1989.

[32] S. E. Mattsson, H. Elmqvist, and M. Otter. Physical system

modeling with Modelica. Control Engineering Practice,
6(4):501-510, 1998.

[33] M. Otter, H. Elmqvist, and S. E. Mattsson. The new Mod-
elica MultiBody library. In Proceedings 3rd International
Modelica Conference, pages 311-330, Linkoping, Sweden,
Nov. 34 2003. URL: http://www.modelica.org/
events/Conference2003/papers/h37_Otter_
multibody.pdf.

[34] B. Paijmans, W. Symens, H. Van Brussel, and J. Swevers. A
gain-scheduling-control technique for mechatronic systems
with position-dependent dynamics. In Proceedings of the
2006 American Control Conference, Minneapolis, USA,
2006.

[35] A. Pop and P. Fritzson. ModelicaXML: A Modelica XML
representation with applications. In Proceedings of the
3rd International Modelica Conference, pages 419-430,
Link6ping, Nov 3—4 2003.

[36] S. J. Qin and T. A. Badgwell. A survey of industrial
model predictive control technology. Control Engineering
Practice, 11:733-764, 2003.

[37] W. Rugh and J. Shamma. Research on gain scheduling.
Automatica, 36(10):1401-1425, 2000.

[38] P. Schwarz, J. Bastians, C. Clauss, J. Haase, A. Kohler,
G. Otte, and P. Schneider. A tool-box approach to computer-
aided generation of reduced-order models. In Proceedings
EUROSIM 2007, 2007.

[39] L. Sciavicco and B. Siciliano. Modelling and Control of
Robot Manipulators. Springer Verlag, 2000.

[40] R. Sommer, T. Halfmann, and J. Broz. Automated
behavioral modeling and analytical model-order reduction
by application of symbolic circuit analysis for multi-
physical systems. In Proceedings of EUROSIM 2007,
Ljubljana, Slovenia, Sep 9-13 2007.

[41] The Modelica Association. Modelica - A unified object-
oriented language for physical systems modeling - Lan-
guage specification version 3.0. Online, Sep. 5 2007.
URL: http://www.modelica.org/news_items/
documents/ModelicaSpec30.pdf.

[42] The World Wide Web Consortium. Mathematical Markup
Language (MathML) Version 2.0. Online, Oct 21 2003.
URL: http://www.w3.0rg/TR/MathML2/.

[43] J.J.M. van Helvoort, M. Steinbuch, P.F. Lambrechts, and
R. van de Molengraft. Analytical and experimental
modelling for gain-scheduling of a double scara robot.
In Proceedings of the 3rd IFAC Symposium on Mechatronic
Systems, Sydney, Australia, 2004.

[44] A. Varga, G. Looye, D. Moormann, and G. Gribel.
Automated generation of LFT-based parametric uncertainty
descriptions from generic aircraft models. Mathematical
and Computer Modelling of Dynamical Systems, 4(4):249—
274, 1988.

[45] V. Verdult. Nonlinear system identification: a state space
approach. PhD thesis, University of Twente, 2002.

[46] K. Zhou, J. U. Doyle, and K. Glover. Robust and optimal
control. Prentice-Hall, New Jersey, 1996.

45

A Static Aspect Language for Modelica Models

Malte Lochau Henning Gunther

Institute for Programming and Reactive Systems, TU Braunschweig, Germany,
{m | ochau, h. guent her} @ u- bs. de

Abstract especially non-behavioral quality properties and proper-
ties not evident in testing cannot be adequately expressed
solely using language constructs of Modelica as they ex-
ceed the expressiveness of object-oriented principles. As
an example, the locations within a model to be considered
for checking design policies such as

"For clarity reasons, inheritance hierarchies deeper
than 4 are to be avoided"”

With the introduction of the new Modelica major version
3, innovations mainly consist of further model restrictions
for increased model quality. In addition, developers of-
ten want to ensure the compliance to further requirements
early in the development cycle. Mostly emerging as domain
specific conventions that often crosscut model structures,
according checking mechanisms are required that are de- . .
tached from the core language. In this paper, a declarative '€ scattered throughout the code, i.e. the formulation
language is presented for specifying and evaluating quan- of such a demand crosses model composmon hierarchies.
tified rules for static model properties. Based on aspect- Also the balanced model concept of Modelica 3 [17] con-
oriented programming, the language allows for concise SiStS Of a set of entangled demands, e.g.

and expressive model inspections and a variable and typ-, 1 ne number of flow variables in a connector must be
ing concept facilitate subsequent model manipulations. A 'dentical to the number of non-causal non-flow variables
nascent implementation framework is proposed, based on Which correlates properties of connectors.

the logic meta programming paradigm, thus leading to ef- Besides, design criteria considering chains of several

ficient and scalable aspect processing applicable as mode|moo_lels/connecf[ors might be of mtere_st, as well as furthe_r
query engine for an AOP Modelica Compiler. codlr_lg conventions su<_:h as corrgct library usage, domain
specific patterns, and simple naming conventions, e.g.

Keywords Early Checking, Aspect Orientation, Modelica "Flow variables shall be named with a flow postfix"
Model Inspection Therefore, an overall mechanism is desirable for ex-
. pressing, modularizing, and finally ensuring compliance
1. Introduction with especially application-domain specific design rules
The Modelica description standard [2] proposes a mod- and patterns. Allowing for arbitrary model inspection with
ern multi-discipline language for component-based mathe- respect to those requirements, certain kinds of errors can
matical modeling and simulation of complex physical sys- be avoided from the start. For this purpose, aspect-oriented
tems (see e.g. [12, 21)). Its equation-based, object-oriented, programming (AOP) offers a promising approach: Super-
and declarative nature allows for hierarchical specification posing the object-oriented paradigm and being oblivious
of system structure and behavior and smooth integration, with respect to the underlying core language, aspects allow
evolution and reuse of developed components. The inno- for declarative quantification and modularization of con-
vations of the version 3 of the Modelica Specification [2] cerns that crosscut the component structure and functional-
mainly constitute further restrictions, e.g. the locally bal- ity of models.
anced model property [17], hence aiming at design rules As the multitude of properties of Modelica models are
for increased model quality. already fixed at definition/compile time — especially al-
Moreover, modeling follows established practices ac- most all structural characteristicsstatic aspectat source
cording to a substantial set of rules and properties. General-code level seem to provide a sufficient approach for han-
izing, a developer wants to be able to specify, maintain, and dling a wide range of aspect-oriented concerns for an early
analyze arbitrary structural model properties accompany- and efficient checking process inside the development loop.
ing all development phases. A multitude of requirements, Therefore, a domain-specific static language is required
for specifying aspect rules that refer to static model enti-
ties constituted by fundamental Modelica language units.

2nd International Workshop on Equation-Based Object-Oriented ACCOI’dII’Ig to the aspect-orlented paradlgm' this Ianguage

Languages and Tools. July 8, 2008, Paphos, Cyprus. must allow for intuitive and quantified formulation and in-
Copyright is held by the author/owner(s). The proceedings are published by tegration (Weaving) of aspects without exp||c|t|y affecting
Linkdping University Electronic Press. Proceedings available at: . " " . L.

http://ww. ep. | iu.sel ecp/ 029/ the underlying "host" language and existing models un-
EOOLT 2008 website: der consideration. Instead, a smooth description, isolation,

http://ww. eool t. org/ 2008/

47

composition, and reuse of aspects is made possible forthus either at definition/compile time or run time. For in-
a collectionof (connected) Modelica models, their inner stance, an implementation of dynamic aspects for Java is
components and behavioral descriptions, therefore speci-provided by AspectJ [14], whereas the JTL approach [7]
fying the properties emerging from the demanded require- allows for the specification of static aspects for Java using
ments. query by example.

In this paper, syntax and semantics of a rule language The static aspect language for Modelica proposed in
for static aspects is presented in terms of expressions (pointthis paper is mainly inspired by the PDL described in [16]
cuts) matching specific locations (join points) in Modelica which is based on principles of description logics [3, 4].
models. Reflecting basic entities of such models, the lan- The adoption of the approach to the Modelica language
guage enables model queries at source code level, e.g. in+efers to the syntactical and semantic structure of Model-
spection and correlation of classes, connectors, and equa-ica version 3 [2]. As a major enhancement, a concept for
tions. The syntactical structure is based on predefined Mod- variable bindings is proposed.
elica language primitives serving as "atoms" and operators ~ Previous efforts for checking properties of Modelica
for complex term construction. The design of the language models have been made: In [22], mainly the technical is-
aims at expressive and declarative encoding of a concisesues are discussed for analyzing Modelica model proper-
and succinct set of static design rules. The semantics in- ties such as naming conventions and inheritance complex-
cludes proposals for the usage of variable bindings and ity. However, no integrated approach for expressing such
point cut types for accessing and manipulating model el- properties is mentioned. Furthermore, analysis techniques
ements. Although this paper focuses on a comprise defini- for specific facets of Modelica models can be found, e.g.
tion of the static aspect language rather than an extensivein [5] and [6], where the determination of under and over
case study, nevertheless some examples as well as a generalonstrained systems of equations is presented.
discussion of its application is provided. An implementa- The implementation structure presented in this paper is
tion framework for the aspect language is proposed that is based on the logic meta programming approach described
under construction. Herein, logic programming principles in [23], where the intimate correlation between aspect ori-
are used for efficient rule processing by an integrated eval- entation and logic programming is outlined. As already
uation engine. proposed by the OpenModelica Project [11] and the Meta-

This paper is organized as follows: In Section 2, a brief Modelica Language [20], an ANTLR parser is used to cre-
overview on aspect-orientation and further related work is ate an Abstract Syntax Tree (AST) for examining Modelica
given. In Section 3, a complete and formalized specifica- models under consideration. Thereupon, the RML/Meta-
tion of syntax and semantics is presented for a domain spe-Modelica approach [19] can also be seen as a kind of
cific static aspect language for Modelica models, and an strongly typed logic programming language for investigat-
extension for a variable concept and type system is men- ing Modelica models, but it is not linked to aspect oriented
tioned. The implementation framework of the language is principles. Finally, a first attempt of an AOP Compiler fo-
proposed in Section 4, and some proposals for sample ap-cusing on merging AspectJ-liketer-type declarationsito
plications are depicted in Section 5. Section 6 concludes. the AST of Modelica models can be found in [1].

2. Aspect-Orientation and Related Work 3. Static Aspect Language for Modelica

Aspect-oriented. programming (AOP) [10, 15_] s motivatgd In this Section, a domain-specific static aspect language is
by the observation, that nowadays abstraction perceptions yefined py giving a complete formalized syntax and related
for logical system structuring and design mainly refer tothe go o ntics for obtaining join points in Modelica models

notions of hierarchy and (de-) composition. Accordingly, 5 quantified point cut expressions. Furthermore, variable

current prograr_nming. and moldelling language .paradigms capabilities are proposed for adequate binding of (typed)
such as the object-oriented principles of Modelica are de- join points according to related Modelica language entities.

signed from this perspective. Nevertheless, in many cases
there are concerns that crosscut a composition structure, so-) .)
calledaspects, which are therefore contradicting the means 3-1 APPlying Static Aspects to Modelica
of expression of such languages. First, the requirements for a static aspect language for
Concepts of aspect-oriented programming aim at cap- Modelica is given to motivate the language design deci-
turing such crosscutting concerns by appropriate modu- sions. As an object-oriented language, Modelica benefits
larization constructs callegoint cuts. Point cuts are ex- from component-based and inheritance principles fitting
pressions matching well-defined combinations of corre- well with real structures from the problem domain thus
lated points within programs/models of the underlying being seamlessly transferable to the solution domain. The
component-based language, so-caljeith points. In the equation-based specifications of components’ inertia allow
advicepart of an aspect definition, actions/manipulations for declarative and encapsulated behavioral descriptions
can be defined to be applied to the matching join points. detached from the system context. As a consequence, Mod-
Depending on the point in time at which aspects are con- elica breaks a system down into smaller units of structure
sidered, hencereavedo the host program/model, two cat- and behavior which is supported by according language
egories can be distinguished: static and dynamic aspects,constructs.

When aiming at a language for investigating static as-
pectsof Modelica models, one starts with these units stat-
ing the primitives (atoms, terminals, etc.) as well-known
starting points. A distinction betweemnary and binary
primitives of Modelica models can be made, where the

first category comprises high level units such as packages,

consists of two resistors connected in series.

3.2 Syntax

The following language is specifically tailored to extend
Modelica by static aspects and consists of two sublan-

classes, connectors, etc., therefore stating single, isolatedguages for modularizing aspect definitions:

entities. Instead, binary primitives are relations that group
two kinds of units by a certain (semantic) criterion, e.g.

all components of a model or all unknowns of an equa-

tion. On this basis, the aspect language must allow for ex-
pressing and modularization of combined, unit-spanning
primitives by appropriate operators. Hereby, arbitrary com-

plex relations (the static aspects) can be iteratively derived
from simpler ones, always starting with the aforementioned
primitives. Remind again the balanced model properties of
Modelica 3: To ensure these properties, the inner structure

of models and their connectors are to be considered on each

hierarchy level.

To demonstrate the application of the syntactical con-
structs of the static aspect language introduced in the fol-
lowing, a simple Modelica model is provided as a running
example consisting of a simpk n for an electrical circuit
as

connector Pin
Vol t age v;
flow Current
end Pin;

For electrical components with two pins, a corresponding
port “interface" model given as

partial nodel OnePort
Pin p, n;
Vol t age v;
Current i;
equati on
% p.v -
0 p.i +
i = p.i;
end OnePort;
defines the fundamental relations between quantities of
electrical circuits. Beingpar ti al , the port model is to

= n.v,
n.i

¢ A language for specifying a set ¢din points, hence
static elements of interest within the model under con-
sideration. The set of join points to be obtained is de-
fined by apoint cutexpression that can be composed
out of Modelica primitives (fundamental types of lan-
guage units) and appropriate operators for combination.

An action language for definingdvices, therefore stat-
ing what to be done with the join points previously cal-
culated as result of the point cut. The actual content of
an advice might vary from the simple output of an error
message in case of using the language for checking de-
sign rules, to arbitrary complex modifications of the join
points. The latter entails static aspect weaving capabili-
ties affecting the inspected model, e.g. by refactorings.

Accordingly, the language allows for specifying a series of
rules of the form:

<Poi nt cut> => <Advi ce>;

constitutingpoint cut — advice-pairs with well-defined syn-
tactical structure as will be given in this Section, thereby
focusing on the first part.

Point cutsdescribe specific classes of elements in Mod-
elica models referring to the language’s basic constructs
such as class definitions (types), components (members of
classes), and equations. According to static aspects, point
cuts constitute definite points within the model code to be
considered in the aspect advice. Tbim pointsthat match
to a point cut are those complying with the predicates the
point cut is composed of by combinations of logical and
guantified expressions. Through this declarative approach
of describing "requirements"” for model elements under in-
vestigation, these point cut expressions are decoupled from
a specific model and allow for a quantified model inspec-

be derived by a concrete electrical component, e.g. an idealtjon that can be applied to arbitrary Modelica models with-

resistor such as

nodel Resi stor

ext ends OnePort ;

paraneter Real R(unit="0Chm");
equati on

Rx i V;
end Resi stor;

characterized by a resistance param&eand behavior
according to Ohm’s law. A simpl€i r cui t model
Crcuit

R1(R=100),

nodel
Resi st or

equati on
Rl.n R2. p;

end Circuit;

R2(R=200) ;

49

out knowing inner details.

Due to the obvious relation of the concept to the logic
paradigm, a point cut expression can be construed as a
set of predicate definitions to be evaluated on a Modelica
source of interest (set of model definitions). The therein
contained set of model-specific join points is adjusted step-
wise by iteratively processing the point cut subterms, and
finally resulting in a set of join points fulfilling the over-
all point cut claims. The complete syntax for the point cut
language is depicted in Figure 1. The syntactical structure
is inspired by the PDL in [16], but modified in some parts,
especially concerning parameterized point cuts which will
be introduced in detail below. Meaning and application of
the different constituents will be described in the following
Sections.

| b(p)
| pandp
| porp
| notp
| pequalsp
| plessp
| psubsetp
| existsb:p
| forall b:p
| relopnbd
| [v:=p|relopbd
u = id
| 'patterr
b == id
| b+
| b+n
| pproduct p
| pproduct-d p
p : Point Cut
u : Unary Point Cut
b : Binary Relation
id Identifier
n : Natural Number
Relational Operator
Name Pattern

relop

pattern

Figure 1. Syntax of the Point Cut Language

3.2.1 Primitives

Starting the inspection of a Modelica input source by con-
sidering the set of all join points present, the point cut lan-
guage provides some fundamentplimitives for a first

limitation of the join point set. These predefined primitive

terms constitute subsets of the overall join point set to those

of a certain kind and/or within a certain context with re-
spect to elementary structuring constructs of Modelica.
As mentioned in [16], primitives might either be clas-
sified asunary or binary which depends on the number
of join points to be considered for a match. Binary prim-
itives express some property of join points. The choice
of appropriate unary primitives focuses on major entities

in which models are organized: packages and class types.
Such individuals represent first class members, hence key
paradigm concepts of Modelica. Tables 1 and 2 list sets of
unary primitives which are simply accessed by their names.

The most general primitivel ass includes all special-
ized class type definitions, namaiypdel , connect or,
package, bl ock, type, record andf uncti on [2].
All of whom are Modelica primitives on their part, there-

50

Primitive Matches

cl ass all class types defined in the source
nodel model types defined in the source
connect or | connector types defined in the source
package package types defined in the source
bl ock block types defined in the source
type data types defined in the source
record record types defined in the source
function function types defined in the source

Table 1. Unary Modelica Primitives for basic Class Types

fore partitioning the set of class types into disjoint sub-
sets. Applied to the&i r cui t example,cl ass matches
to Pi n, OnePort, Resi st or, andCi r cui t, whereas
connect or only selects théi n. The (sub-) set of par-

Primitive Matches

partial Type | partial types defined in the sourge
final Type final types defined in the source

| ocal Type local types defined within a type

Table 2. Unary Modelica Primitives for specialized Types

tial class type definitions can be obtained by the primi-
tive parti al Type, and the final types correspondingly.
Hence,parti al Type matches toOnePort, whereas
the predicaté i nal Type is matched nowhere in the sam-
ple model. Thed ocal Type primitive matches local class
instances nested within a model, e.g. consider an additional
local model declaration

repl aceabl e nodel Res = Resistor;

within Gi r cui t for parameterized typing of circuit ele-
ments. Primitivd ocal Type matches to the type dtes
which actually refers to the global typesi st or in this
example.

Binary primitives match pairs of join points, therefore
expressing binary relations. They can be used for incremen-
tally deriving interrelations, therefore inspecting further
properties of model elements, e.g. relating a member vari-
able or nested component and its surrounding class type. As
unary Modelica primitives were defined on the high-level
type structure, now binary primitives allow for a detailed
inspection of the internal properties of a class, namely the
parts for structure (variables/component members, inher-
itance, accessibility etc.) and behavior (equations). Again,
binary primitives are given by a name followed by a param-
eterp stating the kind of join point, it is related to. Tables 3
to 7 contain structural, and Table 8 behavioral unary primi-
tives for Modelica models. The primitives in Table 3 allow
for structural insights of a given type by accessing its
members. These might either pei mi ti veMenber or
components, thus class-typed variables. For the circuit ex-
ample,pri m ti veMenber (model) results in the re-
sistance variabl® from modelResi st or L. Further par-
titioning of members is done by their dimension (vectors,

1 Note:The variables v and i from Pin and OnePort are typed by an accord-
ing (non-primitive) Type declaration, thus stating component members.

Primitive Matches Primitive Matches
menber (p) all members of a type primvodi fier(p) | modifier of a primitive
that matches p parameter member that
primntiveMenber (p) | primitive members of matches p
a type that matches p conpModi fi er (p) | modifier of a replaceable
conponent Menber (p) | components of a type component that matches|p
that matches p typeModi fi er(p) | redeclaration type of a
vect or Menber (p) vector members of a replaceable type
type that matches p . ; — -
mat ri xMenber (p) matrix members of a Table 4. Blnary Modelica Primitives for Modification and
type that matches p Redeclaration
publ i cMenber (p) public members of a
type that matches p Greuit circuit(
pr ot ect edMenber (p) | protected members of a redecl are OnePort Resistor);
type that matches p the modifier Resi st or for the replaceablénePor t
repl Menber (p) polymorphic members of matches this predicate. In case of redeclaration of local
a type that matches p class type® such as
repl Type(p) local class member of
a type that matches p Grecuit circuit(
const r Type(p) upper bound type of a redecl are Model Res =
replaceable type that Capaci tor);
matches p

the new type parameter assignedR®s can be obtained
Table 3. Binary Modelica Primitives for Type Members by
typeModi fi er (repl Type(nodel))

matrices),and visibility. Note that members not explicitly

_) thus resulting inCapaci t or. Table 5 lists primitives
stated as public or protected in a model are assumed to

be public, e.gpubl i c(connect or) resultsinv, i . A Primitive Matches
Mod'el'ica specific poncept is that adplaceablemembers, derivedType(p) types that are derived from
explicit polymorphic members, and replaceable local types a type that matches p
for type parameterization. Theepl Menber (nodel) baseType(p) types that are derived by a
primitive for example would match components such as: type that matches p
repl aceabl e OnePort op; subType(p) types that are subtypes of|a
within Gi r cui t . This component can for instance be re- . type that matche; P

.) " . o var Deri vedType(p) | types that are variably
placed byResi st or via a modifier on instantiation. For derived from a local
r epl Type consider again the replaceable resistor model type that matches p

example and the aforementionedcal Type primitive:
In contrast,r epl Type(nodel) matches the member Table 5. Binary Modelica Primitives for Inheritance Hier-
variableRes itself instead of its referenced type whigh archies

actually the type of components withiResi st or typed S . .

constraining replaceable types, i.e. for sultofderi vedType(partial) isResi stor (direct
subclass relation), andhaseType(nodel) inversely

matcheOnePor t as the direct super classRési st or.

In Modelica, a distinction is made between explicit sub-
the point cut expression classes and implicit subtypes within the type hierarchy of a
system model. The primitiveubType matches all types

_] o o with public interfaces being compatible with that of type
results inOnePor t . Thepri mvodi fi er (p) primitive Note that this primitive is quite powerful as it is not directly
in Table 4 matches modifier values for parameter members extractable from a model source, but rather requires addi-
p applied when its surrounding class is instantiated, €.9. tjonal computational efforts. A further advanced construct
pri mvbdi fier(primtiveMenber(nodel)) of Modelica is variable inheritance. Consider the modified
OnePort model:

repl aceabl e nodel Res
= Resi stor extends OnePort;

constr Type(repl Type(nodel))

matches100, 200 as Resi st or is instantiated twice

within G r cui t with corresponding modifier values for nodel OnePort

the parameterR. The primitive conpModi fi er (p) repl aceabl e nodel Res = Resistor;
matches types used for redeclaration of replaceable com-

ponentg when its surrounding class type is being instan- pr ot ect ed

tiated, e.g. in ext ends Res;

51

end OnePort;

Here, the local class typBes can be used to redeclare
the base class obnePort which is initially stated as
Resi st or . Thus, the result of the expression

var Deri vedType(l ocal Type)

wherel ocal Type matchesResi st or, is OnePort .
The primitives depicted in Table 6 allow for inspection of

Primitive Matches

flow p) flow members of a type that
matches p

i nput (p) input members of a type that
matches p

out put (p) output members of a type that
matches p

const ant (p) constant members of a type that
matches p

parameter members of a type
that matches p

par anet er (p)

i nner (p) inner members of a type that
matches p

out er(p) outer members of a type that
matches p

final (p) final members of a type that
matches p

di screte(p) discrete members of a type that
matches p

Table 6. Binary Modelica Primitives for Member Proper-
ties

furthermember properties. Being mostly self-explanatory,
a detailed description shall be omitted at this point.

Matches

start value of a member
that matches p

fixed value of a member
that matches p

Primitive
start Val ue(p)

fixedStart Val ue(p)

Table 7. Binary Modelica Primitives for Member Initial-
ization

Modelicaallows for the propagation of start values and
initialization values for primitive member variables. The
primitives in Table 7 can be used to obtain such values.
The primitives listed in Table 8 can be used to delve into
model bodies and explore the behavioral specifications in
equation$. As equat i on(p) matches all kinds of equa-
tions defined for type, e.g.Rxi v; for Resi st or,
further primitives for partitioning the set of equations are
given, i.e. initial equations, equations for connecting two
connector components, equations containifigor when
clauses (potentially causing events), drad loops. After
having selected a certain equation, tirknown primitive

Primitive Matches

equat i on(p) equations defined in a
type that matches p
initial equations in a type
that matches p

connect equations in a
type that matches p
equations containingf

in a type that matches p
eg. containingvhen

in a type that matches p
equations containinfjor
in a type that matches p
unknown variables in an
equation p

unknown variables

i ni t Equati on(p)
connect Equat i on(p)
i f Equati on(p)
whenEquat i on(p)

f or Equati on(p)
unknown(p)

deri vat ed(p)

derivated in an equation p

Table 8. Binary Modelica Primitives for Model Behavior

unknown(equati on(p))

for p matchingtheResi st or resultsinR, i , v. Variables
being derivated within an equation match the primitive
deri vat ed. On this basis, even more arbitrary complex
primitives concerning equation details might be useful, e.g.
inspecting operators, but shall be omitted at this point.

3.3 Operators

For the definition of extensive aspects, thus concerns that
crosscut the entities of models, operators for complex term
construction are provided for correlating Modelica primi-
tives of initially separated model units. Being closed under
the set of join points of the overall model, such operators
allow for iterative combinations of point cut expressions
permitting rules of any complexity. Some criteria to take
into account when choosing appropriate operators:

e The resulting language’s expressiveness must be suffi-
cient for capturing a wide range of possibly occurring
requirements.

e The operators must allow for an "atomic" conversion
and efficient evaluation.

e The operators usage must be concise and intuitive.

As the operators are appliedgetsof join points, they are
mainly of set oriented nature inspired by logic program-
ming and query languages. For operator precedences, the
usage of appropriate parentheses is recommended as usual.

3.3.1 Logical Operators

For simple interrelations of join point sets, logical connec-
tors are provided. For instance, classes, that are both sub-
classes derived from other classexl subtype of another
type, can be searched via

can be used to get the set of variables appearing in an equayer vedType(cl ass) and subType(cl ass)

tion, hence

2Note: Algorithm parts can also constitute model behavior, but are no
further considered at this point.

52

As another example, the expression

i nput (cl ass) or output(class)

matches all directed member variables. As one of the mostexi sts primti veMenber : out put (bl ock)
powerful operators, the logical negation allows for expres-
sions matching all join pointsiot being contained in a

given set of join points For instance 3.3.4 Cardinality

matches blocks witht leastone output variable.

partial and not baseType(cl ass) Operators dealing with the cardinality of join point sets
allow for evaluation of model metrics. Style conventions
for structuring Modelica libraries such &he number of
models defined in an own package must be at leasbf"
be expressed by

matches all partial class types not being derived by any
other class type. Moreover, the equality of two sets of join
points can be stated, e.g.

I I del t
class equals (nodel or connector) package and (> 5 conponent Menber)

requires systems only consisting of models and connectors.
Two more operators for more intuitive descriptions of step-
wise refinements for intermediate point cuts are provided:

resulting in "malformed" packages containing less than 5
type declarations. A cardinality expression can be parame-
terized by an optional point cfitv: =p] , hence a set of join
nodel |ess partial points. Note that this concept will be generalized in Section
matches all model typdsut partial ones, whereas 3.5 for application to all point cut expressions. In this way,
comparisons of cardinalities concerning further properties
between join points can be enforced. The complex balanced
matchesonly thosemodel types that are also partial, which model demandThe number of flow variables in a connec-
can actually also be expressed by #mal operator. tor must be identical to the number of non-causal non-flow
variables"[17] can be stated as

partial subset nodel

3.3.2 Pattern

In order to examine join points that refer to named model

elements, a pattern operator is provided. Using arbitrary
pattern expressions, the set of join points can be reduced
to the ones whose names match the given pattern. By

[v:=connector] (= fl ow(v)
(primtiveMenber(v)

less (flow(v) or input(v) or output(v)
or paraneter(v) or constant(v)))

constituting an iterative "foreach” loop over the set of con-
nectors.

the resistor model can be obtained. Moreover, patterns can N

be used to check naming conventions, e.g. the demand3-3-> Composition

nodel and ' Resi stor’

"Flow variables shall be named with a flow postfizdn New binary relation$ can be created by composing two
be expressed by point cuts by building the Cartesian product, hence combin-
(flow(class) less "+ flow) ing all join points matching these point cuts. For instance,

] the expression
matching those flow members whose names do not have the

required postfix. Besides wild cardsmatching arbitrary
sequences of symbols, further operators inspired e.g. by
regular expressionsan be used such as ranges b, c] relates types having the same (direct) super class. Here,
demanding one of the listed symbols. As there are primi- again the parameterization syntax is used to relate both
tives referring to unnamed join point types, e.g. equations, subclasses to the same super class. Note thartbduct

the pattern operator is only allowed at innermost position operator also relates identical join points, thus creating
of expressions and no explicit comparison operator is pro- reflexive relations. For avoiding such self-references, the
vided. pr oduct - d (disjoint) operator can be used. As a further
example, the expression

[v:=cl ass] (derivedType(v) product
derivedType(V))

3.3.3 Quantification

Point cut quantification can be used to check some condi-
tion on arangeof values in a binary relation of join points.
Therefore, point cut expressions can be constructed whoserelates components being connected within models.
matching join points are based on properties of related join
points. The expression

[vi =connect Equat i on(nodel)]
(unknown(v) product-d unknown(v))

3.3.6 Transitive Closures

The deduction of (anti-symmetric) transitive closures of a

forall primtiveMenber - output (block) binary relations can be obtained by

matches block types, whose primitive membersadireut-

put variables, i.e. sources. In this example, the property
out put (of a block) is postulated for all primitive mem- for instance, resulting in the subclass relation, hence relat-
bers of that block (stated as a binary primitive relation). In ing two classes (indirectly) associated via arbitrary chains
contrast, the expression of derivations. The "bounded" transitive closure operator
creates chains limited to at mastinks, e.g.

derivedType+

3 Dependingon the type system applied, this complemented set could be]
further limited to only those join points of the same type as the given ones. der i vedType+4

53

can be used to check whether inheritance hierarchies The operators for comparing sets of join points (equality
deepethan 4 are present in the model by comparing the re- and subsets) are evaluated as follows:
sult to that of the unbounded case. The closure operator can

also be used for examining connector traces of Modelica [p1 subsetpa] = {j |Vj € p1:j € pa}
models. P[p; equalsps] = (p1 subsetpy) and (p2 subsetp;)
3.4 Semantics Hence,subset results in the join poinp., iff p1 C ps

Partly taken from [16], the point cut evaluation is reduced and in the empty set, otherwise. The equality of two join
to element-wise reasoning of join point sets considering the Point sets can then be ensuredegual s by checking the
stipulated conditions. The evaluation of a point cut expres- result set not being empty. For the quantification operators,

sionp € P from a set of rules” with respect to a Model- the semantics are given as

ica model specificationM (a collection of conjugated class) o _

type definitions) is stated as: Plforall b:p] = {j2|¥(j1,52) € B[b] : jr € Plp]}
Plexistsb:p] = {j2[3(j1,72) € B[] : v € Pp]}

pidm = P(Im)

Binary relations constitute relationships between two join
resulting in a (sub-) set of join points of the model under points and can be obtained by according primitides
consideration, wheré, is assumed to be

Blid] = <primitive>
Jam = {sets of all types of join points present.v }

Further relations can be constructed as Cartesian products:
The evaluation of a rule expression precedes from inwards
to outwards, therefore calculating temporary join pointsets ~ £[p1 product po] = {(j1,j2) € Plp1] x P[p2]}
as intermediate stages that are gradually refined toward the
overall result set. Being composites of unary and binary
expressions, point cuts are calculated through sequences o
mappings

For thepr oduct - d operator, the requiremerit # j,
]must be satisfied. The semantics for transitive closure is
defined to be

for unary primitivess, and wherek < n must hold in the bounded case Bfp + n].

B .Bi Relati Pl 7 3.5 Variable Binding and Type System
: Binary Relation— X
’ M) As already used for the cardinality comparison operator,

w in a point cut expression can be simply statedés] = ya_\riablt_a bindings_are introd_uced. They allow for binding of
U [u], whereu might be either a unary primitive denoted by J0Iin points to variables which can be used as parameters
id and will therefore be replaced by those join poijts in subsequent terms. This concept shall now be enhanced
Jx matchingid, or it is some kind of regular expression, to all kinds of point cut expressions. Generally, a point cut
thus expression can be parameterized by an arbitrary set of point

cut variablesp that are then visible within the point cut:
Ul pattern’] = {j | j matches ’pattern’
: I=ul J [¢]p : Point cuty, whereg = {v1 := p1,...,v, :=pn}
is to be applied. For the evaluation of binary primitives

b(p), the given parameteris to be taken into account: is a set ofn. point cut variables);, whose content is again

defined by point cut expressiops In the modified seman-
P[b(p)] = {j1 | (1,72) € B[], j2 € P[p]} tics, these parameters are passed to all subtermseod.

The relation seb between the parameter join poimtand Plp1 and p2]s = Plp1]s N Plpz2]s
the binary primitive is constructed by trying out all possible
combinations and keeping those fulfillirig The result,
again is a set of single join points "fitting" to the parameter
p. Unary and binary primitives can be nested (composed)
at will, e.9.b(b(p)). The operators for logical combinations
of join point sets can be reduced to according set operators:

These enhanced evaluation semantics constitutes a (nested)
"for-each" loop over the set of join point combinations de-
picted by the parameter point cut(s) to be likewise adopted
to all point cut subterms.

As proposed in [16], the adoption @§pesfor point
cuts allows for sound expressions with respect to the types

P[p: and ps] P[p:] N Plps] expectgd fpr the matchipg join points. Suph types reflect
the basic kinds of Modelica constructs the join points refer

Plprorps] = P[pi] U P[p] it
to, namely types, members (primitive, components), scalar
Plp: lessps] = Ppi] \ Plp2] values, and equations. The integration of a type system for
Plnotp] = {jl|j¢& Plm]} point cuts into the aforementioned semantics allows for

exact determination of the join point types in the result set.
Therefore the matching join points are restricted to those,

that are in the static type calculated for the point cut. Due to
lack of space, a formalization of this approach, especially
considering types of parameter variables for point cuts, is
deferred to future work.

3.6 Advices

Theadvicepart of a rule shall only be discussed informally
at this point. Generally, it is considered to be "executable"
and it is applied for each join point matching the point cut

part of a static aspect. For the simplest case, e.g. rule check-

ing, a report string can be put out as an error description:

<poi nt cut> =>
"Error: violated nanm ng convention";

For providing a more expressive report, access to the re-

sulting join point set should be made possible, e.g. by the
following syntax for iterating the result set:

<poi nt cut> =>
"Error: violated nami ng convention in
+ Resul t Set.nextlten().get Name();

returning the name of the join point within the result
set currently iterated. Note that the join points within
Resul t Set must be of a type that refers to a named ele-
ment in Modelica. As a next step, arbitrary code as well as
access to additional variables defined in the point cut could
be permitted, e.g. for obtaining the corresponding AST
Nodes for manipulation within a compiler environment.

4. Implementation Framework
A sample implementation framework of the static aspect

language that is currently under construction is proposed

in the following. It is based on the principles tdgic
meta programming23]. The application of two languages

is proposed for processing static aspects on given Model-

ica models: (1) AUser language for specifying static as-

Modelica Source Static Aspects

Modelica
Parser
AST

Y

v

Primitive Rule Mapping
Extraction Scheme Result Set (typed)
Facts Rules Join Points
; \ 4
Report,
Prolog Engine AST Nodes

Figure 2. Architectureof the Static Aspects Framework
for Modelica Models

2. An aspect rule input interface accepting syntactically
well-formed static aspects expressions according to the
aforementioned point cut language grammar. The point
cut expression parts are then transformed to suitable
Prolog rules according to a mapping scheme for itera-
tively composing primitives and operators.

The middle end forms the aspect processing engine in
terms of a Prolog interpreter implemented on top of the
Modelica source code parser. Applying the Prolog rules
generated for point cut expressions to the fact basis con-
taining the model primitives, the engine integrates both,
the input models and the related aspect rules for join point
result set processing. The back end interface conducts ad-
vice processing with respect to the resulting join point set,

l.e.

pects, such as the previously defined point cut language ® Error reports for simple design rule evaluation,

which serves as an inspection API for Modelica models,
and (2) an efficientmplementatiodanguage for process-
ing of the aspects, therefore stating a point cut evaluation
engine. Due to the similarities of aspect principles and the
logic paradigm [23], the first order logic programming lan-

e References to the originating AST nodes of the resulting
join points, thus allowing for arbitrary post-processing
of complex aspect advices detached from the frame-
work, e.g. as described in [8].

guage Prolog [9] can serve as an evaluation engine. Prolog” Simple éxample for mapping model structures to corre-
allows for seamless conceptual representation and efficientSPOnding Prolog rules shall be given. Consider the afore-

evaluation of aspect queries on Modelica models in terms
of logical facts and rules. A structural overview of the re-
sulting implementation framework architecture is depicted
in Figure 2. The front end for user input parsing and trans-
formation consists of two interfaces:

1. A Modelica model input interface realized as a conven-
tional ANTLR [11, 18] Modelica Parser that constructs
the Abstract Syntax Tree (AST) representation of the
model under consideration and extracts primitives in
terms of Prolog facts. A similar approach is taken in
MetaModelica [20].

55

mentionedResi st or model inheriting from the partial
OnePort model. First, the "existence" of both models can
be expressed by appropriate Prolog facts:

nodel (i, OnePort’).
nodel (2, Resistor’).

Next, the interrelation of both models with respect to the
implied inheritance hierarchy can be stated as:

derive(n2, ml).

According to these facts, implications can be derived by
appropriate rules, e.g.:

deri vedType(Sub, Sup)

derive(Sub, Sup).
derivedType(Sub, Sup)

derive(Sub, X),
derivedType(X, Sup).

for calculation of the transitive closure of the inheritance
hierarchy.

The decoupling of théJser and Implementationan-
guage aims at a high grade of extensibility and adaptabil-
ity. Being Turing complete, the Prolog engine allows for
integrating point cut language constructs of any complex-
ity, and does not dictate the concrete representation of the
aspect language implementation. The implementation can
either be used as a "stand-alone" rule checker for system-
atic model inspection, or it can be integrated to an ambient
Modelica compiler/development environment accomplish-
ing static aspeaveavinge.g. AST transformations.

5. Application

On the basis of the adaptable and scalable framework im-
plementation and the flexibility of the proposed static as-
pect language for Modelica, various possible areas of ap-
plication are conceivable:

1. Rule checking "by negation": Describing point cuts
matching join points that are not desired to appear in
the models as proposed in [16]. In case of non empty
result sets, the rule is violated by the join points calcu-
lated and corresponding error reports can be generate
in the advice part. By expressing new restrictions of the
Modelica 3 specification as static aspects, the compati-
bility of legacy code such as libraries can be examined
automatically.

. Model inspection: Searching for model elements or pat-
terns matching criteria of interest, either "off-line" (e.g.
metrics calculations), or "on-line" as a model inspec-
tion tool within a Modelica IDE. Further applications
in the realm of the object oriented paradigm might be
that ofconceptg13], thus checking whether a given set
of types are applicable as parameters for a generic con-
struct (upper bound resolution for constraining types).

. Join point manipulations within the advice part, e.g.
renaming of certain elements with respect to naming
conventions or model maintenance.

. Arbitrary model restructuring by join points referencing
nodes of the AST. Therefore, static aspect weaving can
be done by graph transformation, e.g. context aware
refactorings.

6. Conclusion

The formal syntax and semantics definition and sample
implementation framework of a static aspect language for
Modelica was presented. The language design aims at suffi-
cient expressiveness and extensibility, but yet still provides
intuitive usage. Language extensions for variable bindings
of (typed) join points were mentioned for enhanced rule
precision.

56

The framework proposed can serve as a foundation for
a wide range of applications, e.g. simple rule checking up
to source code manipulations. An integration into existing
environments is aimed at, either as a basis for a point cut
evaluation engine for a Modelica AOP Compiler, or as a
programmer’s on-line assistance tool for code inspection
queries, e.g. providing an interactive search engine with
Eclipse IDE integration.

In future work, after having finished the implementa-
tion, the application of the language in various case studies
can indicate, whether the language boundaries defined up
to this point are sufficient. For this purpose, the formula-
tion of balanced model requirements of Modelica version
3 in terms of static aspects is assumed to be a convenient
case study. Hereby, the performance of the implementation
can be investigated concerning the number and complexity
of rules and models under investigation. Optimizations can
lead to increased efficiency, e.g. by dynamical and cached
AST access on demand during rule evaluation. Moreover,
a detailed survey of the advice part is aimed at, especially
in view of conflicts analysis between different aspects. On
this basis, studies of applying dynamic aspect approaches
to Modelica can be promising, although Modelica-like lan-
guage are ngbroceduralones as demanded e.g. in [15].

Acknowledgments
The authors’ thank goes to Dr. Michaela Huhn and TLK

dThermo for helpful discussions supporting this paper.

References

[1] Johan AkessonLanguages and Tools for Optimization of
Large-Scale SystemBhD thesis, Department of Automatic
Control, Lund Institute of Technology, Sweden, November
2007.

[2] The Modelica Association. The Modelica Language
Specification 3.0. http://www.modelica.org, September
2007. http://www.modelica.org.

[3] Franz Baader, Diego Calvanese, Deborah L. McGuiness,
Daniele Nardi, and Peter F. Patel-Schneiddihe De-
scription Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

[4] Alexander Borgida. Description Logics in Data Manage-
ment. INIEEE Transactions on Knowledge and Data Engi-
neering, volume 7, pages 671-682, 1995.

[5] David Broman, Kaj Nystrom, and Peter Fritzson. Deter-
mining Over- and Under-Constrained Systems of Equations
using Structural Constraint Delta. Proceedings of the
Fifth International Conference on Generative Programming
and Component Engineering (GPCE’06), pages 151-160,
Portland, Oregon, USA, 2006. ACM Press.

[6] Peter Bunus and Peter Fritzson. Automated Static Analysis
of Equation-Based ComponentsSIMULATION 80(7-
8):321-345, July-August 2004.

[7] Tal Cohen, Joseph Gil, and Italy Maman. JTL - The Java
Tools Language. I'©®OPSLA'06: Companion to the 20th
annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applicati®086.

[8] Roger F. Crew. ASTLOG: A Language for Examinging
AbstractSyntax Trees. IrProceedings of the USENIX
Conference on Domain-Specific Languagesges 229—
242,1997.

[9] P. Deransart, A. Ed-Dbali, and L. CeravoriProlog: The
Standard. Springer-Verlag, NewYork, 1996.

[10] R. Filman and D. Friedman. Aspect-Oriented Programming
is Quantification and Obliviousness, 2000.

[11] P. Fritzson, P. Aronsson, A. Pop, H. Lundvall, K. Nystrom,
L. Saldamli, D. Broman, and A. Sandholm. OpenModelica
- A Free Open-Source Environment for System Modeling,
Simulation, and Teaching. IHEEE International Sympo-
sium on Computer-Aided Control Systems Design, pages
1588-1595, October 2006.

[12] Peter FritzsonPrinciples of Object-Oriented Modeling and
Simulation with Modelica 2.1. IEEE Press, 2004.

[13] J. Jéarvi, J. Willcock, and A. Lumsdaine. Associated Types
and Constrain Propagation for Mainstream Object-Oriented
Generics. IrProceedings of the 20th OOPSLA, pages 327—
355. Springer Verlag, June 2001.

[14] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten,
Jeffrey Palm, and William G. Griswold. An Overview of
AspectJ. Lecture Notes in Computer Science, 2027:327—
355, 2001.

[15] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Videira Lopes, Jean-Marc Loingtier,
and John Irwin. Aspect-Oriented Programming. In
Proceedings of the European Conference on Object-
Oriented Programming (ECOOP), Finland. Springer-
Verlag, June 1997.

[16] Clint Morgan, Kris De Volder, and Eric Wohlstadter. A
Static Aspect Language for Checking Design Rules. In
AOSD '07: Proceedings of the 6th International Conference
on Aspect-Oriented Software Development, pages 63-72,
New York, NY, USA, 2007. ACM.

[17] Hans Olsson, Martin Otter, Sven Erik Mattsson, and
Hilding Elmqvist. Balanced Models in Modelica 3.0 for
Increased Model Quality. In Prof. Dr. B. Bachmann,
editor, Proceedings of the 6th International Modelica
Conference, volume 1, University of Applied Sciences
Germany, Bielefeld, 2008. The Modelica Association.

[18] Terence Parr.The Definitive ANTLR Reference Guide:
Building Domain-specific LanguageRragmatic Program-
mers, 2007.

[19] Adrian Pop and Peter Fritzson. Debugging Natural
Semantics Specifications. FSADEBUG’05: Proceedings of
the sixth international symposium on Automated analysis-
driven debugging, pages 77-82, New York, NY, USA, 2005.
ACM.

[20] Adrian Pop and Peter Fritzson. MetaModelica: A Unified
Equation-Based Semantical and Mathematical Modeling
Language. InJoint Modular Languages Conference
(JMLC2006), Jesus College, Oxford, England, September
2006.

[21] Michael Tiller. Introduction to Physical Modeling with
Modelica. Kluwer Academic Publishers, 2001.

[22] Michael Tiller. Parsing and Semantics Analysis of Modelica
Code for Non-Simulation Applications. In Peter Fritzson,
editor, Proceedings of the 3rd International Modelica Con-

57

ference, volume 1, pages 411-418, Linképing, November
2003.

[23] Kris De Volder and Theo D’Hondt. Aspect-Oriented
Logic Meta Programming. IReflection '99: Proceedings
of the Second International Conference on Meta-Level
Architectures and Reflection, pages 250-272, London, UK,
1999. Springer-Verlag.

Higher-Order Acausal Models

David Broman Peter Fritzson

Department of Information and Computer Science, Linképing University, Sweden
{davbr, petfr}@da.liu.se

Abstract These languages enable modeling of complex physical sys-
tems by combining different domains, such as electrical,
mechanical, and hydraulic. Examples of such languages are
Modelica [10, 17], Omola [1], gPROMS [3, 20], VHDL-
AMS [5], andx (Chi) [13, 27].

A fundamental construct in most of these languages is
theacausal modelSuch a model can encapsulate and com-

cept of higher-order functions, used in standard functional POS€ both continuous-time behavior in form of DAEs and/
programming languages, with acausal models. This con- " other interconnected sub-models, where the direction of

cept, called Higher-Order Acausal Models (HOAMS), sim- information flow between the sub-models is not specified.
plifies the creation of reusable model libraries and model S€veral of these languages (e.g., Modelicaand Omola) sup-

transformations within the modeling language itself. These port object-oriented concepts that enable the cor_np_0_5|t|0n
transformations include general model composition and and reuse of acausfa\l models. However, the p055|b|I|t|e§ to
recursion operations and do not require data representa-Performtransformationson models and to create generic
tion/reification of models as in metaprogramming/meta- and reusable transformation libraries are still usually lim-
modeling. Examples within the electrical and mechanical t€d to tool-dependent scripting approaches (7, 11, 26], de-
domain are given using a small research language. How- spite recent development of metamodeling/metaprogram-

ever, the language conceptis not limited to a particular lan- MiNg approaches like MetaModelica [12].

guage, and could in the future be incorporated into existing I functional programming languages, such as Haskell
commercially available EOO-languages. [23] and Standard ML [16], standard libraries have for a

long time been highly reusable, due to the basic property
Keywords Higher-Order, Acausal, Modeling, Simulation, of having functions as first-class values. This property, also
Model Transformation, Equations, Object-Oriented, EOO calledhigher-order functionsmeans that functions can be
) passed around in the language as any other value.
1. Introduction In this paper, we investigate the combination of acausal

Modeling and simulation have been an important applica- models with higher-order functions. We call this concept
tion area for several successful programming languages, Higher-Order Acausal Models (HOAMs)
e.g., Simula [6] and C++ [24]. These languages and other A similar idea calledirst-class relations on signalsas
general-purpose languages can be used efficiently for dis- been outlined in the context of functional hybrid modeling
crete time/event-based simulation, but for continuous-time (FHM)[18]. However, the work is still at an early stage
simulation, other specialized tools such as Simulink [15] and it does not yet exist any published description of the
are commonly used in industry. The latter supports causal Semantics. By contrast, our previous work’s main objective
block-oriented modeling, where each block has defined in- has been to define a formal operational semantics for a
put(s) and output(s). However, during the past two decades, subset of a typical EOO language [4]. From the technical
a new kind of language has emerged, where differential al- results of our earlier work, we have extracted the more
gebraic equations (DAEs) can describe the continuous-time general ideas of HOAM, which are presented in this paper
behavior of a system. Moreover, such languages often sup-in a more informal setting.
port hybrid DAEs for modeling combined continuous-time ~ An objective of this paper is to be accessible both to en-
and discrete-time behavior. gineers with little functional language programming back-
ground, as well as to computer scientists with minimal
knowledge of physical acausal modeling. Hence, the paper
2nd International Workshop on Equation-Based Object-Oriented !S structured !n the foIIowmg way to re_ﬂeCt both th? br_oad
Languages and Tools. July 8, 2008, Paphos, Cyprus. intended audience, as well as presenting the contribution of

Copyright is held by the author/owner(s). The proceedings are published by the concept of HOAMs:
Link6ping University Electronic Press. Proceedings available at:

http://ww. ep.|iu.selecp/ 029/

EOOLT 2008 website:

http://ww. eool t. org/ 2008/

Current equation-based object-oriented (EOQO) languages
typically contain a number of fairly complex language con-
structs for enabling reuse of models. However, support for
model transformation is still often limited to scripting solu-
tions provided by tool implementations. In this paper we in-
vestigate the possibility of combining the well known con-

59

¢ The fundamental ideas of traditional higher-order func- and the expression representing the body of the function
tions are explained using simple examples. Moreover, is given within curly parentheses; in this cdsex x} .
we give the basic concepts of acausal models whenused An anonymous function can be applied by writing the
for modeling and simulation (Section 2). function before the argument(s) in a parenthesized list, e.g.

¢ \We state a definition of higher order acausal models (3):
(HOAMSs) and outline motivating examples. Surpris- func(x) {x*x}(3)
ingly, this concept has not been widely explored in the — 3*3
context of EOO-languages (Section 2). -9

e The paper gives an informal introduction to physical The lines starting with a left arrow-{) show the evaluation
modeling in our small research language called Mod- steps when the expression is executed.
eling Kernel Language (MKL) (Section 3). However, it is often convenient to name values. Since
anonymous functions are treated as values, they can be
defined to have a name using thef constructin the same
way as constants.

¢ We give several concrete examples within the electri-
cal and mechanical domain, showing how HOAMs can
be used to create highly reusable modeling and model

transformation/composition libraries (Section 4). def pi = 3.14
]])) def power2 = func(x){x*x}
Finally, we discuss future perspectives of higher-order

acausal modeling (Section 5), and related work (Section Here, botfpi and functiorpower 2 can be used within the

6). defined scope. Hence, the definitions can be used to create
new expressions for evaluation, for example:
2. The Basic Idea of Higher-Order power 2(pi)

— power 2(3. 14)
— 3.14 » 3. 14
— 9. 8596

In the following section we first introduce the well estab-
lished concept of anonymous functions and the main ideas
of traditional higher-order functions. In the last part of the
section we introduce acausal models and the idea of treat-

. . .) 2.2 Higher-Order Functions
ing models with acausal connections to be higher-order. ¢

In many situations, it is useful to pass a function as an
2.1 Anonymous Functions argument to another function, or to return a function as a

In functional languages, such as Haskell [23] and Standard result of executing a function. When functions are treated
ML [16], the most fundamental language construct is func- @s values and can be passed around freely as any other
tions. Functions correspond to partial mathematical func- value, they are said to Hest-class citizensin such a case,
tions, i.e., a functiorf : A — B gives a mapping from (a the language supportsgher-order functions

subset of) the domair to the codomairi3. _ DEFINITION 1 (Higher-Order Function).

In_th|s paper we descr.|be thg concepts of higher-order p higher-order function is a function that

functions and models using a tiny untyped research lan-]

guage calledModeling Kernel Language (MKL)he lan- 1. takes another function as argument, and/or

guage has similar modeling capabilities as parts of the 2. returns a function as the result.

Modelica language, but is primarily aimed at investigating | et ys first show the former case where functions are
novel language concepts, rather than being a full-fledged passed as values. Consider the following function defini-

modeling and simulation language. In this paper an infor- +on of t wi ce, which applies the functioh two times on
mal example-based presentation is given. However, a for- y, and then returns the result.

mal operational semantics of the dynamic elaboration se-
mantics for this language is available in [4].

In MKL, similar to general purpose functional lan-
guages, functions can be defined to &®onymousi.e.,

the function is defined without an explicit naming. For ex- The functiont wi ce can then be used with an arbitrary
ample, the expression functionf , assuming that types match. For example, using
it in combination withpower 2, this function is applied
twice.

def twice = func(f,y){
f(f(y))

1

func(x){x*x}

is an anonymous function that has a formal parametes twi ce(power 2, 3)
input parameter and returrssquared. Formal parameters power 2(pov,ver 2(3))
are written within parentheses after thenc keyword, — power 2(3*3)

: o — power 2(9)
1In programming language theory, an anonymous function is called a . 99
lambda abstractionwritten Ax.e, wherez is the formal parameter and

is the expression representing the body of the function. The corresponding — 81

syntactic form in MKL for a lambda abstractionfisinc p{ e} , wherep Sincet wi ce can take any function as an argument, we can
is apattern A pattern can be a-ary tuple enclosed in parenthesis, e.g., a !

tuple pattern with one parameter can have the forh and one with two applyt wi ce toan anonymous function, passed directly as
parameterg X, y) . an argument to the functidnwi ce.

60

“Static” semantics / compile time

EOO . _ '
model | HybridDAE | » | Executable Simulation
Elaboration Equation Simulation Result
Transformation &

“Dynamic” semantics / run time

Code generation

Figure 1. Outline of a typical compilation and simulation process for an EOO language tool.

twi ce(func(x){2+x-3},5)
func(x){2+«x-3}(func(x){2+xx-3}(5))
— func(x){2*x-3}(2*5-3)

— func(x){2*x-3}(7)

2x7-3

11

—

—

—

Let us now consider the second part of Definition 1, i.e., a
function that returns another function as the result.

In mathematics, functional composition is normally ex-
pressed using the infix operatarTwo functionsf : X —
Y andg : Y — Z can be composed tpo f : X — Z, by
using the definitior{g o f)(z) = g(f(x)).

The very same definition can be expressed in a language

supporting higher-order functions:

def conpose = func(g, f){
func(x){g(f(x))}

1

This example illustrates the creation of a new anonymous

function and returning it from theonpose function. The

function composes the two functions given as parametersto

conpose. Hence, this example illustrates both that higher-

order functions can be applied to functions passed as ar-

guments (using formal parametdrandg), and that new

programming other more advanced usages, such as list ma-
nipulation using functionsmap andf ol d, are very com-
mon.

2.3 Elaboration and Simulation of Acausal Models

In conventional object-oriented programming languages,
such as Java or C++, the behavior of classes is described
using methods. On the contrary, in equation-based object-
oriented languages, the continuous-time behavior is typi-
cally described using differential algebraic equations and
the discrete-time behavior using constructs generating
events. This behavior is grouped into abstractions called
classes or models (Modelica) or entities and architectures
(VHDL-AMS). From now on we refer to such an abstrac-
tion simply asmodels

Models are blue-prints for creatingodel instanceéin
Modelica called components). The models typically have
well-defined interfaces consisting of ports (also called con-
nectors), which can be connected together usiognec-
tions A typical property of EOO-languages is that these
connections usually agcausal meaning that the direction
of information flow between model instances is not defined
at modeling time.

In the context of EOO languages, we define acausal

functions can be created and returned as results (the anony (/S0 called non-causal) models as follows:

mous function).
To illustrate an evaluation trace of the composition func-
tion, we first define another functi@dd7

def add7 = func(x){7+x};

and then composeower 2 andadd?7 together, forming a
new functionf oo:

def foo = compose(power 2, add?);
— def foo = func(x){power2(add7(x))};

Note how the functiorronpose applied topower 2 and
add7 evaluates to an anonymous function. Now, the new
functionf oo can be applied to some argument, e.g.,

foo(4)

— func(x) {power2(add7(x))}(4)
power 2(add7(4))

power 2(7+4)

— power 2(11)

11«11

121

—

—

—

—

DEFINITION 2 (Acausal Model).
An acausal model is an abstraction that encapsulates and
composes

1. continuous-time behavior in form of differential alge-
braic equations (DAES).

2. other interconnected acausal models, where the direc-
tion of information flow between sub-models is not spec-
ified.

In many EOO languages, acausal models also contain con-

ditional constructs for handling discrete events. Moreover,

connections between model instances can typically both
express potential connections (across) and flow (also called
through) connections generating sum-to-zero equations.

Examples of acausal models in both MKL and Modelica

are given in Figure 2 and described in Section 3.1.

A typical implementation of an EOO language, when
used for modeling and simulation, is outlined in Figure 1.
In the first phase, a hierarchically composed acausal model
is elaborated(also called flattened or instantiated) into
a hybrid DAE, describing both continuous-time behavior

The simple numerical examples given here only show the (DAEs) and discrete-time behavior (e.g., when-equations).

very basic principle of higher-order functions. In functional

61

The second phase perforreguation transformations and

code generationwhich produces executable target code. function and stored in a standard library, and then reused
When this code is executed, the actual simulation of the with different user defined models.

model takes place, which produces a simulation result. = Some special and complex language constructs in cur-
In the most common implementations, e.g., Dymola [7] rently available EOO languages express part of the de-
or OpenModelica [26], the first two phases occur during scribed functionality (e.g., the redeclare and for-equation
compile time and the simulation can be viewed as the constructs in Modelica). However, in the next sections we
run-time. However, this is not a necessary requirement of show that the concept of acausal higher-order models is a
EOO languages in general, especially not if the language small, but very powerful and expressive language construct
supports structurally dynamic systems (e.g., Sol [29], FHM that subsumes and/or can be used to define several other

[18], or MOSILAB [8]). more complex language constructs. If the end user finds
_ this more functional approach of modeling easy or hard
2.4 Higher-Order Acausal Models depends of course on many factors, e.g., previous program-

In EOO languages models are typically treated as compile ming language experiences, syntax preferences, and math-

time entities, which are translated into hybrid DAEs during ematical skills. However, from a semantic point of view,

the elaboration phase. We have previously seen how func-we show that the approach is very expressive, since few

tions can be turned into first-class citizens, passed around,language constructs enable rich modeling capabilities in a

and dynamically created during evaluation. Can the same relatively small kernel language.

concept of higher-order semantics be generalized to also

apply to acausal models in EOO languages? If so, does this3. Basic Physical Modeling in MKL

give any improved expressive power in such generalized Tg concretely demonstrate the power of HOAMs, we use

EOO language? our tiny research language Modeling Kernel Language
In the next section we describe concrete examples of (MKL). The higher-order function concept of the language

acausal modeling using MKL. However, let us first define \as briefly introduced in the previous section. In this sec-

what we actually mean by higher-order acausal models. tion we informally outline the basic idea of physical model-

DEFINITION 3 (Higher-Order Acausal Model (HOAM)). in_g in MKL; a prerequisite for Se_ction 4, which introduces
A higher-order acausal model is an acausal model, which higher-order acausal models using MKL.

can be 3.1 A Simple Electrical Circuit

1. parametrized with other HOAMSs. To illustrate the basic modeling capabilities of MKL, the

2. recursively composed to generate new HOAMs. classic simple electrical circuit model is given in Figure 2.

3. passed as argument to, or returned as result from func- Part (1) shows the graphical layout of the model and (1)
tions. shows the corresponding textual model given in MKL. For

clarity to the readers familiar with the Modelica language,

metrized by other models. For example, the constructor of a extyal code (111).

automobile model can take as argumentanother modelrep- |5 VKL, models are always defined anonymously. In

resenting a gearbox. Hence, different automobile instancesihe same way as for anonymous functions, an anonymous
can be created with different gearboxes, as long as the gearodel can also be given a name, which is in this exam-
boxes respects the interface (i.e., type) of the gearbox pa-pje done by giving the model the namér cui t . The
rameter of the automobile model. Moreover, an automobile yqde| takes zero formal parameters, given by the empty tu-
model does not necessarily need to be instantiated with apje (parenthesized list) to the right of the keywomidel .
specific gearbox, but onlgpecializedvith a specific gear- The contents of the model is given within curly braces. The
box model, thus generating a new more specific model. first four statements define four newires, i.e., connec-

The second case of Definition 3 states that a model can jon points from which the different components (model
reference itself; resulting in a recursive model definition. jnstances) can be connected.

This capability can for example express models composed The six components defined in this circuit correspond to
of many similar parts, e.g., discretization of flexible shafts {ne layout given in part (1) in Figure 2. Consider the first

in mechanical systems or pipes in fluid models. resistor instantiated using the following:
Finally, the third case emphasizes the fact that HOAMs)
d?eS| stor(wl, w2, 10);

are first-class citizens, e.g., that models can be both passe
as arguments to functions and created and returned as re-The two first arguments state that wire& andw?2 are

sults from functions. Hence, in the same way as in the connected to this resistor. The last argument expresses that
case of higher-order functions, generic reusable functions the resistance for this instance is 10 Ohm. Wigeis also

can be created that perform various tasks on arbitrary mod- given as argument to the capacitor, stating that the first
els, as long as they respect the defined types (interfaces) ofresistor and the capacitor are connected using wire

the models’ formal parameters. Consequently, this property Modeling using MKL differs in several ways compared
enableanodel transformation® be defined and executed to Modelica (Figure 2, part Ill). First, models are not de-
within the modeling language itself. For example, certain fined anonymously in Modelica and are not treated as first-
discretizations of models can be implemented as a genericclass citizens. Second, the way acausal connections are de-

62

0] (1
w1 def Circuit = nodel (){ nodel Circuit
def wl = Wre(); Resi stor R1(R=10);
def w2 = Wre(); Capacitor C(C=0.01);
def w3 = Wre(); Resi stor R2(R=100);
R=10 R=100 def w4 = Wre(); I nductor L(L=0.1);
n Resi st or (wl, w2, 10) ; Vsour ceAC AC(VA=220);
VA=220 Capaci tor (w2, w4, 0. 01) ; G ound G
5) w2 w3 Resi st or (wl, w3, 100) ; equation
I nduct or (w3, w4, 0. 1) ; connect (AC. p, Rl.p);
0 VSour ceAC(w1, w4, 220) ; connect (R1.n, C.p);
Ground(w4) ; connect(C.n, AC n);
€=0.01 L=0.1 }: connect (RL.p, R2.p);
connect (R2.n, L.p);
connect(L.n, C.n);
wa connect (AC.n, G p);

end Circuit;

H

Figure 2. Model of a simple electrical circuit. Figure part (I) shows the graphical model of the circuit, (Il) gives the
corresponding MKL model definition, and (l1l) shows a Modelica model of the same circuit.

fined between model instances differs. In MKL, the con- The first element of the defined tuple expresses the cre-
nection (in this electrical case a wire), is created and then ation of a new unknown continuous-time variable using the
connected to the model instances by giving it as argu- syntaxvar () . The variable could also been assigned an
ments to the creation of sub-model instances. In Model- initial value, which is used as a start value when solving
ica, a speciatonnect -equation construct is defined in the differential equation system. For example, creating a
the language. This construct is used to define binary con- variable with initial value 10 can be written using the ex-
nections between connectors of sub-model instances. Frompressionvar (10) . Variables defined usingar () corre-

a user point of view, both approaches can be used to ex- spond topotentialvariables, i.e., the voltage in this exam-
press acausal connections between model instance. Henceple.

we letit be up to the reader to judge what is the mostnatural The second part of the tuple expresses the current in the
way of defining interconnections. However, from a formal wire by using the construétl ow() , which creates a new
semantics point of view, in regards to HOAMs, we have flow-node. This construct is the essential part in the formal
found it easier to encode connections using ordinary pa- semantics of [4]. However, in this informal introduction,
rameter passing style we just accept that Kirchhoff’s current law with sum to zero
at nodes is managed in a correct way.

In the circuit definition (Figure 2, part 1l) we used the
The concept of wire is not built into the language. Instead, syntaxW r e() , which means that the function is invoked
it is defined using an anonymous function, referring to the without arguments. The function call returns the tuple
built-in constructsrar () andf | ow(): (var (), flow()) . Hence, theN r e definition is used
def Wre = func(){ for encap.sulating the tuple, allowing the Qe_fi.nition to be

(var (), flow)) reused vynhout the need to restate its definition over and
}: over again.

3.2 Connections, Variables, and Flow Nodes

Here, a function calledN r e is defined by using the 3.3 Models and Equation Systems

anonymous function construttinc. The definition states The main model in this example is already given as the
that the function has an empty formal parameter list (i.e., o r cui t model. This model contains instances of other
takes an empty tuple) as argument) and returns a tuple odels, such as thBesi st or. These models are also

(var (), flow()), consisting of two elements. A tuple gefined using model definitions. Consider the following
is expressed as a sequence of terms separated by commagy,q models:

and enclosed in parentheses.

def TwoPin = nodel ((pv, pi), (nv,ni),v){
2In the technical report [4], we have been able to define the elaboration vV = pv - nv;

semantics with HOAMs using an effectful small-step operational seman- 0 =pi +ni;

tics. The main challenge of handling HOAMs and acausal connections

concerns the treatment of flow variables and sum-to-zero equation. By us- * ’

ing the parameter passing style, we avoid Modelica’s informal semantic

approach of using connection-sets. Moreover, by using this approach, the

generated sum-to-zero equations implicitly gets the right signs, without

the need of keeping track of outside/inside connectors.

63

def Resistor nodel (p, n, R {
def (_,pi) = p;
def v = var();
TwoPi n(p, n, v);
R« pi =v;

b
Inthe same way as fd@i r cui t , these sub-models are de-
fined anonymously using the keywamddel followed by
a formal parameter and the model's content stated within
curly braces. A formal parameter can be a patterngte
tern matching is used for decomposing arguments. Inside
the body of the model, definitions, components, and equa-
tions can be stated in any order within the same scope.
The general modeélwoPi n is used for defining com-
mon behavior of a model with two connection points.
TwoPi n is defined using an anonymous model, which here

3.4 Executing the Model

Recall Figure 1, which outlined the compilation and simu-
lation process for a typical EOO language. When a model
is evaluated (executed) in MKL, this means the process
of elaborating a model into a DAE. Hence, the steps of
equation transformation, code generation, and simulation
are not part of the currently defined language semantics.
This latter steps can be conducted in a similar manner as
for an ordinary Modelica implementation. Alternatively,
the resulting equation system can be used for other pur-
poses, such as optimization [14]. In the next section we
illustrate several examples of how HOAMs can be used.
Consequently, these examples concern the use of HOAMs
during the elaboration phase, and not during the simula-
tion phase. Further discussion on future aspects of HOAMs
during these latter phases is given in Section 5.

takes one formal parameter. This parameter specifies that

the argument must be a 3-tuple with the specified structure,
wherepv, pi , nv, ni , andv are pattern variables. Here
pv means positive voltage, amil negative current. Since
the illustrated language is untyped, illegal patterns are not
discovered until run-time.

Both models contain new definitions and equations. The
equationv = pv - nv; in TwoPi n states the voltage
drop over a component that is an instanc@&wbPi n. The
definition of the voltages is given as a formal parameter
to TwoPi n. Note that the direction of the causality of this
formal parameter is not defined at modeling time.

The resistor is defined in a similar manner, where the
third elementR of the input parameter is the resistance.
Thefirstlinedef (_, pi) = p; isanalternative way of
pattern matching where the currgmit is extracted fronp.

The pattern_ states that the matched value is ignored. The
second row defines a new variabidor the voltage. This
variable is used both as an argument to the instantiation
of TwoPi n and as part of the equatid® pi =v; stating
Ohm’s law. Note that the wirep and n are connected
directly to theTwoPi n instance.

The inductor model is defined similarly to tResi st or
model:

def Inductor = nodel (p,n,L){
def (_, pi) = p;
def v = var(0);
TwoPi n(p, n, v);
Lxder(pi) = v;
b

The main difference to thdResi st or model is that
the I nduct or model contains a differential equation
Lxder(pi) = v;, where thepi variable is differen-
tiated with respect to time using the builtder operator.

The other sub-models shown in this exam@edgund,
VSour ceAC, and Capaci t or) is defined in a similar
manner as the one above.

3 A pattern can be a variable name, an underscore, or a tuple. When ar-

4. Examples of Higher-Order Modeling

In Definition 3 (Section 2.4) we defined the meaning of

HOAMs, giving three statements on how HOAMs can be

used. This section is divided into sub-sections, where we
exemplify these three kinds of usage by giving examples in
MKL.

4.1 Parameterization of Models with Models

A common goal of model design is to make model li-
braries extensible and reusable. A natural requirement
is to be able to parameterize models with other mod-
els, i.e., to reuse a model by replacing some of the sub-
models with other models. To illustrate the main idea of
parameterized acausal models, consider the following over-
simplified example of an automobile model, where we use
Connecti on() with the same meaning as the previous
Wre():

def Autonobil e = nodel (Engi ne,
def c1 Connection();
def c2 Connection();
Engi ne(cl);
Gear box(cl, c2);
Tire(c2); Tire(c2);

Tire)({

Tire(c2); Tire(c2)

I

In the example, the automobile is defined to have two
formal parameters; aBngi ne model and a’i r e model.

To create a model instance of the automobile, the model can
be applied to a specific engine, e.g., a mdaedi neV6

and some type of tire, e.d@i r eTypeA:

Aut onobi | e(Engi neV6, Ti reTypeA) ;

If later on a new engine was developed, eEmgi neVs, a
new automobile model instance can be created by changing
the arguments when the model instance is created, e.g.,

Aut onobi | e(Engi neV8, Ti reTypeA) ;

gument values are passed, each value is matched against its correspondHence, new model instances can be created without the

ing pattern. A variable is bqund _to the co_rrespondlng .argument_ value, an need to modify the definition of th&ut onmobi | e model.
underscore matches anything, i.e., nothing happens; a tuple is matched

against a tuple value resulting in that each variable name in the tuple pat- 1 NiS !S analogous to a higher-order function which takes a
tern is bound to the corresponding value in the tuple. function as a parameter.

DCMotor

Shaft elements: 1..N

Resistor nductor | - - - - - - - - |

J=0.2

Voltage
Source EMF

—QFV=60

Ground |

Inertia Inertia

— e I

Figure 3. A mechatronic system with a direct current (DC) motor to the left and a flexible shaft to the right. The flexible
shaft consists of to N elements, where each element includes an inertia, a spring, and a damper.

In the example above, the definition Afit onobi | e In the middle of the model in Figure 3 a rotational body
was not parametrized on ti@&ar box model. Hence, the with InertiaJ=0.2 is defined. This body is connected to a
Gear box definition must be given in the lexical scope of flexible shaft, i.e., a shaft which is divided into a number of
the Aut onobi | e definition. However, this model could small bodies connected in series with a spring and a damper
of course also be defined as a parametéwbonobi | e. in parallel in between each pair of bodiéé.is the number

This way of reusing acausal models has obvious streng- of shaft elements that the shaft consists of.
ths, and it is therefore not surprising that constructs with A model of the mechatronic system is described by the
similar capabilities are available in some EOO languages, following MKL source code.

e.g., the specialedecl! ar e construct in Modelica. How- def MechSys = model (){

ever, instead of creating a special language construct for def cl1 = Rot Con():
this kind of reuse, we believe that HOAMs can give sim- def c2 = RotCon();
pler and a more uniform semantics of a EOO language. DCMbt or (c1);
. . Inertia(cl, c2,0.2);
4.2 Recursively Defined Models FI exi bl eShaf t (¢2, Rot Con(), 120) :

In many applications it is enough to hierarchically com- };

pose models by explicitly defining model instances within - the most interesting part is the definition of the component

each other (e.g., the simpl@ rcuit example). How- gy oy p| eShaf t . This shaft is connected to the Inertia
ever, sometimes several hundreds of model instances of theto the left. To the right, an empty rotational connection is

same model should be connected to each other. This can Ofcreated using the constructi®t Con() , resulting in the

course be achieved manually by creating hundreds of ex- (gt side not being connected. The third argument states

plicit instances. However, this results in very large models {4t the shaft should consist of 120 elements.

that are hard to maintain and get an overview of. Can these 120 elements be described without the need of
One solution could be to add a loop-construct to the ¢qqe guplication? Yes, by the simple but powerful mecha-

EOO language. This is the approach taken in Modelica, nism of recursively defined models. Consider the following
with the f or -equation construct. However, such an extra self-explanatory definitions @haf t El ement :

language construct is actually not needed to model this

behavior. Analogously to defining recursive functions, we 9€f jh?ft E' f'TERgt o; rmfje' (ca, cb){
can defingecursive modelsThis gives the same modeling Seri ﬁ (;a Ctl 8;1.() ’

possibilities as adding theor -construct. However, it is Dgrrpe?(cay cl’ 1 ;3),

more declarative and we hqve also found it easier t_o def|r_1e Inertia(ci, cb,0.03):

a compact formal semantics of the language using this }:

construct.))

Consider Figure 3 which shows a Mechatronic model, This model represents just one of the 120 elements con-
i.e., a model containing components from both the electri- nected in series in the flexible shaft. The actual flexible
cal and mechanical domain. The left hand side of the model Shaft model is recursively defined and makes use of the
shows a simple direct current (DC) motor. The electromo- Shaf t El ement model:
toric force (EMF) component converts electrical energy to defrec Fl exi bl eShaft = nodel (ca, cb, n){

mechanical rotational energy. If we recall from Section 2, i f(n==1)

the connection between electrical components was defined Shaf t El enent (ca, cb)
using theW r e definition. However, in the rotational me- el sef

chanical domain, the connection is instead defined by using def cl = RotCon();

Shaft El enent (ca, cl);

the angle for the potential variable and the torque for flow.
g P q Fl exi bl eShaf t (c1, cb, n-1)

The rotational connection is defined as follows:
def RotCon = func(){(var(),flowm))}; };

}s

65

The recursive definition is analogous to a standard recur- For example, a new modé&loo that composes two other
sively defined function, where thef -expression evaluates models can be defined as follows:

to false, as long as the count parametds not equal to def Foo = conposeparal | el (set (Resistor, 100),
1. For each recursive step, a new connection is created set (I nductor, 0.1));
by definingc1, which connects the shaft elements in se-
ries. Note that the last element of the shaft is connected to

the second port of thel exi bl eShaft model, since the

A standard library can then further be enhanced with other
generic functions, e.g., a function that composes two mod-

shaft element created when the-expression is evaluated elsin series:

to true takes parameteb as an argument. def conposeserial = func(M, M, Con){
When theMechSys model is elaborated using our model (p, n){

MKL prototype implementation, it results in a DAE con- def w - Con();

sisting of 3159 equations and the same number of un- %E\?v ‘r’:’;

knowns. It is obviously beneficial to be able to define re- }
cursive models in cases such as the one above, instead og;
manually creating 120 instances of a shaft element. o .)
However, it is still a bit annoying to be forced to write HOWeVer, this time the function takes a third argument,
the recursive model definition each time one wants to seri- "@mely & connector, which is used to create the connec-
alize a number of model instances. Is it possible to capture fion between the models created in series. Since different
and define this serialization behavior once and for all, and domains have different kinds of connections (Wires, Rot-
then reuse this functionality? Qon etc.), this must pe supplied asan argu.ment to the func-
tion. These connections are defined as higher-order func-
4.3 Higher-Order Functions for Generic Model tions and can therefore easily be passed as a value to the

Transformation conposeseri al function.

In the previous section we have seen how models can be We have now created two simple generic functions
reused by applying models to other models, or to recur- which compose models in parallel and in series. How-
sively define models. In this section we show that it is in- €Ver, can we create a generic function that takes a model
deed possible to define several kindstddel transforma- M, & connectoC', and an integer, and then returns a
tionsby using higher-order functions. These functions can New model where: number of models\/ has been con-
in turn be part of a modeling language’s standard library, nNected in series, using connecto® If this is possible,
enabling reuse of model transformation functions. we do not have to create a special recursive model for the
Recall the example from Section 2.2 of higher-order Fl exi bl eShaft, as shown in the previous section.
functions returning other anonymously defined functions. ~ Fortunately, this is indeed possible by combining a
Assume that we want to create a generic function’ which generiC recursive model and a higher'order function. FirSt,
can take any two models that have two ports defined We define arecursive modeecrodel :

(Resi st or, Capaci tor, Shaft El enent etc), and defrec recnodel = model (M C, ca, cb, n){
then compose them together by connecting them in paral- i f(n==1)
lel, and then return this new model: M ca, cb)
def conposeparal l el = func(M, M) { el seg _ .
ef c1 = C();
nmodel (p, n){ 1) -
I\/ll(p n). Mca,c),
I\/E(p’n)z recnodel (M C, c1, ch, n-1);
Y ¥
}

b

Note the similarities to the recursively defined model
FI exi bl eShaf t . However, in this version an arbitrary
modelMis composed in series, using connector parameter

b

However, our moddResi st or etc. does not take two ar-
guments, but 3, where the last one is the value for the partic-
ular component (resistance for tResi st or , inductance

for thel nduct or etc.). Hence, itis convenientto define a
function that sets the value of this kind of model and returns
a morespecializednodef:

To make this model useful, we encapsulate itin a higher-
order function, which takes a modg| a connecto€C, and
an integer numben of the number of wanted models in

def set = func(Mval){ series as input:
m)de:\é S 2)5/al): def serialize = func(M C, n){
} T ' nmodel (ca, cb) {
}: recnodel (M C, ca, cb, n);
’ }

4In these examples we are using tuples as argument to the function, b

whlch r_nak_es it necessary to introduce a set funct_|on._The same kind of Now, we can once again define the mechatronic system
specialization can of course also be performed usimgying. However,

we have chosen to use the tuple notation, since it is likely to be more given in _Figu_re 3, but this time by using the generic func-
accessible for the reader with little experience of functional languages. tionseri al i ze:

66

def MekSys2 = nodel (){ to a generic flow connection structure with unspecified me-

def ¢l = Rot Con(),; dia. The selection of a media of type water in the source
def c2 = RotCon(); would automatically propagate to other objects.
DCMVot or(cl);
Inertia(cl, c2,0.2);
def Fi e§<i bl eShaf t L 6. Related Work

seri al i ze(Shaf t El enent, Rot Con, 120) ; The main emphasis of this work is to explore the language
Fl exi bl eShaft(c2, Rot Con()); concept of HOAMs in the context of EOO languages. In the

H following we briefly discuss three aspects of work which is

Even if the serialize function might seem a bit compli- related to this topic.

cated to define, the good news is that such functions usually .))

are created by library developers and not end-users. Fortu-6-1 Functional Hybrid Modeling

nately, the end-user only has to call the serialize function As mentioned in the introduction, our notation of HOAMs
and then use the newly created model. For example, to cre-has similarities tdirst-class relations on signalas out-
ate a new model, where 50 resistors are composed in seriedined in the context of Functional Hybrid Modeling (FHM)

is as easy as the following: [18, 19]. The concepts in FHM are a generalization of
def Res50 = Functional Reactive Programming (FRP) [28], which is
serial i ze(set (Resi stor, 100), Wre, 50): based on reactive programming with causal hybrid mod-

eling capabilities. Both FHM and FRP are basedsig

. . nalsthat conceptually are functions over time. While FRP

5. Future_ Perspectives of Higher-Order supports causal modeling, the aim of FHM is to support
Modeling acausal modeling with structurally dynamic systems. How-

Our current design of higher-order acausal modeling capa- ever, the work of FHM is currently at an early stage and

bilities as presented here is restricted to executing during no published formal semantics orimplementation currently

the compiler (or interpreter) model elaboration phase, i.e., exist.

it cannot interact with run-time objects during simulation. HOAMs are similar to FHM's relations on signals in
However, removing this restriction gives interesting possi- the sense that they are both first-class and that they can
bilities for run-time higher-order acausal modeling: recursively reference themselves. In this paper we have

showed how recursion can be used to define large structures
of connected models, while in [19] ideas are outlined how
it can be used for structurally dynamic systems.

One difference is that FHM'’s relations on signals are
as its name states only relations on signals, while MKL
acausal models can be parameterized on any type, e.g.,
other HOAMSs or constants. By contrast, FHM's relation on
signals can be parameterized by other relations or constants
e Structural variability [8, 18, 19, 29] of models and sys- using ordinary functional abstraction, i.e., free variables

tems of equations means that the model structure caninside a relation can be bound by a surrounding function
change at run-time, e.g., change in causality and/or abstraction. There are obvious syntactic differences, but the
number of equations. Run-time support for higher-order more specific semantic differences are currently hard to
acausal model can be seen as a general approach tacompare, since there are no public semantic specification
structurally variable systems. These ideas are discussedavailable for any FHM language.
in [18, 19] in the context of Functional Hybrid Model- The work with MKL has currently focused on formal-
ing (FHM). izing a kernel language for the elaboration process of typ-
ical EOO languages, such as Modelica. Hence, the formal
semantics of MKL defined in [4] investigates the compli-
cations when HOAMs are combined with flow variables,
generating sum-to-zero equations. How this kind of issue
¢ How can static strong type checking be preserved? is handled in FHM is currently not published.

¢ How can high performance from compile-time opti-
mizations be preserved? One example is index reduc-
tion, which requires symbolic manipulation of equa- The notion of higher-order models is related to, but differ-
tions. ent from metamodeling and metaprogramming. A metapro-
gram is a program that takes other programs/models as data
and produces programs/models as data, i.e., meta-programs
can manipulat@bject programd21]. A metamodel may
Another future generalization of higher-order acausal mod- also have a subset of this functionality, i.e., it may spec-
eling would be to allow models to be propagated along con- ify the structure of other models represented as data, but
nections. For example, a water source could be connectednot necessarily be executable and produce other models.

¢ The run-time results of simulation can be used in con-
junction with models as first-class objects in the lan-
guage, i.e., run-time creation of models, composition of
models, and returning models. This is also useful in ap-
plications such as model-based optimization or model-
based control, influenced by results from (on-line) sim-
ulation of models, e.qg., [9].

These run-time modeling facilities provide more flexibility
and expressive power but also give rise to several research
challenges that need to be addressed:

6.2 Metaprogramming and Metamodeling

¢ How can we define a formal sound semantics for such a
language?

67

Staged metaprogramming can be achieved by quoting/un-return a model from a function. Redeclaration is similar to
quoting operations applied in two or more stages, e.g., as C++ templates and Java Generics in that it allows passing
in MetaML [25] and Template Haskell [22]. types/models, butis more closely integrated in the language
We have earlier developed a simple metaprogramming since it part of the class/model concept rather than being a
facility for Modelica by introducing quoting/unquoting completely separate feature. The Modelica redeclare can
mechanisms [2], but with limited ability to perform op- be seen as a special case of the more general concept of
erations on code. A later extension [12] introduced general higher-order acausal models.
metaprogramming operations based on pattern-matching Modelica also provides the concept of for-equations
and transformations of abstract-syntax tree representationsto express repetitive equations and connection structures.
of models/programs similar to those found in many func- Since iteration can be expressed as recursion, also for mod-
tional programming languages. els as shown in Section 4.2, the concept of for-equations
By contrast, the notion of higher-order models in this can be expressed as a special case of the more general con-
paper allows direct access to models in the language, e.g.,cept of recursive models included in higher-order acausal
passing models to models and functions, returning models, models.
etc, without first representing (or viewing, reifying) mod- Even though EOO languages, such as Modelica, does
els as data. This allows more integrated access to such fa-not support HOAMs at the syntax level, HOAMs can still
cilities within the language including integration with the be very useful as a semantic concept for describing a pre-
type system. Moreover, it often implies simpler usage and cise formal semantics of the language. Language con-
increased re-use compared to what is typically offered by structs, such a§or -equations, can then be transformed
metaprogramming approaches. down to a smaller kernel language. Having a small pre-
Metaprogramming, on the other hand, offers the pos- cisely defined language semantics can then make the lan-
sibility of greater generality on the allowed operations on guage specification less ambiguous, enable better formal
models, e.g., symbolic differentiation of model equations, model checking possibilities, as well as providing more
and the possibility of compile-time only approaches with- accurate model exchange.
out any run-time penalty.
. We s_ho_uld also mention the common usage of !nterpre- 7. Conclusions
tive scripting languages, e.g., Python, or add-on interpre- o .
tive scripting facilities using algorithmic parts of the mod- Ve have in this paper informally presented how the concept
eling language itself such as in OpenModelica[12] and Dy- ©f higher-order functions can be combined with acausal
mola [7]. This works in practice, but is less well integrated Models. This concept, which we call higher-order acausal
and typically a bit ad hoc. This either requires two lan- models (HOAMs), has been shown to be a fairly simple and
guages (e.g., Python and Modelica), or a separate interpre-y&t powerful construct, which enables both parameterized
tive implementation of a subset of the same language (e.g., Models and recursively defined models. Moreover, by com-

Modelica scripting) which often give some differences in Pining it with functions, we have briefly shown how it can
semantics, ad hoc restrictions, and inconsistent or partially P& used to create reusable model transformation functions,

missing integration with a general type system. which typically can be part of a model language’s standard
library. The examples and the implementation were given
6.3 Modelica Redeclare and For-Equations in a small research language called Modeling Kernel Lan-

Modelica [17] provides a powerful facility called redecla- 9u29€ (MKL), and it was illustrated how HOAMs can be
ration, which has some capabilities of higher order mod- used during the elaboration phase. However, the concept is

els. Using redeclare, models can be passed as argumentQOt"mited to the elaboration phase, and we believe that fu-
to models (but not to functions using ordinary argument ture research in the area of HOAMs at runtime can enable

both more declarative expressiveness as well as simplified

passing mechanisms e.g., at run-time), and returned from X
semantics of EOO languages.

models in the context of defining a new model. For exam-

ple:
nodel RefinedResistorCircuit = Acknowledgments
GenericResistorCircuit We would like to thank Jeremy Siek and the anonymous
(redecl are nodel ResistorMdel = reviewers for many useful comments on this paper. This
TenpResi stor); research work was funded by CUGS (the National Gradu-

ate School in Computer Science, Sweden) and by Vinnova
under the NETPROG Safe and Secure Modeling and Sim-
ulation on the GRID project.

Redeclaration can also be used to adapt a model when it is
inherited:

extends GenericResistorCircuit
(redecl are nodel ResistorMdel =

TenpResi st or) References
) L .]) [1] Mats AnderssonObject-Oriented Modeling and Simulation
Redeclare is a compile-time facility which operates during of Hybrid SystemsPhD thesis, Department of Automatic
the model elaboration phase. Moreover, using redeclare Control, Lund Institute of Technology, Sweden, December
it is not possible to pass a model to a function, or to 1994,

68

[2] Peter Aronsson, Peter Fritzson, Levon Saldamli, Peter
Bunus, and Kaj Nystrom. Meta Programming and Function
Overloading in OpenModelica. IRroceedings of the
3rd International Modelica Conferenc@ages 431-440,
Linkdping, Sweden, 2003.

[3] Paul Inigo Barton. The Modelling and Simulation of
Combined Discrete/Continuous Processeé2hD thesis,
Department of Chemical Engineering, Imperial Collage of
Science, Technology and Medicine, London, UK, 1992.

[4] David Broman. Flow Lambda Calculus for Declarative
Physical Connection Semantics. Technical Reports in
Computer and Information Science No. 1, LIU Electronic
Press, 2007.

[5] Ernst Christen and Kenneth Bakalar. VHDL-AMS - A
Hardware Description Language for Analog and Mixed-
Signal Applications. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing
46(10):1263-1272, 1999.

[6] Ole-Johan Dahl and Kristen Nygaard. SIMULA: an
ALGOL-based simulation languageCommunications of
the ACM 9(9):671-678, 1966.

[7] Dynasim. Dymola - Dynamic Modeling Laboratory
(Dynasim AB). http://ww. dynasi m se/ [Last
accessed: April 30, 2008].

[8] Christoph Nytsch-Geusen et. al. MOSILAB: Development
of a Modelica based generic simulation tool supporting
model structural dynamics. IRroceedings of the 4th
International Modelica Conferencédamburg, Germany,
2005.

[9] Rudiger Franke, Manfred Rode, and Klaus Krtuiger. On-line
Optimization of Drum Boiler Startup. IfProceedings of
the 3rd International Modelica Conferengeages 287—296,
Linkdping, Sweden, 2003.

[10] Peter Fritzson.Principles of Object-Oriented Modeling
and Simulation with Modelica 2. Wiley-IEEE Press, New
York, USA, 2004.

[11] Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lund-
vall, Kaj Nystrém, Levon Saldamli, David Broman, and
Anders Sandholm. OpenModelica - A Free Open-Source
Environment for System Modeling, Simulation, and Teach-
ing. In IEEE International Symposium on Computer-Aided
Control Systems DesigiMunich, Germany, 2006.

[12] Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards
Comprehensive Meta-Modeling and Meta-Programming
Capabilities in Modelica. IrProceedings of the 4th
International Modelica Conferencpages 519-525, 2005.

[13] Georgina FabianA Language and Simulator for Hybrid
Systems PhD thesis, Institute for Programming research
and Algorithmics, Technische Universiteit Eindhoven,
Netherlands, Netherlands, 1999.

[14] Johan AkessonLanguages and Tools for Optimization of
Large-Scale SystemBhD thesis, Department of Automatic
Control, Lund Institute of Technology, Sweden, November
2007.

[15] MathWorks. The Mathworks - Simulink - Simulation
and Model-Based Desigrt t p: / / www. mat hwor ks.
coni product s/ si mul i nk/ [Lastaccessed: November
8, 2007].

[16] Robin Milner, Mads Tofte, Robert Harper, and David

69

MacQuee. The Definition of Standard ML - Revisedhe
MIT Press, 1997.

[17] Modelica Association. Modelica - A Unified Object-
Oriented Language for Physical Systems Modeling -
Language Specification Version 3ZD07. Available from:
http://ww. nodel i ca. org.

[18] Henrik Nilsson, John Peterson, and Paul Hudak. Functional
Hybrid Modeling. InPractical Aspects of Declarative
Languages : 5th International Symposium, PADL 2003
volume 2562 ofLNCS pages 376-390, New Orleans,
Lousiana, USA, January 2003. Springer-Verlag.

[19] Henrik Nilsson, John Peterson, and Paul Hudak. Functional
Hybrid Modeling from an Object-Oriented Perspective. In
Proceedings of the 1st International Workshop on Equation-
Based Object-Oriented Languages and Tpplges 71-87,
Berlin, Germany, 2007. Linképing University Electronic
Press.

[20] M. Oh and Costas C. Pantelides. A modelling and Sim-
ulation Language for Combined Lumped and Distributed
Parameter System€omputers and Chemical Engineerjng
20(6-7):611-633, 1996.

[21] Tim Sheard. Accomplishments and research challenges in
meta-programming. IfProceedings of the Workshop on
Semantics, Applications, and Implementation of Program
Generation volume 2196 olLNCS pages 2—-44. Springer-
Verlag, 2001.

[22] Tim Sheard and Simon Peyton Jones. Template meta-
programming for Haskell. Itlaskell '02: Proceedings of
the 2002 ACM SIGPLAN workshop on Haskpliges 1-16,
New York, USA, 2002. ACM Press.

[23] Simon Peyton Jones$iaskell 98 Language and Libraries —
The Revised Repor€ambridge University Press, 2003.

[24] Bjarne Stroustrup. A history of C++ 1979-1991. HOPL-
Il: The second ACM SIGPLAN conference on History of
programming languagepages 271-297, New York, USA,
1993. ACM Press.

[25] Walid Taha and Tim Sheard. MetaML and multi-stage
programming with explicit annotations.Theoretical
Computer Scienc®48(1-2):211-242, 2000.

[26] The OpenModelica Projectsw. opennodel i ca. org
[Last accessed: May 8, 2008].

[27] D.A. van Beek, K.L. Man, MA. Reniers, J.e. Rooda,
and R.R.H Schiffelers. Syntax and consistent equation
semantics of hybrid Chi. The Journal of Logic and
Algebraic Programming68:129—-210, 2006.

[28] Zhanyong Wan and Paul Hudak. Functional reactive pro-
gramming from first principles. IPLDI '00: Proceedings
of the ACM SIGPLAN 2000 conference on Programming
language design and implementatigrages 242-252, New
York, USA, 2000. ACM Press.

[29] Dirk Zimmer. Enhancing Modelica towards variable
structure systems. IRroceedings of the 1st International
Workshop on Equation-Based Object-Oriented Languages
and Tools, pages 61-70, Berlin, Germany, 2007. Linkdping
University Electronic Press.

Type-Based Structural Analysisfor Modular Systems of Equations

Henrik Nilsson

School of Computer Science, University of Nottingham, UK
nhn@s. nott. ac. uk

Abstract However, establishing that a system of equatidas-
nitely is not solvablean be almost as helpful. Fortunately
there are criteria necessary (but not sufficient) for solvabil-
ity that can be checked more easily and that are applicable
to model fragments. A simple example is that the number of
variables (unknowns) and equations must agree. For exam-

This paper investigates a novel approach to a type system
for modular systems of equations; i.e., equation systems
constructed by composition of individual equation system

fragments. The purpose of the type system is to ensure, to
the extent possible, that the composed system is solvable. .) : _
The central idea is to attribute structural typeto equa- ple, Modelica as of version 3.0 [12] enforces this constraint
tion system fragments that reflects which variables occurin for modelfragments (and thus for a model as awhole) so as
which equations. In many instances, this allows over- and © €nable early detection of common modelling mistakes.
underdetermined system fragments to be identified sepa-K€€Ping track of the variable and equation balance is also
rately, without first having to assemble all fragments into the idea behind the structural constraint delta type system

a complete system of equations. The setting of the pa- 2] W't_h similar ams.) o .

per is equation-based, non-causal modelling, specifically 1S Paper is a preliminary investigation into an im-
Functional Hybrid Modelling (FHM). However, the cen- Proved type-based (and thus compile-time) analysis for de-
tral ideas are not tied to FHM, but should be applicable to €rMining when (fragments of) systems of equatioas-
equation-based modelling languages in general, like Mod- not be solve_d. '_I'he goal IS to pr_owde improved precision
elica, as well as to applications featuring modular systems compared with just counting variables and equations by at-

of equations outside the field of modelling and simulation. {fiPuting astructural typeto systems of equations reflecting
which variables occur in which equations. A type-based ap-

Keywords ~Equation-based, non-causal modelling; Mod- proach is adopted as that is a natural way of ensuring that
elica; Functional Hybrid Modelling; structural analysis; model fragments can be checked in isolation. This is par-

types; type-based analysis; dependent types ticularly important for structurally dynamic systems where
. parts of the system change over time. However, as long as
1. Introduction thetypesof the parts remain unchanged, and are reasonably

An important question in the context of equation-based informative, a meaningful analysis can still be carried out
modelling is whether or not the system of equations de- statically, at compile-time.
scribing the modelled entity is solvable. In general, thiscan ~ The development is carried out in the context of Func-
only be answered by studying the complete system of equa- tional Hybrid Modelling (FHM) [14, 15], as this provides a
tions, and often not even then, except by attempting to solve small and manageable modelling language framework that
the equations through simulation. helps keeping the focus on the essence of the problem.
This is problematic. Models are usually modular, i.e. FHM itself is still in an early stage of development. How-
described by combining small systems of equations into ever, the central ideas put forward in this paper are not tied
larger ones. Being able to detect problems with individ- to FHM, but should be applicable to equation-based mod-
ual parts or their combinations without first having to put elling languages like Modelica in general, as well as to ap-
together a complete system model is generally desirable. plications featuring modular systems of equations outside
Moreover, a system may bstructurally dynamic mean- the field of modelling and simulation. In effect, FHM is
ing that the system of equations describing its behaviour mainly used as a convenient and concise notation for mod-
changesover time. This implies that the question of the ular systems of equations.
solvability cannot be addressed prior to simulation. The rest of the paper is organised as follows. Section 2
provides general background and discusses related work.
Section 3 provides an overview of FHM in the interest of

2nd International Workshop on Equation-Based Object-Oriented makmg this paper relatlvely self-contained. Section 4 then

Languages and Tools. July 8, 2008, Paphos, Cyprus. develops the idea of structural types for modular systems
Copyright is held by the author/owner(s). The proceedings are published by of equations_ As an examp|e' this is app“ed to a simple
Link6ping University Electronic Press. Proceedings available at:

http: //waw. ep. | i u. sel ecp/ 029/ electrical circuit in Section 5. Finally, Section 6 discusses
EOQOLT 2008 website: future work and Section 7 gives conclusions.

http://ww. eool t. org/ 2008/

71

2. Background and Related Work

Object-oriented modelling languages like Modelica [12] al-
low models to be developed inmodularfashion: systems
of equations describing individual components are com-
posed into larger systems of equations describing aggre-
gates of components, and ultimately into a complete model
of the system under consideration. As with software in gen-
eral, such modularity is key to addressing the complexity
of large-scale development as it allows large problems to
be broken down into smaller ones that can be addresse
independently, enables reuse, etc.

Of course, it is possible that mistakes are made during
the development of a model. If so, it is desirable to catch

such mistakes early. In a modular setting, this means check-

ing whether a component in isolation is inherently faulty,

and whether two or more components are being composed€duations, wherg, g,

appropriately. As a result, mistakes can be localised effec-
tively, meaning it becomes a lot easier to find and correct
them. In contrast, mistakes that only become evident once

a system has been fully assembled are usually a lot harder

to pinpoint as the symptom in itself often is not enough
to suggest any particular part of the system as the root of
the problem. Even more problematic is a situation where

as all well-typed components are balanced. Naturally, if all
components of a model are locally balanced, this implies
that the model is globally balanced.

Of course, a locally imbalanced model might still be
globally balanced. To allow such models (without defer-
ring all checking until a model has been fully assembled),
it is necessary texplicitly make the variable and equation
imbalance part of the type of a component. This was sug-
gested by Nilssort al. [14] and, independently, by Bro-

gmanet. al.[2], who developed the idea in detail by inte-

grating the notion of a “structural constraint delta” into the
types of components.

Unfortunately, ensuring that the number of variables
and equations agree only gives relatively weak assurances.
As a simple example, consider the following system of
andh are known functions, and,

y, andz are variables:
f(z,y,2) =
9(z) =
h(z) =

The number of equations and variables agree. Yet it is clear

problems only reveal themselves in use, as this means thethatwe cannothope to solve this system of equatioasid

system is unreliable.

A good way to catch errors early is to employ the notion
of types An entity has some particular type if it satisfies the
properties implied by that type. #pe systerthen governs
under which conditions typed entities may be combined,
and determines what properties the combined entity satis-
fies, i.e. its type.

As a simple example, consider the typeeger. If an
entity has typdniteger, this means that this entity satisfies
the property of being an integer. Moreover, a rule of the
type system would establish thaty two entities satisfy-
ing the property of being integers can be combined using
arithmetic addition into a new entity that also is an inte-
ger. This example is trivial, but as we will see, it is possible
to capture much more complex properties through suitably
defined types.

An important aspect of a type system is that it works
solely on the basis of thypesof the combined entities,
without referring to any specific entitynstances This
makes it possible to establish various properties of a com-
bined entity before knowing exactly what all its parts are.
This in turn allows for all manner of useful parametrisa-
tions, systems with dynamically evolving structure, etc.

This paper is concerned with equation systems proper-
ties for establishing whether a system can be solved or not.
One necessary but not sufficient condition for solvability
is the variable and equation balance: globally, the num-
ber of variables to solve for and the number of equations
must be equal. Languages like Modelica naturally enforce
this. Since version 3.0 [12], Modelica has adopted the even
stricter criterion that (in essence) variables and equations
must bdocally balanced, i.e. balanced on a per component

basis. Thus, in a sense, the property of being balanced is

implicitly part of the type of a component in Modelica 3.0,

72

y occur only in one equation, but we need two equations
to have a chance to determine both of them. Moreaver,
occurs alone in two of the equations, meaning that it may
be impossible to find a value ofthat satisfies them both.
What we have in this case is anderdeterminedystem of
equations for: andy (one equation, two variables), and an
overdeterminedystem of equations for (two equations,
one variable).

Note that it was possible to establish the unsolvability
of this system by just considering gsructure which vari-
ables occurs in which equations. This can be formalised
through the notion of atructurally singularsystem of
equations:

DEeFINITION 1 (Structurally singular system of equations).
A system of equations &ructurally singulaiff it is not
possible to put the variables and equations in a one-to-
one correspondence such that each variable occurs in the
equation it is related to.

We now simply observe that a system of equations that is
structurally singular is unsolvable.

Languages like Modelica ensure that models are not
structurally singular as simulation is not possible if this is
the case. However, in Modelica, this check is not carried
out on a per component basis, but only once the system has
been fully expanded into a “flat” system of equations. To
the best of this author’s knowledge, this is also the case for
all similar languages. As a result, if it turns out that the final
model is structurally singular, it can be very difficult to find
out what the origin of the problem is.

To help overcome this difficulty, Bunus and Fritzson
proposed a method to help localising the cause of any struc-
tural singularity [3, 4]. Their idea is to view the system of
equations as a bipartite graph where the variables constitute
one set of nodes, the equations the other set of nodes, and

3. Functional Hybrid Modelling

feyz) = 00 Functional Hybrid Modelling(FHM) [14, 15] is a gener-
g(z,z) = 0 (2 alisation of the central ideas of Functional Reactive Pro-
h(y,z) = 0 (3) gramming (FRP) [18]. In FRP, a functional programming

(2) System of equations language is extended with constructs for reactive program-

ming andcausal hybrid, modelling, specificallysignals

@v® (time-varying values) and functions on signals. This has

proved to yield a very flexible and expressive framework

T Yy z
@"@ Eq.1 1 1 1 for many different kinds of reactive and modelling applica-
Eq.2 (1 0 1) tions [13, 9, 5, 8]. The FHM approach is similar, bata-
)‘ Eqg.3 \ 0 1 1 tions on signalsire added to addressn-causamodelling.
GF—Ead

(c) Incidence matrix The salient features of FRP and FHM relevant for this

paper are covered in the rest of this section. The ideas are

illustrated with a simple circuit example. This example is

Figure 1. A system of equations and its corresponding also used later in this paper. Note that FHM is currently

structural representations. being developed: no complete implementation exists yet.
However, as explained earlier, it provides a convenient set-
ting for this work.

(b) Bipartite graph

_ . o 3.1 Fundamental Concepts
there is an edge between a variable and an equation if the

former occurs in the latter. See Figure 1(a) and 1(b). They
then use the Dulmage and Mendelsohn canonical decom-
position algorithm [6] to partition the flat system of equa-
tions into three parts: one overdetermined, one underdeter-
mined, and one where the variables and equations match
up. This information is then used to help diagnose the prob- Signal o =~ Time — «
lem and suggest remedies.

Still, it would be an advantage if mistakes tivavitably
are going to lead to structural singularities can be flagged
up early, without first having to fully expand a model. This
is true in particular for structurally dynamic systems: since
the system of equations describing the behaviour of the sys-
tem change over time, there is no one fully expanded sys-
tem in this case. This is the kind of systems we ultimately
hope to address in the context of our work on Functional SF « (8 ~ Signal o — Signal

HVb”P‘ Modelling [14' 15]. , When a value of typ&'F « 3 is applied to an input signal
This paper investigates an approach to early detection of of type Signal «, it produces an output signal of type

structural singularities. The basic idea is to attribute types Signal 8. Signal functions aréirst class entitiesn Yampa
to components su_ch that these types_characterlaimhxe Signals, however, are not: they only exist indirectly through
tureof the underlying system of equations used to represent o ovinn of signal function. Additionally, signal functions

a component, or more precicely, the structure of the equa- g,sisfies a causalityequirement: at any point in time, the
tions that constitute itinterface We refer to this as the output must not depend on future input

structural typeof the component. The fundamental idea is The output of a signal function at timeis uniquely
similar to the structural constraint delta approach suggesteddetermined by the input signal on the intenjal]. If
by Bromanet al. However, the structural type is much a signal function is such that the output at timenly

richer: instead of a single number reflecting the variable depends on the input at the very same time instaittis
and equation imbalance, the structural type details which calledstatelessOtherwise it isstateful

variables occur in which equations. That is, the structural
type is essentially a bipartite graph as in the work by Bunus 3.2 First-Class Signal Relations
and Fritzson, or it can be viewed asianidence matrixsee
Figure 1(c). We will freely switch between these two points
of view in the following.

It turns out, though, that it often will be necessary to
approximate the information on which variables occur in
which equations. Thus the approach of this paper is not
a complete alternative to error diagnosis on the final, flat

system of equations as SUggeSted by Bunus and Fritzson i thjs istemporal causality, a notion distinct from the notion of causality
but rather complementary to it. in “non-causal modelling.”

FRP is a conceptual framework. A number of concrete im-
plementations exists. Here, we will briefly consider Yampa
[13], which is most closely related to FHM. Yampa is based
on two central conceptsignalsand signal functions A
signal is a function from time to a value; conceptually:

(The conceptual nature of this definition is indicateckhy
— is the infix type constructor for function typesI}ime
is continuous, and is represented as a non-negative real
number. The type parameterspecifies the type of values
carried by the signal. For example, the type of a varying
electrical voltage might b&ignal Voltage.

A signal functionis a function fromSignal to Signal:

A natural mathematical description of a continuous sig-
nal function is that of an ODE in explicit form. A func-
tion is just a special case of the more general concept of
a relation. While functions usually are given a causal in-
terpretation, relations are inherently non-causal. Differen-
tial Algebraic Equations (DAES), which are at the heart of

73

non-causal modelling, express dependences among signals i

without imposing a causality on the signals in the relation.
Thus it is natural to view the meaning of a DAE as a non-
causalsignal relation just as the meaning of an ODE in
explicit form can be seen as a causal signal function. Since
signal functions and signal relations are closely connected,
this view offers a clean way of integrating non-causal mod-
elling into an Yampa-like setting.

Similarly to the signal function typ8F of Yampa (Sec-
tion 3.1), the typeSR « stands for a relation on a signal of
typea. Like signal functions, signal relations are first class
entities, as will become clear in the following. Specific re-
lations use a more refined type; e.g., for the derivative rela-
tion der we have the typing:

der :: SR (Real, Real)

Since a signal carrying pairs is isomorphic to a pair of
signals, we can understadér as a binary relation on two
real-valued signals.

Signal relations are constructed as follows:

sigrel pattern where equations

The pattern introducesignal variablesthat at each point
in time are bound to thinstantaneousalue of the corre-
sponding signal. Given a patteprof typet, p:: ¢, we have:

sigrel p where...:: SR ¢

Consequently, the equations express relationships be-

R2 Uga

U

=
s

Figure2. A simple electrical circuit.

seen as the application of the identity relation. Thus, with
I denoting the identity relation, an equatien= e, could
also be written/ © (e, e2).

For another example, consider a differential equation
like ' = f(x,y). Using the notation above, this equation
can be written:

dero (z,f = y)

whereder is the relation relating a signal to its derivative.
For notational convenience, we will often use a notation
closer to standard mathematical practice:

derz=fzy

The meaning is exactly as in the first version. Thus, in the
second formder is nota pure function operating only on
instantaneous signal values. It is a (stateful) signal function

tween instantaneous signal values. This resembles the stanoperating on the underlying signal.

dard notation for differential equations in mathematics. For
example, considet’ = f(y), which means that the instan-
taneous value of the derivative of (the signalpt every
time instant is equal to the value obtained by applying the
function f to the instantaneous value gf

There are two styles of basic equations:

€1 = €2
ST < €3

wheree; are expressions (possibly introducing new signal
variables), andr is anexpressiordenoting a signal rela-
tion. We require equations to be well-typed. Givgn: t;,
this is the case iff; = t; andsr :: ts.

The first kind of equation requires the values of the two
expressions to be equal at all points in time. For example:

fz=gy

wheref andg are ordinary, pure, functiorfs.

The second kind allows an arbitrary relation to be used
to enforce a relationship between signals. The symbol
can be thought of agelation application the result is a
constraint which must hold at all times. The first kind of

We illustrate the ideas above by modelling the electrical
circuit in Figure 2 (adapted from [11]). The tygén is a
record type describing an electrical connection. It has fields
v for voltage and for current®

twoPin :: SR (Pin, Pin, Voltage)
twoPin = sigrel (p, n, u) where
u=p.v—n.o
pui+n.i=0
resistor :: Resistance — SR (Pin, Pin)
resistor r = sigrel (p, n) where
twoPin o (p,n,u)
TXpai=1u
inductor :: Inductance — SR (Pin, Pin)
inductor | = sigrel (p, n) where
twoPin o (p, n, u)
I+xder p.i=u
capacitor :: Capacitance — (Pin, Pin)
capacitor ¢ = sigrel (p, n) where
twoPin o (p, n, u)
cxder u = p.i

The resistor, inductor and capacitor models are defined

equation is just a special case of the second in that it can beas extensions of thawoPin model. This is accomplished

2We follow standard functional programming practice and denote ordi-
nary function application simply by juxtapositioning, without any paren-
theses.

74

3The namePin is perhaps a bit misleading since it just represents a pair
of physical quantitiesnot a physical “pin component”; i.e.Pin is the
type ofsignal variablesather tharsignal relations

using functional abstraction rather than any Modelica-like ality as possible into FHM. As a basic example, switching
class concept. Note how parameterized models are definedamong two different sets of equations as a Boolean signal
through functionseturning relations, e.gresistor. Since changes value might be expressed as follows:
the parameters (like- of resistor) are normal function
argumentsnot signal variables, their values remain un-
changed throughout the lifetime of the returned relatibns.
As signal relations are first class entities, signal relations
can be parameterized on other signal relations in the same
way.

To assemble these components into the full model, a) o)
Modelica-inspiredconnect-notation is used as a conve- If the type system approach outlined in this paper is to work

nient abbreviation for connection equations. In FHM, this for FHM, we need to consider how to handle such con-
is just syntactic sugar that is expanded to basic equations: Structs from a type perspective. This is done in Section 4.4.

equality constraints for connected potential quantities and a 1here are many other outstanding problems related to im-
sum-to-zero equation for connected flow quantitiésthe plementation of structurally dynamic systems. But those

switch b

when False
equations;

when True
equationsy

following, connect is only applied toPin records, where
the voltage field is declared as a potential quantity whereas
the current field is declared as a flow quantity.

We assume that a voltage source mod&burceAC
and a ground modejround are available in addition to

are outside the scope if this paper.

4. Structural Typesfor Signal Relations

We now define the notion of structural type and show how
it enables structural analysis to be carried out in a modular

the component models defined above. Moreover, we are way, without having to first expand out signal relations to
only interested in the total current through the circuit, and, “flat” systems of equations. The key difficulty is abstraction
as there are no inputs, the model thus becomesary of structural types, and consequently the section mostly
relation: focuses on that aspect.

simpleCircuit :: SR Current

simpleCircuit = sigrel 1 where
resistor 1000 o (rip,rin)
resistor 2200 o (r2p, r2n)
capacitor 0.00047 o (¢p, cn)

4.1 The Structural Type

In essence, a signal relation is ancapsulategystem of
equations. When a signal function is applied, these equa-
tions impose constraints on signals in scope at the point of
application through the variables of the signal relatiion

inductor 0.01 o (Ip,in) terface A larger system of equations is thus formed, com-
vSourceAC 12 o (acp, acn) posed from equations contributed by each applied signal
ground o gp relation.

connect acp rip r2p
connect rin cp
connect r2n Ip
connect acn cn ln gp
1 =rlp.i+1r2p.1

Let us consider a simple example:

foo :: SR (Real, Real, Real)

foo = sigrel (1, 22, 23) where
w3 =0

_ _ _ _ hrz =0

There is no need to declare variables lik&, r1n: their

types are inferred. Note the signal relation expressions like

resistor 1000 to the left of the signal relation application

operators.

As an illustration of signal relation application, let us
expandresistor 1000 ¢ (r1p, rIn) using the definitions of
twoPin and resistor. The result is is the following three
equations, where! is a fresh variable:

Let us assume a context with five variablesy, w, z, ¥,
and let us applyoo twice in that context:

foo o (u, v, w)
fooo (w,u+z,v+y)

The result, obtained by substituting the variables), w,
x, y into the equations ofoo, is the following system of

ul =rlp.n—rin.v equations:

rip.i+ring =0

1000 * r1p.i = ul fiuvw =0
how =0

fiw(u+z)(v+y)=0
Lutz)(v+y) =0

Note that each application @fo contributed two equations
to the composed system, each for a subset of the variables
to the right of the relation application operator

As discussed in Section 2, the aim is now to analyse
the structure (which variables occur in which equations)

3.3 Dynamic Structure

Yampa can express highly structurally dynamic systems.
Ultimately, we hope to integrate as much of that function-

4In Modelica terms, they angar ameter -variables.

5This simple treatment otonnect has been sufficient for our small
examples thus far. It is not clear if all aspects of the more comprehensive
Modelica notion ofconnect could be handled in the same way.

75

of the composed system in order to identify situations that to the variables in scope can also be represented by an in-

definitely will result in over- or underdetermined systems cidence matrix, with one row for each expression and one

of equations. column for each variable. The incidence matrix of the sig-
However, for a variety of reasons, it is not desirable nal relationapplicationis then obtained by Boolean matrix

to assume that this can be done by simply unfolding the multiplicatior’ of the structural type of the applied signal

applied relations as was done above. In the context of FHM, relation and the incidence matrix of the right-hand side ex-

what goes to the left of is a signal relatiorexpression pressions.

that may involve parameters that are not known at compile Returning to the example from the previous section, the

time, thus preventing the expression from being evaluated incidence matrix of the right-hand side of the application

statically. Or the exact contribution of the applied signal

relation might not be known for other reasons, for example foo o (u,v,w)

due to separate compilation or because it is structurally _ . . ,

dynamic. in a context with five signal variables v, w, z, y is

Thus, we are only going to assume that thee of the

. . . . u v w I
applied signal relation is known. To enable structural anal- 100 0 Oy
ysis, the type of signal relations is enriched by a component 0100 0
reflecting its structure. We refer to this as #tmictural type 0010 0

of the signal relation.
(where the columns have been labelled for clarity). Multi-

DEFINITION 2 (Structural type of system of equations).) ,) e
e plying the structural type ofoo with this matrix yields:

Thestructural typeof a system of equations is the incidenc
matrix of that system. It has one row for each equation, and

one column for each variable in scdpén occurrence of a

variable in an equation is indicated by 1, a non-occurrence (
by 0.

O =
—_ o o 8

Y
0
0
0

oo~ &
o~ o<
oo oy

—_ =
—_ =
_/

Note that definition 2 concerns systems of equations.
For asignal relation i.e. anencapsulatedystem of equa-
tions, the structural type is limited to the equaticm- (
tributed by the signal relation and the variables of its in-
terface. If the interface includes records of signal variables, Similarly, for
like Pin of the simple circuit example in Section 3.2, then
each field counts as an independent variable. We defer a fooo(w,u+z,0+y)
precise definition until section 4.3.

As an example, consider the signal relatjon above.
Its type, including the structural part, is:

o~ &8
[S
— = &
S O 8

S O
N———

we obtain

0 1 1

o~ o8
—_ o o <
o o~ 8
S = Oy
— O O

foo :: SR (Real, Real, Real) (L1l) ((1)

4.2 Composition of Structural Types

— e

overall structural type for a sequence of equations is ob-)

tained by simply joining the incidence matrices for the in-

dividual equations as the same set of variables is in scope The complete incidence matrix for the two applications of

across all equations. foo is thus
The structural type for a basic equation of the form

u v o w T
Now let us consider composition of structural types. The (1 1 1 1
1 1 0 1

€1 = €2

[e T
_ = = @
= s
== O Oy
== O O

is a single-row matrix indicating which variables occurs in
expressiong; ande,.

The structural type for the second form of equation, Compare with the fully expanded system of equations in
signal relation application, is more interesting. The general the previous section.
form of this kind of equation is:
4.3 Abstraction over Structural Types
In the previous section, we saw how to obtain the overall
whereey, e, ..., ¢; are expressions over the signal vari- structural type of a composition of signal relations given
ables that are in scope. These expressions and their relatiorthe structural types of the involved signal relations. The

sro(er,e,...,¢e)

6 Only “unknown” signal variables are of interest here, not parameters or 7 Multiplication is understood as Boolean conjunction(logical “and”),
“known” (input) signal variables. and addition as Boolean disjunction,(logical “or”).

76

next step is to consider how to encapsulate a system of positional, it is clear that the partitioning must be done in-

equations in a signal relation. It is often the case that the
set of variables in the interface of a signal relation, ithe
terface variabless a proper subset of the variables that are
in scope. A signal relation may thus abstract over a num-
ber oflocal variables This, in turn, means that a number
of the equations at harmdustbe used to solve for the local
variables: the local variables are not going to be in scope
outside the signal relation, and thus it is not possible to add
further equations for them later.

The available equations are thus going to be partitioned
into local equationsthose that are used to solve for lo-
cal variables, andhterface equationghose that are con-
tributed to the “outside” when the signal relation is ap-

dependently of usage context. And to ensure that the type
system is independent of arbitrary implementation choices,
as well as reasonably easy to understand for the end user, it
is clear that the partitioning should not depend on low-level
numerical considerations either.

There are two approaches for dealing with the situation.
One is toacceptthat a signal relation can have more than
one structural type. This paper does not explore that avenue
as there is a risk that it would lead to a combinatorial
explosion of possibilities to consider. Still, it should not
be ruled out. The other approach is to decide on a suitable
notion of “best” structural type. Then, if a signal relation
has more than one possible structural type, choose the best

plied. This immediately presents an opportunity to detect one, if this is a uniquely determined choice, otherwise
instances of over- and underdetermined systems of equa-approximateall best types with a type that is better than
tions for the local variables on a per signal relation basis. them all, but still as informative as possible, and take this
However, it also presents a very hard problem as the par- approximation as the structural type of the signal relation.
titioning is not uniquely determined, which in general im- We are going to adopt the a notion of “best” that reflects
plies that a signal relation does not have unique best struc-the observation that an equation is more useful the more
tural type. variables that occurin it (as this gives more flexibility when
To illustrate, consider encapsulating the example from choosing which equation to use to solve for which vari-
the previous section in a signal relation where only the able). We are further going to assume that an implemen-
variablesu andy appear in the interface: tation is free to make such a best choice. The latter might
not be the case, but we should then keep in mind that the
objective of the type system i®tto guarantee that a sys-
tem of equationsanbe solved, but to detect cases where a
system of equations definitetannotbe solved. Assuming
a freedom of choice is thus a safe approximation.

bar = sigrel (u,y) where
foo o (u, v, w)
fooo (w,u+z,v+y)

Recall the incidence matrix of the encapsulated system:

DEFINITION 3 (Subsumed (variables))et ; and V5 be
sets of variablesl; is subsumed by iff V7 \ Vo = 0.

DEFINITION 4 (Subsumed (structural typeshet s; and

s9 be structural typess; is subsumed by, iff there exists

a permutation of the rows of the incidence matrix for
such that the variables of each row of the incidence matrix
for s; are subsumed by the variables of the corresponding
row of the permuted incidence matrix fgr. The subsumed
erelation on structural types is denoted by the infix symbol

— = o = 8
_ = = 2@
O~ K== g
== O Oy
== O O

Three of the underlying equations are needed to solve for
the local variables, w, and z, the remaining one is the
interface equation. But the only equation tlainnotbe
chosen as the interface equationis number 2, as no interfac
variable occurs in this equation. Projecting out the columns <

for the interface variables for the the incidence matrices for periniTIoN 5 (Best Structural Types).et S be a set of

the three possible choices of interface equation yields structural types. Thieest structural typeis S is the set

u-y u-y u -y

(1 0) (1 1) (1 1)
The last two possibilities are equivalent, so this leaves us
with two possible structural types: the signal relatigm
can either provide a single equation in which the first vari-
able of the interface occurs, or it can provide an equation
in which both interface variables occurs, depending on the
chosen equation partitioning trar.

A modelling language compiler will decide on a spe-
cific partitioning. But this choice is typically dictated by
intricate numerical considerations and often also by the us-
age conteX@ As it is essential that typechecking is com-

{s]|seSA-(3Ts'eS.s<s)}

Returning to the signal relatiobur above, we find that
it actually has a single best structural type since

(10)

The complete type dlar is thus:

u oy
< (1 1)

bar :: SR (Real, Real) (1 1))

As an example of a case where there is not any best type,

consider
0 1
S1 = , S2 = 1 1

8Tools usially expand the model to a flat system of equations first. These
equations are then “sorted”, meaning deciding on which equation to use
to solve for a particular variable [7].

1 0 0
1 0 1

1
0

77

Note thats; £ so andsy £ s1. Neither is better than the Algorithm:
other, and the best structural types {s1,s2}is S.

What is needed if there is more than one best type is
to find an approximation in the form of an upper bound 1. LetL =1V \ I be the set of local variables. Partitien
that subsumes them all. Clearly such a bound exists: just into three parts:
take the incidence matrix with all 1s, for example. That e s.: rows corresponding to equations over variables
corresponds to an assumption that each equation can be in L only, thea priori local equations
used to solve for any variable, meaning that we are back to
the approach of counting equations and variables. However,
to avoid loosing precision unnecessarilysraallest upper

e s7: rows corresponding to equations over variables
in I only thea priori interface equations

boundshould be chosen. As the following example shows, * s;: the remaining rows, corresponding to equations
there may be more than one such bound, in which case one over mixed interface and local variables.
is chosen arbitrarily. Letmy, ms, mys be the number of rows of;, s7, and
Consider the two structural types s respectively. (Note that the a priori local equations
1 1 0 0 01 0 1 canonly be used to solve for local variables, whereas
(0 01 1 > ’ < 1 0 0 1 > the a priori interface equations canlybe used to solve

Upper bounds can be constructed by taking the union of forinterface variables.)

the first incidence matrix and all possible row permutations 2. Letk = |L| — my. k is the number of equations in
of the second one. As there are on|y two rows, we get two addition to local ones that are needed to solve for all

upper bounds: local variables.
11 0 1 11 0 1 e If £ < 0, report “overdetermined local system of
(1 0 1 1)’ (01 1 1) equations”.
Neither is smaller than the other. However, they are both as e If k> myy, report “underdetermined local system
small as possible, as removing a single 1 from any matrix of equations”.

means it will not subsume one or the other of the original 3. Initialise S; to 0
matrices. Thus, in general, the least upper bound of struc-

4. Choosek rows from in all possible ways ("
tural types under the subsumed ordering is not uniquely oM P y ((n’“)

possibilities;m; > k). For each such choice:

determined.
We can now give a definition of the structural type ofa (&) Partitions,, into sz, containing thek: chosen rows
signal relation: andsy, containing the remaining rows.

(b) Considersy, and s restricted to the local vari-
ablesL as a bipartite graph and compute a maxi-
mum matching using the standard augmenting path
algorithm [1, pp. 246—250]. Check if the size of the
matching is equal toL|. If yes, this means that each
variable inL can be paired with a row fromy, or sy,

)]) in which it occurs, which is a necessary condition for
The following algorithm determines the structural type using the equations corresponding to the rows from
of a signal relation when one exists, or reports an error sz, Of 5. to solve for the local variables.

otherwise. We claim this without proof, leaving that as
future work:

DEFINITION 6 (Structural type of a signal relationyhe
structural type of a signal relationith a body ofm equa-
tions overn variables, of whichi variables occur in the
interface, if that type exists, is &m — (n — %)) x ¢ inci-
dence matrix that is a least upper bound of the structural
types of all possible choices of interface equations.

(c) Considers; andsj restricted to the interface vari-
ablesI as a bipartite graph and compute a maximum

Arguments: matching using the standard augmenting path algo-

1. Structural type for the system of equations of the body rithm. Check if the size of the matching is equal to
of the signal relation in the form of am x n incidence the number of rows of; andsy, i.e.my+ma — k.
matrix (m equationsp variables). If yes, then this means that all equations correspond-

ing to the rows ofs; ands;, can be used simulta-

neously to solve for one of the interface variables.
This is a necessary condition for ensuring that the
interface equations contributed by the signal relation

2. The setl” of variables|V| = n, and a mapping from
variables to the corresponding column number of the
incidence matrix.

3. The setl of interface variables of the signal relation. does not constitute an overdetermined system.
Result: (d) If both checks above passed, then this particular
e If successful, arim — (n — |I])) x |I| incidence matrix choice ofk rows isvalid.
representing the structural type of the signal relation. (e) For each valid choice, adg. restricted to the vari-
e Otherwise, an indication of the problem(s): under- or ables/ to Sy
overdetermined system of local equations; overdeter- 5_|f 5, = (), it is not possible to solve for the local vari-
mined system of interface equations. ables and/or the interface equations contributed by the

78

signal relation are going to be overdetermined. Report Before approximation, the two possible structural types for

the problem. resistor are
6. Determine the best structural typgs: of Sy. 01 0 1 010 1
7. Letsy» be aleast upper bound 6. (01 0O)’ (1010)
8. The incidence matrix obtained by joinisg and s/ is reflecting a choice between using= p.v — n.v Of 7 *

the structural type of the signal relation, i.g. a Ieas_t UPPer ,, ; — 4 for solving for the local variable. (The equation
_bound of the st_ructural types of all possible choices of |, _ p.v — n.v is contributed bytwoPin. However, note
interface equations. that only itsstructural typeis of interest here, not the exact
) equation.) This gets approximated with a least upper bound
4.4 Structurally Dynamic Systems to:
To conclude the development, we briefly consider how to < 0 1 01 >
handle structurally dynamic systems, for example of the L1 10
type illustrated in section 3.3. Clearly, the structural types Of course,resistor cannot provide a single equation in
of the equations in the different branches could be differ- which all of p.v, p.i, andn.v occur. But as the equation
ent. However, at any point in time, the choice of which can only be used to solve for one of the variables, and as an
equations that are active is determined by the condition of equation can be provided for either two of the variables or
the switch-construct. Thus, the structural type of the en- the third, this is not too bad.
tire switch-construct is thegreatest lower bounaf the Let us now consideinductor:
structural types of the branches, as that is the only thing
which is guaranteed at all points in time. One may also inductor :: Inductance — SR (Pin, Pin)
want to impose additional consistency constraints between inductor | = sigrel (p, n) where
the branches to avoid unpleasant surprises at run-time, e.g. twoPin o (p, n, u)
due to the system of equations all of a sudden becoming Ilxder p.i=u

overdetermined. But this has not yet been investigated.
The possible structural types before approximation are the

4.5 Implementation same as for resistor, but this time reflecting a choice be-
tween usingu = p.v — n.v orp.i = [p.i’ dt, wherep.s’

is the state derivative, for solving for the local variables.
Note that the equatiohx p.i’ = w is local, as neither the
state derivative not, occurs in the interface ofductor.
After approximation, the structural type @fductor be-
comes the same as thatmekistor.

The case forcapacitor is also very similar, and both
the possible structural types prior to approximation and the
final structural type are again the same.

For a final example, suppose a mistake has been made
in the definition ofsimpleCircuit: instead of

The algorithm for computing the structural type for a signal
relation has been prototyped in Haskell. It implements all
aspects of the described algorithm, except that it has not
been verified whether the computation of upper bounds
indeed yields one of the least upper bounds.

The time complexity of the algorithm is a concern. For
example, the(™) possible partitionings of the mixed
equations that need to be investigated could, in adverse
circumstances, be a large number. However, there may be
ways to exploit more of the structure of the equations in
order to limit the number of alternatives to consider. It is
also easy to check how many partitioning there are before
starting to enumerate them, and if they are judged to be too
many, one can simply default to a safe over approximation

connect rin cp
connect r2n Ilp

of the type. the equations read
5. Structural Typesfor a Simple Electrical connect r2n ip
Circuit connect 72n Ip

As an example, let us apply the structural type system Note that the number of equations and variables remain
developed in section 4 to the simple electrical circuit from exactly the same in the two cases (e@emnect above

section 3.2. is expanded to one equality constraint and one sum-to-zero
Let us first consider the resistor. Recall thai is a equation).

record of two fieldsv and i, and that the signal relation The structural type checking algorithm presented in this

interface thus consists ébur variables:p.v, p.i, n.v, and paper correctly reports thatmple Circuit is a locally un-

n.4. derdetermined system. If only variables and equations had

been counted, this error would not have been detected.
resistor :: Resistance — SR (Pin, Pin)
resistor r = sigrel (p, n) where 6. Future Work
twoPin o (p,n,u) It should be emphasised that what has been presented in the
TRpId=u present paper is only a preliminary investigation into the

79

basics of a type-based structural analysis for modular sys- that this is another reason to look closer at dependent types
tems of equations. It is not yet yet a full-featured type sys- since the types become dependent on term-level data. For
tem. In particular, we have only considered the structural example, if an entity with a dimension type is subject to
aspect in isolation, and to that end it was tacitly assumed iterated multiplication, the resulting dimension depends on
that the structural types of composed signal relations were how many timethe multiplication was iterated.
known, enabling the overall structural type of signal rela- Finally, there are usability aspects that needs to be con-
tions to be computed in a bottom-up manner. sidered. While the type errors that are reported should be

However, FHM aims at treating signal relations as first attributed fairly precisely to the component that is faulty, it
class entities. One consequence of this is that signal rela-is not clear how to phrase the error messages such that the
tions can beparametrisedincluding on other signal rela- problem becomes evident to the end user. Also, we need
tions. In FHM, a parametrised signal relation is simply a to keep in mind the conservative nature of the type system:
function that computes a signal relation given values of the there is no guarantee that further errors will not be discov-
parameters, which could include other signal relations. The ered when a complete system of equations has been assem-
question then is how to determine the structural type of any bled. Combining the approach developed here with that of
signal relation parameters. Bunus and Fritzson [3, 4] might help on both counts.

One option would be to insist that the structural types of
signal relation parameters is always declargd...Thls coulq be 7. Conclusions
cumbersome, but there is always the possibility of making
a permissible (imprecise) default assumption in the absence This paper presented a preliminary investigation into type
of explicit declarations. Another option might be to try to ~ System for modular systems of equations. The setting of
infer suitable structural constraints for the parameters from the paper is equation-based, non-causal modelling, but the
how they are being used in Hindley-Milner fashion. A third ~ central ideas should have more general applicability. The
option would be to move to a framework oependent Paper showed how attributingstructural typeto equation
types[17, 16] where types are indexed by (can depend on) System fragments allows over- and underdetermined sys-
terms In our case, the incidence matrices that represent the tem fragments to be identified separately, without first hav-
structural type would be considered term-level data, and iNg to assemble all fragments into a complete system of
the output structural type of a parametrised signal relation equations. The central difficulty was handling abstraction
is then allowed to depend on the input structural type(s), Of systems of equations. The paper presented an algorithm
or even the values of other parameters, meaning that the for determining the best possible type for an abstracted sys-
output structural type will be given as a function of the tem, although this may involve approximation.
parameter values. It should be emphasised that was has been presented is

Incidentally, Modelica effectively also provides para- Not yet a complete type system. The paper only consid-
metrised signal relations through its mechanism of replace- €rs the structural aspect, and it was tacitly assumed that
able components. Here the problem is addressed by Syr]_these structural types essentially could be determined in
tactically requiring a default value for the replaceable com- @ straightforward bottom-up manner. The goal of treating
ponent, which is used for typechecking, and additionally signal relations as first class entities raises a number of
insisting that any replacement conforms with the type of f_urther challenges, some of which were discussed in Sec-
the default value in such a way that the the result after any tion 6.
replacement is still guaranteed to be well-typed.

Another aspect that was not considered is how to handle A cknowledgments

equations on arrays. If the sizes of the arrays are manifestly_l_his work was supported by EPSRC grant EP/D064554/1.

known, it would be possible to consider an array equation The author wishes to thank the anonymous referees for
simply as a shorthand notation for equations between the ! ny
many useful suggestions that helped improve the paper.

individual elements. But that is not very attractive, and it
would inevitably lead to unwieldy structural types, bloated
with lots of repetitive information. And, of course, if the ~References

array sizes are not manifest but parameters of the relation, [1] aifred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman.

it would be even more problematic. The most feasible ap- Data Structures and Algorithms. Addison-Wesley Publish-
proach is likely to restrict array equations in such a way ing Company, 1983.
that each such equation can be considered a S"_qgle equa- [2] David Broman, Kaj Nystrom, and Peter Fritzson. Deter-
tion for the purpose of the structural types. Again, mov- mining over- and under-constrained systems of equations
ing to a setting of dependent types might be helpful, as the using structural constraint delta. BPCE '06: Proceedings
typechecking depends on term-level data, i.e. the sizes of of the 5th international conference on Generative program-
the arrays. Dependent type systems supporting explicitly ming and component engineerimgages 151-160, Portland,
sized data has been studied extensively. One good example ~ Oregon, USA, 2006. ACM.
is Dependent ML [19, 20]. [3] Peter Bunus and Peter Fritzson. A debugging scheme for
We would also like to integrate checking of physical declarative equation based modeling languagesPrtn
dimensions [10] into the FHM type system. We observe ceedings of the 4th International Symposium on Practical

Aspects of Declarative Languages (PADL 2Q0&)lume

80

2257 ofLecture Notes in Computer Sciengages 280—
298, Portland, OR, USA, January 2002. Springer-Verlag.

[4] Peter Bunus and Peter Fritzson. Methods for structural
analysis and debugging of Modelica modelsPhceedings
of the 2nd International Modelica Conferenqeages 157—
165, Oberpfaffenhofen, Germany, March 2002.

[5] Antony Courtney, Henrik Nilsson, and John Peterson. The
Yampa arcade. IRroceedings of the 2003 ACM SIGPLAN
Haskell Workshop (Haskell’'03)pages 7-18, Uppsala,
Sweden, August 2003. ACM Press.

[6] A. L. Dulmage and N. S. Mendelsohn. Coverings of
bipartite graphs. Canadian Journal of Mathematics
10:517-534, 1958.

[7] Hilding Elmqvist. A Structured Model Language for Large
Continuous Systems. PhD thesis TFRT-1015, Department
of Automatic Control, Lund Institute of Technology, 1978.

[8] George Giorgidze and Henrik Nilsson. Switched-on Yampa:
Declarative programming of modular synthesizers. In Paul
Hudak and David S. Warren, editoBractical Aspects
of Declarative Languages (PADL) 2008lume 4902 of
Lecture Notes in Computer Sciengages 282-298, San
Francisco, CA, USA, January 2008. Springer-Verlag.

Paul Hudak, Antony Courtney, Henrik Nilsson, and John
Peterson. Arrows, robots, and functional reactive program-
ming. In Johan Jeuring and Simon Peyton Jones, edi-
tors, Advanced Functional Programming, 4th International
School 2002volume 2638 ofLecture Notes in Computer
Sciencepages 159-187. Springer-Verlag, 2003.

[9]

[10] Andrew Kennedy. Dimension types. Rroceedings of the
5th European Symposium on Programmingmber 788 in
Lecture Notes in Computer Science. Springer-Verlag, 1994.

[11] The Modelica AssociationModelica — A Unified Object-
Oriented Language for Physical Systems Modeling: Tuto-
rial version 1.4 December 2000.

[12] The Modelica AssociationModelica — A Unified Object-
Oriented Language for Physical Systems Modeling: Lan-
guage Specification Version 3 8eptember 2007.

[13] Henrik Nilsson, Antony Courtney, and John Peterson. Func-
tional reactive programming, continued. Pmoceedings of
the 2002 ACM SIGPLAN Haskell Workshop (Haskell,02)

pages 51-64, Pittsburgh, Pennsylvania, USA, October 2002.

ACM Press.

Henrik Nilsson, John Peterson, and Paul Hudak. Functional
hybrid modeling. InProceedings of PADL'03: 5th
International Workshop on Practical Aspects of Declarative
Languagesvolume 2562 ofLecture Notes in Computer
Science pages 376—390, New Orleans, Lousiana, USA,
January 2003. Springer-Verlag.

(14]

[15] Henrik Nilsson, John Peterson, and Paul Hudak. Functional
hybrid modeling from an object-oriented perspective. In
Peter Fritzson, Francois Cellier, and Christoph Nytsch-
Geusen, editorsProceedings of the 1st International
Workshop on Equation-Based Object-Oriented Languages
and Tools, number 24 in Linkdping Electronic Conference
Proceedings, pages 71-87. Linképing University Electronic

Press, 2007.

Benjamin C. PierceTypes and Programming Languages
MIT Press, 2002.

[17] Simon ThompsonType Theory and Functional Program-

(16]

81

ming Addison-Wesley Publishing Company, 1991.

[18] Zzhanyong Wan and Paul Hudak. Functional reactive
programming from first principles. IfProceedings of
PLDI'01: Symposium on Programming Language Design
and Implementatiorpages 242-252, June 2000.

[19] Hongwei Xi and Frank Pfenning. Eliminating array bound
checking through dependent types.Aroceedings of ACM
SIGPLAN Conference on Programming Language Design
and Implementatiorpages 249-257, Montreal, June 1998.

[20] Hongwei Xi and Frank Pfenning. Dependent types in
practical programming. IProceedings of ACM SIGPLAN
Symposium on Principles of Programming Languages
pages 214-227, San Antonio, January 1999.

Introducing Messages in Modelica for Facilitating DiscreteEvent
System Modeling

Victorino Sanz

Alfonso Urquia Sebastian Dormido

Dpto. Informatica y Automatica, ETSII Informéatica, UNED
Juan del Rosal 16, 28040 Madrid, Spain
{vsanz, aur qui a, sdor m do} @li a. uned. es

Abstract

The work performed by the authors to provide to Model-
ica more discrete-event system modeling functionalities is
presented. These functionalities include the replication of
the modeling capacities found in the Arena environment,
the SIMAN language and the DEVS formalism. The imple-
mentation of these new functionalities is included in three
free Modelica libraries called ARENALib, SIMANLIib and
DEVSLib. These libraries also include capacities for ran-

dom number and variates generation, and dynamic memory

Modelica library called ARENALIb. The functionalities

of the SIMAN modeling language [18], used to describe
components in Arena, have also been reproduced in a
Modelica library called SIMANLib. One objective of
the development of this library is to take advantage of
the Modelica object-oriented capabilities to modularize
as much as possible the development of discrete-event
system models. Also, the use of a formal specification to
describe SIMANLib components helped to understand,
develop and maintain them. SIMANLIib blocks can be

management. They are freely available for download at described using DEVS specification formalism [21]. Event

http://www.euclides.dia.uned.es/.

As observed in the work performed, discrete-event sys-
tem modeling with Modelica using the process-oriented ap-
proachis difficult and complex. The convenience to include

communication in DEVS and block communication in
SIMANLib match perfectly. An implementation of the

Parallel DEVS formalism [23] has been developed in a
Modelica library called DEVSLib, and used to describe the

a new concept in the Modelica language has been observedcomponents in SIMANLib. All the performed work with

and is discussed in this contribution. This new concept

corresponds to the model communication mechanism using

Modelica has been developed using the Dymola modeling
environment [1]. The problems encountered during the

messages. Messages help to describe the communicatiorfi€velopmentof the ARENALib, SIMANLib and DEVSLib

between components in a discrete-event system. They do

not substitute the current discrete-event modeling capabili-

ties of Modelica, but extend them. The proposed messages

mechanism in Modelica is discussed in the manuscript.
An implementation of the messages mechanism is also
proposed.

Keywords discrete events, process-oriented modeling,
Modelica, Arena, SIMAN, DEVS, messages

1. Introduction
Several Modelica libraries have been developed by the

Modelica libraries, and the solutions applied to those
problems are discussed.

The Modelica language includes several functionalities
for discrete-event management, such asexpressions to
define changes in the structure of the modelwhen
expressions to define event conditions and the actions as-
sociated with the defined events [16].

Other authors have contributed to the discrete-event sys-
tem modeling with Modelica. Depending on the formalism
used to define the discrete-event system, contributions can
be found using finite state machines [7, 14, 17], Petri nets
[15] or the DEVS formalism [2, 3, 4, 8]. On the other hand,

authors in order to provide to Modelica more discrete- other authors have developed tools to simulate discrete-

event system modeling capabilities. The work performed €vent systems in conjunction with Modelica. For example,
is specially based in modeling systems using the process-translating models developed using a subset of the Model-
oriented approach, reproducing the modeling function- ica language to the DEVS formalism. The translated mod-

alities of the Arena simulation environment [10] in a €ls are then simulated using the CD++ DEVS simulator [5].
Also, other authors describe the discrete-event system with

an external tool that translates a block diagram to Modelica
code [19].

All these contributions use the event-scheduling ap-
proach for describing the discrete-event systems [12].
Events are scheduled to occur in a future time instant. The

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Link6ping University Electronic Press. Proceedings available at:
http://ww. ep.|iu.selecp/ 029/

EOOLT 2008 website:

http://ww. eool t. org/ 2008/

83

simulation evolves executing the actions associated with
the occurrence of the events.

Due to the difficulties and problems encountered during
the development of the mentioned Modelica libraries, the
convenience of introducing a new concept in Modelica
has been identified. This new concept will facilitate the
development of discrete-event systems, extending the cur-
rent Modelica capacities. This new concept is the model
communication using the messages mechanism. The main
characteristics and functionalities of this mechanism are
also discussed in this manuscript.

a)

2. Process-Oriented Modeling in Modelica

A discrete-event system modeled using the process-oriented
approach is described from the point of view of entities Bottle filing
[10]. These entities flow through the components of the §|
system, and some processes are applied to them using the
available resources of the system. Some of the information
associated with the entities are the serial number, the
type, the statistical indicators, the attributes, the creation e
time, and the processing time among others. An example Wﬁ| 1 .Fﬁ
of this kind of system can be a beverage manufacturing |,
system. The entities of this system are the bottles. A tank
fills bottles with the beverage. Once filled, the bottles are Figure 1. Beverage manufacturing system. An example of
labeled and quality controlled before they are accepted hybrid discrete-event system developed using: a) Arena;
for distribution (first and second class bottles). Bottles and b) ARENALib.
without the required quality are cleaned and re-labeled. The
components of this kind of systems are usually stochastic.
For example, the labeling and cleaning processes are
modeled using the Triangular probability distribution. The
quality controls are represented by two-way decisions
whose percentage is based on the values of uniform random
variates.

The process-oriented approach is supported by the
Arena simulation environment to model discrete-event
systems. Arena hadata modulesthat represent the en-

tities, the resources, and some other static elements o : X)
the system, andlowchart modulesthat represent the Quality _controland Quality_control_2are Decide mod-
ules and thé-irstClass_bottleand SecondClass_bottkre

processes performed on the entities across the system.”. aul = d :
The implementation of the beverage manufacturing system Dispose modulesEntities queuesand resourcescontain

using Arena is shown in Figure 1a. Itis modeled as a hybrid (M€ data modules required for this system.

system, because the tank is represented by a continuous- The main ta_sks_ accomplished during the development
time model of the ARENALIb library were: a) the model communica-

Arena allows some simple hybrid modeling by describ- tion mechanism; b) the entity management; ¢) the manage-

ing level variables, that change continuously over time, and ment of t_he statistical information and; d) the generation of
rate variables, that represent how fast the level variable stochastic data. These tasks and the solutions proposed and

changes its value. Each pair of level/rate variables repre-

implemented to the problems encountered during the de-
sents a differential equation that is simulated using Euler, velopment of the ARENALIb library are discussed below.
RKF or any user-implemented integration method.

Qualib;_control FirstGlass_battle

Labeling

Cleaning

The library also allows hybrid system modeling, com-
bining the current Modelica continuous-time system mod-
eling functionalities with the components of ARENALIib. A
detailed description of the library can be found in [20]. The
model of the beverage manufacturing system composed
using ARENALIb is shown in Figure 1b. In this figure,
the Bottle_fillingmodule corresponds to a Create module,
fLabeIing and Cleaning correspond to Process modules,

2.2 Model Communication Mechanism

2.1 ARENALib Entities are generated in the system during the simulation,
ARENALIb reproduces the Arena data and flowchart mod- flow across the components of the system and, if necessary,
ules that have to be combined and connected to model theare disposed. Generally, the number of entities in the sys-
system. This library is freely available for download at [6]. tem changes during the simulation run, depending on the
At the moment, the Create, Process, Dispose and Decidebehavior of the system.

flowchart modules and the Entity, Queue, Resource and Usually an entity arrives to a module, is processed and
Variable data modules, of the Arena Basic Process panel, sent to the following module. Entity communication is an
have been implemented. important part of the simulation process.

Model interaction in Modelica can be performed using the information that describes several entities can not
connectors. A connector is an special class and contains be transmitted simultaneously using the direct trans-
some variables that are linked with the ones in another mission approach. The variables of the connector that
connector using a connect equation. The connect equation describe the entity can not be assigned with different
relates variables either equaling them, or summing them values, that represent the different transmitted entities,

and equaling the sum to zero. at the same time. Anyway, the text file storage and
Several approaches have been studied, implemented and dynamic memory storage approaches, discussed below,
evaluated during the development of ARENALIb in order allow to solve this problem using the flow variable.

to perform the entity transmission between modules. The
approach used to perform the entity transmission is com-
pletely transparent for the end user. At the user level, the The idea is to define an intermediate storage for the trans-
communication is just defined by connecting the output mitted entities. This storage behaves as a communication
ports of some modules to the input ports of other modules. buffer between two or more modules.

2.2.2 Textfile storage

The mentioned approaches are discussed next. The storage is implemented in a text file, that stores in
_ o each line of text the information related to each transmitted
2.2.1 Direct transmission entity. The connector contains a reference to the text file,

It consists of specifying all the variables that define a type itS file-name, and the flow variable indicating the number
of entity inside the connector. The values assigned to the Of entities received. This reference is shared between the
variables of one connector represent an entity. These valuesmodels connected to that connector, allowing them to ac-
are assigned’ because of the connect equation, to the Con.CGSS the file. Each module able to receive entItIeS, creates
nector of the next model. In this way, an entity is directly an storage text file and sets the reference to that file in the
transmitted from one model to another. Different types of connector. Functions to read/write entities from/to the file
entities require different connectors, one for each type. This have been developed. A model writes one or several entities
isthe simp'est way for Communicating mode|s7 but presents to the file using the write function. Another function is used

a problem: the simultaneous reception of several entities PY the receiver to check the number of entities in the file.

at one model. There are three possible situations for this When there is any entity to be read, the receiver reads the
problem: entities and processes them. Thus, this approach allows the

simultaneous reception of several entities.

A disadvantage associated with this approach is the poor
performance due to the high usage of I/O operations to ac-
e Many-to-one connection: several models simultane- cess the files. Also, the structure of the information stored

ously send one entity to another model. in the files is not very flexible if any additional information

e A combination of the previous cases: several models Nas t0 be included. If new types of entities need to be
simultaneously send one, or more, entities to another USed, O the attributes of an entity have to be changed, the
model. file management functions (i.e. read and write) have to be

reimplemented to correctly parse the text file to support
The two following solutions have been applied to this prob- these new changes.
lem.

e One-to-one connection: one model sends several enti-
ties to another model at the same time.

2.2.3 Dynamic memory storage

1. Synchronizing the entity transmission between mod- |4 order to improve the performance of the text file ap-

els using semaphores. The synchronization allows the qach the intermediate storage was moved from the file-
sender and receiver to manage the flow of entities be- gy gtem to the main memory. Using the Modelica external
tween both models, using a send/ACK mechanism like ¢\ ctions interface, a library in C was created to manage
in the TCP/IP communication. Thus, the sender model ¢ jniermediate storage using dynamic memory allocation.
will send an entity to the receiver and wait for an ACK. ap entity is represented in Modelica usingecor d class,

On the other hand, the receiver model will receive enti- .44 C using its equivalerstt r uct data structure. En-
ties when it is ready to process them, and only send the e are stored using linked-lists structures during their
ACK back if still ready to continue processing more en- yansmission from one model to another. This library is

tities. A model of the semaphore synchronization mech- ey distributed together with the ARENALib Modelica
anism, based on a previous work by Lundvall and Fritz- library.

son [9], has been implemented and is freely available |stead of a reference to the file, the connector contains
for download at [6]. A disadvantage of this solution is 5 reference to the memory space that stores the entities,
the performance degradation due to the event iteration yether with the flow variable that indicates the number
that takes place during the synchronization phase of the ¢ engities received. That reference is the memory address
entity transmission. pointing to the beginning of the linked-list. It is stored in

2. Including in the connector &l ow variable that rep- an integer variable in the connector. Similarly to the text
resents the number of entities sent from a model. So, file approach, each model able to receive entities initializes
the model receiving the entities will know the number the linked-list and sets the reference to it in the connector.
of entities received, even with many senders. However, Entities can be transferred to the queue using the write

85

function, and can be extracted using the read function. An- environment. This allows the validation of the ARENALIib
other function is used to check the availability of received models using the Arena environment, because both use
entities, in order to process them. the same source of random numbers. This RNG algorithm
This approach also allows the simultaneous reception was proposed by Pierre L'Ecuyer and is called Combined
of several entities. The performance is highly increased Multiple Recursive Generator. A detailed description of the
compared to the text file approach. And, the structure of the RNG is given in [13].
information only depends on the data structures managed Additionally to the implementation of the RNG, some
by the functions. To modify any attribute or entity type, it functions for generating random variates were also devel-
is only necessary to change a data structure and not all theoped by the authors of this manuscript. The new RNG and
functions used to manage that structure. the random variates generation functions are packaged in a
, Modelica library called RandomLib. This library is freely
2.3 Entity Management available for download at [6].
Regarding the entity management, it has to be mentioned
that an additional problem appears when implementing 2.5 Statistical Information Management
processes that delay the entity. Arena process module can
include a delay time that represents the time spent pro-
cessing the entity. This delay time is usually randomly

Simulation results are usually reported using statistical in-
dicators, due to the stochastic nature of discrete-event sys-
selected from a probability distribution. It has to be noticed tems. Somg of thes_e stat|-st|cal indicators have to be cal-
. : . culated during the simulation and some others at the end.
that since the delay time is usually random, the order of
The amount of data that has to be stored to calculate some

the arrived entities need not correspond to the order of - .
. . of these indicators changes depending on the length of the
the entities leaving the process. These processes have tg

include a temporal storage for the entities that are bein simulation.
mp 9 : "9 " Modelica does not allow to declare variables with an
delayed. This problem can be solved using the text file ' : . .
: o undefined length or size, which are required to store the
storage or the dynamic memory storage as an additional - . i
" statistical data. A mechanism to declare variables of unde-
storage for delayed entities. Due to performance reasons,

: .'fined length in Modelica needs to be defined, giving the
the dynamic memory approach was used to manage entity ossibility to increase or decrease the size of the variable
storage during delays in ARENALIib and SIMANLIib. P y

Together with the initialization of the linked-queue for durlng the S|mulgt|on run. . _
. L L This problem is very similar to the previously mentioned
entity communication, a process module initializes a tem-

: I one about intermediate entity storage for transmission or
porary storage, represented by a linked-list in memory, for delay management. So. the mentioned dvnamic memor
delayed entities. The reference to that list is also stored in y g o y y

an integer variable. Every time the process module has to storage has been used in ARENALID to record the infor-

L Lo . : .. mation regarding the statistical indicators of the simulation.
delay an entity, it stores the entity in the list using a write o : .
g L . : o ; The indicators calculated in each ARENALib module are
function. Entities are inserted in the list in increasing order,

. . shown in Table 1. Statistical indicators calculated include
according to the time they must leave the process. The - ; .
. . o . ; . the number of entities arrived, the number of entities de-
insertion of an entity in the list returns the leaving-time

for the first entity in the queue. When the simulation time parted, processing times, the number of entities in queue,

reaches the next leaving-time, the entity or entities leaving and the number of entities in the system, among others.

. The information calculated for each indicator is the mean,
the process are extracted from the list and sent to the next . L :
module. the maximum value, the minimum value, the final value

and the number of observations. These values are updated
2.4 Stochastic Data Generation during the simulation. On the other hand, all the interme-

Discrete-event models usually contain some kind of stochas J1ate values have to be recorded and used to calculate the

tic information. Random processing times, delays or inter- 9Om'd§nl9e mtterval at thfe end ofttheth5|mulat|on. A vanal;)rI]et
arrival times help to construct a more realistic model of a In Modelica stores a reterence fo Ihe memory space tha

given system. contains the stored data for each indicator. That space is

The Modelica language specification does not include managed using external functions written in C.
any functionality for random number generation. Dymola, i
the modeling environment used to develop and test the 2.6 SIMANLib
mentioned Modelica libraries, includes two functions for The first approach for the development of ARENALIib was
generating random uniform and random normal variates to write all its components, except the mentioned external
[1]. The generation of random variates following other functions and data types which are written in C, in plain
probability distributions is not covered by these random Modelica code. This generated large and complex models
number generation functions. Also, the application of vari- that were difficult to understand, maintain and extend.
ance reduction techniques is not supported by these func- The idea then was to divide the actions performed by
tions. each module into simpler actions that combined will offer
A random number generator (RNG) was developed by the same functionality than the original module.
the authors. The RNG algorithm selected for its implemen- ~ The same structure can be observed in the Arena en-
tation in Modelica is the same that is used in the Arena vironment, where the modules are based and constructed

86

[Module | Indicator | Values

Create System.Numberin Obs

Process Numberin Obs
NumberOut Obs
VATime Per Entity Avg, Min, Max, Final, Obs
NVATime Per Entity | Avg, Min, Max, Final, Obs
TotalTime Per Entity | Avg, Min, Max, Final, Obs
Queue.NQ Avg, Min, Max, Final
Queue.WaitTime Avg, Min, Max, Final, Obs

Dispose System.NumberQOut | Obs

EntityType | Numberin Obs
NumberOut Obs a)
VATime Avg, Min, Max, Final, Obs
NVATime Avg, Min, Max, Final, Obs
TranTime Avg, Min, Max, Final, Obs
WaitTime Avg, Min, Max, Final, Obs
OtherTime Avg, Min, Max, Final, Obs
Work In Progress Avg, Min, Max, Final

Table 1. Statistical indicators and values calculated in the
ARENALib modules.

= [JBlacks
SuperBlock
+ | Create
{] Dispaose
"} Queue b)
{ Feize
H{ IDelay Figure 3. ARENALIb process module: a) icon; and b)
_ { }Release internal structure composed using SIMANLIib components.
= [T BasicFProcess
{_FBranch
= Lreate ® BranchFule : :
. beverage manufacturing system mentioned above. The en-
w1 Dizpose 3} Count

. tities are pieces to be machined. The pieces arrive to the
1=t Frocess T $Assian system and are processed by a machine, one at a time.
- Decide L3Taly After processed, the pieces are inspected by a supervisor

a) b) and classified as Good, Reject and Repair. Repair pieces

Figure 2. Flowchart modules: a) ARENALIib; and b)
SIMANLIb.

using a lower level simulation language called SIMAN
[18].

SIMANLIb contains low-level components for discrete-
event system modeling and simulation. These are low-
level components compared to the modules in ARENALIb,
which represent the high-level modules for system mod-
eling. Flowchart modules of both libraries are shown in
Figure 2. ARENALIib modules can be described using a
combination of SIMANLib components. For example, the
process module of ARENALIb is composed by the Queue,
Seize, Delay and Release blocks of SIMANLIb, as shown
in Figure 3.

Componentsin SIMANLIb are divided, as well as in the
SIMAN language, in two groups: blocks and elements. The

are sent back for re-processing.

3. Parallel DEVS in Modelica

The main objective of the implementation of the DEVSLib
library has been to closely follow the definition of the
Parallel DEVS formalism and implement all its features
without restrictions. The functionalities of DEVSLib are
similar to the ones offered by other DEVS environments
such as DEVSJAVA [24] or CD++ [22]. These similarities
include the new atomic and coupled models construction
based on predefined classes, the redefinition of the internal,
external, output and time advance functions in each atomic
model as required by the user and the management of
model input and output ports as needed. However, due to
the capacities of the Modelica language, DEVSLib still
presents some restrictions that will be discussed below.

3.1 DEVSLIib Architecture

blocks represent the dynamic part of the system, and are The architecture of the library is rather simple. It is shown
used to describe its structure and define the flow of entities in Figure 5a. It contains two main models, atomicDraft
from their creation to their disposal. The elements represent and coupledDraft, that represent the basic structures for
the static part of the system, and are used to model different building any new atomic or coupled DEVS models. To-
components such as entities, resources, queues, etc. gether with the main models there are several auxiliary
An example of a model developed using SIMANLiIb models and functions for managing event transmission.
is shown in Figure 4. This system is very similar to the Additionally, some examples of atomic and coupled sys-

87

RELEASE

BRAMCH
1)

dizpose

1

EType Attribute Resource Counter “ariable DISPOSE
entity Type JobType Inspector [][Typet _JobsD... Mean 1

[1] [l [[[T]

| | | | | | | | | |

Clueus Attribute Resource Counter “ariable
InspectQ Status Machine Type2_JobsD... Std

[| R [| [| [2]

| | | | | | | | | |

Clueus Attribute Counter
Wlachineld Priarity Rejects

[| ER| [|

[| | | [|

Figure 4. Manufacturing system model composed using SIMANLib components.

tems have been included. One of the included examples is— - or ocessor
the hybrid model of a pendulum clock [11], which is shown extends At oni cDEVS(
: : : . : redeclare record State = st);
in Figure 5b. In this system a continuous-time model of a redecl are function Fcon = con:
pendulum generates tics, acting as the motor of the clock redeclare function Fint = int;
. . redecl are function Fext = ext;
The rest of the clock receives the tics, calculates the current redecl are function Fta = ta.
time (in hours and minutes) and manages the alarm of thg redeclare function initState =
clock i nitst(dt=processTine);
' paraneter Real processTine = 1;
I nt er faces. out Port Manager out Port Manager 1(
. . redeclare record State = st,
3.2 Model Development with DEVSLib redecl are function Fout = out,
- . . n=1);
When building a new atomic model, the user has to specify I nt erfa)ces_ outPort outPortl; // output port
the actions to be performed by the external transition, 'nI?ffaceS-'nPOft inPortl; // input port
. " . . equation
internal transition, output and time advance functions. a i Event[1] = inPort1l. event;
This can be performed redeclaring the functidrext , IQJeueE (1] c ntP%Ltl. quiue; . CRort 1)
. .l . . connect (out Por nager 1. port, outPor ;
Fi nt,Fout andFt a, initially declared in the atomicDraft end processor: ger-p

model. The user can specify any desired behavior for
these functions, while maintaining the defined function Listing 1. Modelica code of a processor system modeled
declaration. Any new atomic model has to extend the using DEVSLib.
AtomicDEVS model and to redeclare the mentioned func-
tions. The Modelica code of a processor system [23]
developed using DEVSLIib is shown in Listings 1, 2 and)) o
3 3.3 DEVSLib Modeling Restrictions

The desired number of input and output ports can also One restriction in DEVSLib is the impossibility to perform
be included in the new model and managed with the men- one-to-many connections. These kind of connections are
tioned functions. The user can drag and drop new input and not considered in ARENALIib or SIMANLIib because nei-
output ports into the model. The prototypes of the external ther Arena nor SIMAN permit them. However, the Parallel
transition and the output function allow the user to check DEVS formalism allows this kind of connection so they
the port where an incoming event has been received, or to have been taken into account.
specify the output port to send the event. All these ports This restriction appears because the way the port and the
could be connected later to other models. event communication mechanism is managed, using dy-

A coupled DEVS model, like the one shown in Fig- namic memory storage. As mentioned before, each receiver
ure 5b, can be easily build using previously defined atomic initializes its linked-queue to receive entities. A one-to-
or coupled models, and connecting them as required. The many connection cannot be performed because the sender
input and output ports have to be included and connected can not store in just one integer variable the references to
to any of the model components all the linked-queues created by the receivers. A solution

88

function con "Confluent Transtition Function
input st s;
input Real e;
input I|nteger q;
i nput I nteger port;
out put st sout;
out put st sout put;

al gorithm

sout put :='s;

sout := ext(int(s),e, q,port);
end con;

function int "Internal Transition Function"
input st s;
out put st sout;

al gorithm
sout :=s;
sout. phase :
sout.delta :
sout.job : =

end int;

1; // passive
Model i ca. Const ants.inf;

o

function ext "External Transition Function"
input st s;
i nput Real e;
input I|nteger q;
input Integer port;
out put st sout;
protected
I nt eger nunteceived;
st dEvent x;
al gorithm
sout :=s;
nunt ecei ved : = nunEvents(q);
if s.phase == 1 then
for i in 1:nunreceived | oop
X := getEvent(q);
if i == 1 then
sout.job := x.Val ue;
Model ica. Utilities. Streamns.
print("* Event to process");
el se
Mbdel ica. Utilities. Streans.
print("+ Event bal ked");
end if;
sout.received : = sout.received +1;
end for;
sout . phase :
sout.delta :
el se
sout.delta := s.delta -e;
end if;
end ext;

2; Il active
s.dt; // processing_tinme

function out "Qutput Function"
input st s;
input I nteger port;
input |nteger queue;
out put Bool ean send;
protected
st dEvent v;
al gorithm
if s.phase == 2 then
send : = true;
y. Type : = 1;
y.Value : = s.job;
sendEvent (queue, y);
el se
send : = false;
end if;
end out;

function ta "Time Advance Function"
input st s;
out put Real delta;

al gorithm
delta := s.delta;

end ta;

+) sers Guide
[T atomicCiraft

= rcoupledDraft
* [T AuModels
*] Examples

J5AC

a)

b)

Figure 5. The DEVSLib Modelica library: a) architecture;
and b) case of use (model of a pendulum clock).

record st "State of the nodel"

I nt eger phase; // 1 = passive, 2 = active

Real delta; // internal transitions interval

Real j ob; /'l current processing job

Real dt; /1 default processing tinme

I nteger received; // numof jobs received
end st;

function initst "State Initialization Function"

i nput Real dt;
out put st out;
al gorithm
out.phase := 1; // passive
out.delta : = Modelica. Constants.inf;
out.job := 0;
out.dt := dt;
out.received := 0;
end initst;

Listing 2. Modelica code of the functions redeclared in the

processor system.

Listing 3. Modelica code of the state and state initalization
function of the processor system.

has been implemented in the DEVSLIb library. This so-
lution consists in an intermediate model that can be used
to duplicate the events and send them to the receivers.
Examples of this intermediate model are MimValueand
theHourValuemodels shown in Figure 5b.

By default, the information transmitted between models
in DEVSLib, at event instants, is composed by two values:

the type of the event and a real value. The information communication mechanism. The messages mechanism
communication mechanism using dynamic memory is rel- provides the capacity for communicating impulses of
atively complex. It will not be easy for a user to change information between models at event instants.

the structure of the information, type and value, transmit-
ted in events. Anyway, it can be performed modifying the

4.2 Messages and Mailboxes

Modelica and C data structures that support the communi- The model communication mechanism using messages in-
cation mechanism. In order to improve the mechanism for volves two parts: the message itself and the mailbox. The
managing the information transmitted in events, additional message represents the information either traveling from

information structures will be included to the DEVSLIb li-

one model to another, or inside a model itself. The mailbox

brary. For example, giving the possibility to transmit arrays receives the incoming messages and stores them until they

or matrices instead of only real values.

are read. The mailbox also represents the concept of a bag

of events in the Parallel DEVS formalism.

4. Introducing Messages in Modelica

A conclusion of the performed work is that discrete-
event system modeling with Modelica, using the process-
oriented approach, is not an easy task. The components
required for modeling these kind of systems and the
solutions proposed for the problems are relatively complex.
The developed libraries provide some functionalities for
discrete-event system modeling with Modelica, using the
process-oriented approach. Still, there are some problems
without a solution, like the one-to-many connections in
DEVSLib and the polymorphism of the information trans-
mitted at event instants.

In this section the model communication using mes-
sages in Modelica is presented. The authors also propose
a possible implementation of this mechanism that will be
discussed in Section 5.

4.1 Motivation

The main difficulty observed in the presented work is the
model communication mechanism. This is the way models
are connected and communicate.

The connection of models in Modelica is represented
by theconnect equation. In a connection equation the
value of the variables at the ends of the connection are
either equaled, or summed and equaled to zero. A connec-
tion between discrete-event models does not establish any
relation between variables of both models, but is used to
communicate some information that has been generated in
one model and is transmitted to another. Both connection
concepts mean different things.

Event management is also different between Modelica
and DEVS discrete-event systems. An event in Model-
ica involves a change in the value of a boolean condition
that either makes the structure of the model to change,
or performs a change in the discrete time variables or the
state variables of the model. Events in DEVS discrete-event
systems represent a change in the state of the system or its
discrete time variables, and usually also involves the ex-
change of information between models. This is an instanta-
neous transmission/reception of an impulse of information
between models at the time of an event. Event management

The characteristics of the model communication using

messages are the following:

¢ A message can be sent to any available mailbox. Avail-
able mailboxes are the ones that can be referenced from
the model that sends the message, either accessing di-
rectly or using a connection.

¢ The mailbox warns the model when new incoming mes-

sages are received.

e Once received, the message can be read from the mail-

box.

e The transmission of messages between models has to be
performed instantly. Any message sent from one model
will be immediately received by another model.

Messages can be received simultaneously, either in the
same or different mailboxes.

The information transported by a message, the content,
is independent from the message communication mech-
anism. It is a task of the user to define the structure of
that information using the existing components of the
Modelica language, so it can be managed by the models.

e Messages can be of different types. A mailbox can store
any message independently of its type. The type of the
message has also to be independent from the content of
the message.

¢ Received messages have to be stored temporarily in the

mailbox, until they are read.

e Message communication has to be performed in two

stages: sending and reception. The sending involves the
transmission of any message in the system at a given
point in time, so all the messages sent are stored in the
mailbox at the end. After the sending, all the messages
are available for reception in each mailbox and can be
read and managed as required. If a model sends several
messages to the same mailbox, all the sent messages
have to be stored in the mailbox before the first message
can be read by the receiver.

4.3 Message Sending, Transmission, Detection and

Treatment

in discrete-event systems involve additional things than in A message can be sent from one model to any other model

Modelica, because of this information communication.

that contains a mailbox, even if no connection between

In order to make the development of discrete-event models is available.

systems more simple and easy, a new concept is proposed

Mailboxes can also be shared between models. Sharing

and introduced in Modelica. This concept is the messages a mailbox represent that several models can access to the

90

message storage that it represents. Each model sharingnessages of the system in different classes. The content
the mailbox can access the messages stored, reading orepresents the information transported by the message. The
extracting them from it. Read messages are kept in the content of a message is defined by the user and has to be
mailbox until the are extracted, or fetched, from it. independent from the message management mechanism.
An special case of mailboxes are the ones defined inside Thus, any mailbox can receive messages with any content
connectors. Two mailboxes, inside connectors, connectedand of any type. It is a task of the user to distinguish
using a connect equation represent a bidirectional messagebetween the types of the messages and their contents. The
communication pipe. They will act as input/output mail- content of the message is represented by a reference to an
boxes instead of only receiving messages. A message senexternal data structure in C defined by the user. The user
to one end of the pipe will be transported to the opposite has to provide this data structure and the functions required
end, and viceversa. If more than two models are connectedto manage it using the reference in Modelica. Because of
to the same pipe, a copy of the message will be trans- this definition, a message will be composed by two integer
ported to each receiver connected to the pipe. This pro- values: the type and the reference to the content.
vides a message broadcast functionality that also emulates The second structure required in the messages mecha-
the event transmission in DEVS, however in DEVS the nism is the mailbox. A mailbox is a temporary storage for
communication is not bidirectional. The connect equation messages. If a message is sent to a mailbox, it is stored in
functionalities in Modelica have to be extended in order to the mailbox until the receiver reads it. The number of stored
support this mailbox behavior. An example of this behavior messages in a mailbox is not limited, so this structure has to
is shown in Figure 6. be able to change its dimension depending on the number
The detection of a message is implicit in the action of of stored messages. The implementation of a mailbox is
sending it, since they are transferred instantly. Every time a very similar to the currently implemented linked-lists for
model sends a message to a mailbox, the simulator knowsstoring delayed entities during processes.
that the message will be received by another model and will
have to be treated properly. 5.2 Operations

The treatment of each message has to be defined by thethe gperations that can be performed with the previously

user. The mailbox warns when a new message has arrived described structures are defined below. Each operation is

as a condition to detect any incoming message, used with hehavior.

statements likevhen or i f in Modelica. This does not

mean that the new message condition has to be effectively5.2.1 Mailbox Operations
checked at each simulation step, because it is notified by
the send message operation. Once a new message arrives
to a mailbox, the arrived message or messages have to be
read and treated.

e newnai | box(nai | box) . Initializes the mailbox.

e checknsg(mai | box) . Warns about the arrival of a
new message. It changes its value from false to true and
immediately back to false at each message arrival event.

5. P | of Impl tati e newnsg() . Detects the arrival of a message to any
) roposal of impiementation of the mailboxes declared in the model. This helps
This section contains a proposal of implementation in Mod- to manage the simultaneous arrival of messages in
elica of the previously described message communication different mailboxes.

mechanism. This implementation is based on the definition o nynmEg(mai | box) . Returns the number of waiting
of data structures that support the message and mailbox messages stored in the mailbox.

concepts, and the definition of the operations that can be
performed with both data structures. Messages and mail-
boxes have to be defined as new predefined classes that
have to be treated in a singular way, allowing objects of
type message or mailbox. Due to the current Modelica
language specification, the proposed implementation dif- . L i
fers from the mechanism described above. The Modelica from the mailbox, deleting it. The select parameter is

language will need to be extended in order to support the used in the s.ame way as in theadnsg function.
messages mechanism. e put nsg(mai | box, message) . Sends the message

to the mailbox.

e readnsg(mai | box, sel ect). Reads a message
from the mailbox. The select parameter represents a
user-defined function used to select the desired message
to be read from the mailbox.

e get nsg(mai | box, sel ect). Fetches a message

5.1 Data structures)
5.2.2 Message Operations
There are two data structures needed to manage the mes-

sages mechanism. These are the definition of the message ® "éWnsg(cont ent, type) . Creates a new message

itself and the structure to support the mailbox that receives ~ With the defined type and content.

the defined messages. e gett ype(nessage) . Returns the type of the mes-
The message structure contains two components: the Sage.

type and the content. The type of a message can be rep- ¢ settype(message, new ype) . Updates the type

resented with an integer value. It is used to separate the of the message to the value of newtype.

91

model B
message m;
content ¢;
intt;

- | "

E | mailbox mbox when checkmsg(mbox) then
H m = getmsg(mbox,1);
H t = gettype(m);
model A H if type == 1 then
message m; H ¢ = getcontent(m);
content c; E end when;
'
mailbox mbox |— ';
settype(m,1); '
setcontent(m,c); A ' model C
putmsg(mbox, m); =-=" ' .
' message m;
H content c;
H intt;
:
B)
i > mailbox mbox when checkmsg(mbox) then
m = getmsg(mbox,1);
t = gettype(m);
ift == 2 then

c = getcontent(m);
end when;

Figure 6. Model communication with messages using connectors.

References
e get cont ent (message) . Reads the content of the [1] Dynasym AB. Dymola Dynamic Modeling Laboratory
message. User's Manual. http://www.dymola.com/, 2006.
e set cont ent (nessage, newcontent). Inserts [2] Tamara Beltrame. Design and Development of a Dymo-
the newcontent into the message. la/Modelica Library for Discrete Event-Oriented Systems
Using DEVS Methodology. Master’s thesis, ETH Zrich,
An example of a SIMAN single-queue system, with March 2006.

the Create, Queue_, Seize, Del_ay, Release and Dlquse [3] Tamara Beltrame and Francois E. Cellier. Quantised
blocks, modeled using the described messages mechanism * * giate system Simulation in Dymola/Modelica using the

is shown in Figure 7. Each block of the figure contains DEVS Formalism. IrProceedings of the*” International
the pseudo-code that implements the basic actions for Modelica Conferengepages 73-82, 2006.
the entity management and communication. The select [4] Francois E. Cellier and Ernesto Kofma@ontinuous System

functior_1, in_ _ther eadmsg and get msg functions, has Simulation Springer-Verlag New York, Inc., Secaucus, NJ,
been simplified and only represents the type of message USA, 2006.

to be read or extracted. 5

—_

Mariana C. D’'Abreu and Gabriel A. Wainer. M/CD++:
Modeling Continuous Systems Using Modelica and DEVS.
6. Conclusions In Proceedings of the3*" IEEE International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systenpages 229-236, 2005.

—_

It has been observed that process-oriented modeling of
discrete-event systems in Modelica is a difficult task.] _
Several Modelica libraries have been developed to pro- [6] http://iwww.euclides.dia.uned.es/.

vide more discrete-event system modeling functionalities [7] J.A. Ferreira and J.P. Estima de Oliveira. Modelling Hybrid
to Modelica, specially for modeling systems using the Systems using Statecharts and Modelica Pfaceedings
process-oriented approach. The implementation of these ~ Of the 7" IEEE International Conference on Emerging
libraries present some problems and restrictions, and the ~ Technologies and Factory Automatigrages 1063-1069,
solutions proposed and implemented are complex, hard to 1999.

understand and difficult to maintain. In order to facilitate [8] Peter Fritzson. Principles of Object-Oriented Modeling
the development of discrete-event system models in Mod- and Simulation with Modelica 2.1Wiley-IEEE Computer
elica, the message communication mechanism has been ~ Society Pr, 2003.

introduced and described. A possible implementation of [9] Hakan Lundvall and Peter Fritzson. Modelling concurrent

this mechanism in Modelica has also been proposed. activities and resource sharing in Modelica.Rroceedings
of the SIMS 2003 44" Conference on Simulation and

Modeling 2003.

Acknowledgments _ _ _

)) [10] W. David Kelton, Randall P. Sadowski, and David T.
This work has been supported by the Spanish CICYT, un- Sturrock. Simulation with Arena4” ed.) McGraw-Hill,
der DPI 2007-61068 grant, and by the IV PRICIT (Plan Inc., New York, NY, USA, 2007.

Regional de Ciencia y Tecnologia de la Comunidad de [11] Julio Kriger.

. Trabajo préactico 1: Antiguo reloj des-
Madrid 2005-2008), under S-0505/DPI1/0391 grant.

92

CREATE
message m;
content c;

when sample(0,1) then
m = newmsg(c,0);

mailbox out |—| mailbox in

putmsg(out,m);
end when;

QUEUE

message maux;

when checkmsg(in) then
maux = newmsg(0,1);
putmsg(out,maux);

end when;

SEIZE

message m,maux;
boolean idle;
Integer inqueue;

when checkmsg(in) then

mailbox out’———‘ mailbox in

maux = readmsg(mbox,0);
if gettype(maux) == 1 then // new entity
inqueue++;

mailbox out

if idle then
idle = seize(resource);
m = getmsg(QUEUE.in);
inqueue--;
m = putmsg(out,m);
end if;
else if gettype(maux) == 2 then // released

DELAY
message m;
real delay,nextout;
storage tmp;
| when checkmsg(in) then
m = getmsg(in,0);
delay = random();
nextout = put(tmp,m,delay);
end when;

mailbox in

when time >= nextout then

mailbox out

if inqueue > 0 then
idle = seize(resource);
m = getmsg(QUEUE.in);
inqueue--;
m = putmsg(out,m);

else
idle = seize(0);

end if;

end if;

mailbox in

RELEASE
message m,m2;

when checkmsg(in) then

m = getmsg(in,0);
releaseResources();

end when;

mailbox out

m = get(tmp); m2 = newmsg(0,2);
putmsg(out,m); putmsg(SEIZE.in,m2);
end when; putmsg(out,m); DISPOSE
end when; message m;
mailbox in when checkmsg(in) then
m = getmsg(in,0);
dispose(m);
end when;
Figure 7. Example of a SIMAN single-queue system modeled using messages.
pertador. http://www.sce.carleton.ca/faculty/wainer/- Simulation. InProceedings of th&'" International

whgraf/samplesmain_1.htm.

[12] Averill M. Law. Simulation Modelling and Analysig{*
ed.) McGraw-Hill, 1221 Avenue of the Americas, New
York, NY, 2007.

[13] Pierre L'Ecuyer. Good Parameters and Implementations for
Combined Multiple Recursive Random Number Generators.

Oper. Res.47(1):159-164, 1999.

[14] Sven Erik Mattsson, Martin Otter, and Hilding EImqvist.
Modelica Hybrid Modeling and Efficient Simulation. In
Proceedings of thast" IEEE Conference on Decision and
Control, pages 3502-3507, 1999.

[15] Pieter J. Mosterman, Martin Otter, and Hilding EImqvist.
Modelling Petri Nets as Local Constraint Equations for
Hybrid Systems using Modelica. IRroceedings of the
Summer Computer Simulation Confereruages 314-319,
1998.

[16] Martin Otter, Hilding Elmqgvist, and Sven Erik Mattsson.
Hybrid Modeling in Modelica Based on the Synchronous
Data Flow Principle. ITCACSD’99 pages 151-157, 1999.

[17] Martin Otter, Karl-Erik Arzén, and Isolde Dressler. State-
Graph - A Modelica Library for Hierarchical State Ma-
chines. InProceedings of tha'" International Modelica
Conferencepages 569-578, 2005.

[18] C. Dennis Pegden, Randall P. Sadowski, and Robert E.
Shannon. Introduction to Simulation Using SIMAN
McGraw-Hill, Inc., New York, NY, USA, 1995.

[19] Manuel A. Pereira Remelhe. Combining Discrete Event
Models and Modelica - General Thoughts and a Special
Modeling Environment. InProceedings of the™?
International Modelica Conferengc@ages 203-207, 2002.

[20] Victorino Sanz, Alfonso Urquia, and Sebastian Dormido.
ARENALIb: A Modelica Library for Discrete-Event System

93

Modelica Conferencepages 539-548, 2006.

[21] Victorino Sanz, Alfonso Urquia, and Sebastian Dormido.
DEVS Specification and Implementation of SIMAN Blocks
Using Modelica Language. IRroceedings of the Winter
Simulation Conference 200@ages 2374-2374, 2007.

[22] Gabriel Wainer. CD++: A Toolkit to Develop DEVS
Models. Softw. Pract. Exper32(13):1261-1306, 2002.

[23] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer.
Theory of Modeling and Simulatiocademic Press, Inc.,
Orlando, FL, USA, 2000.

[24] Bernard P. Zeigler and Hessam S. Sarjoughian. Intro-
duction to DEVS Modeling & Simulation with JAVA:
Developing Component-based Simulation Models. -
http://www.acims.arizona.edu/PUBLICATIONS/.

EcosimPro and its EL Object-Oriented Modeling Language

Alberto Jorrin

César de Prada

Pedro Cobas

Department of Systems Engineering and Automatic Control, University of Valladolid, Spain,
{albejor ,prada}@autom.uva.es.
Ecosimpro, Empresarios Agrupados, Spain, {Pedro Cobas} pce@ecosimpro.com

Abstract

This paper introduce the modeling and simulation tool
EcosimPro and the possibility in the new version 4 of
using object orientation in its modeling language called
EL (Ecosimpro Language) which is the official language
of The European Space Agency (ESA). Also shows the
power that the use of classes gives to EcosimPro
regarding other simulation environments.

1. Introduction

1.1 What is EcosimPro

EcosimPro is a simulation tool with a user-friendly
environment developed by Empresarios Agrupados
International for modeling simple and complex physical
processes that can be expressed in terms of differential-
algebraic equations or ordinary-differential equations and
discrete events.

Figure 1. General view of the tool.

EcosimPro runs on the various Windows platforms and
uses its own graphic environment for model design.

95

1.2 Whatis EL

The language used in EcosimPro simulation tool for
modeling dynamic systems based on equations and
discrete events is named EL, which is the official
language of The European Space Agency (ESA).

EL has been developed for use in modeling combined
continuous-discrete physical systems. It allows
mathematical modeling of complex components
represented by differential-algebraic equations. One of the
design goals for EL was to make it clear and easy to use
for engineers doing simulations of this kind.

Models in EL are represented in a natural and intuitive
way. EL has a simple but powerful language to prepare
experiments on the models created, calculate steady
states, transients, perform parametric studies, etc. It can
also generate reports, plots and other hard copies from
within a classic sequential language, and has the ability to
reuse C and FORTRAN functions and C++ classes.

1.3 Key concepts in EcosimPro

The fundamental concepts of EcosimPro are:

e Component: This represents a model of the
system simulated by means of variables,
differential-algebraic equations, topology and
event-based behaviour. The component is the
equivalent of the *“class” concept in object-
oriented programming.

e Port connection type: This defines a set of
variables to be interchanged in connections and
the behaviour and restrictions when there are
connections between more than two ports. For
instance, an electric connection type uses voltage
and current as variables to be wused in
connections. The connection port avoids
connecting individual variables; instead, sets of
variables are managed together.

e Partition: To simulate a component, the user
first has to define its associated mathematical
model; this is called a partition. A component
may have more than one partition. For example,
if a component has several different boundary
conditions, depending on the set of variables
selected, each set of variables produces a
different mathematical model, or partition. The
next step is to generate experiments for each

mailto:pce@ecosimpro.com

partition. The partition defines the causality of
the final model.

e Experiment: The experiments performed for
each partition of the component are the different
simulation cases. They may be trivial for
calculating a steady state or very complex with
many steady and transient states changing
multiple variables in the model.

e Library of components: All the components are
classified by disciplines into libraries.

1.4 EL and Object Orientation

EL is a language for automatically solving systems of
differential-algebraic equations, as this is how it works
internally. However, the complexity of these systems is
hidden: all the user has to do is define high-level
equations using a high level object-oriented language
similar to some programming languages and expressing
the equations as algebra does.

EL is object-oriented: components can inherit from one
another and can be aggregated to create other more
complex, modular components. These features allow the
modeller to reuse tried and tested components to create
other more complex ones, incrementally.

1.5 The Componentin EL

The most important element in EL is the component. A
component represents a model by means of variables,
topology, equations and an event-based behaviour.

A component may be simple, for example an electrical
resistor or capacitor (with a couple of equations); or it
may be very complex, for example the pressurized cabin
of a space vehicle (with dozens of physics equations and
many events).

All components have one block which represents the
continuous equations and another which handles all the
discrete events. Before the model can be run, it has to be
generated. Until then, the components are only theoretical
entities waiting to be used by other components or
generated into a model.

1.6 The Experimentin EL

Once a model has been generated, experiments can be run
on it.

EL has an experiment language similar to the modeling
language which is used to integrate the model, calculate
steady states, optimize parameters, etc

96

1.7 EL Basis

EL’s design is based on continuous modeling concepts
developed in the 1970s, new ideas of the ‘80s and “90s,
and modern object-oriented techniques applied
successfully in other fields.

1.8 EL Uses

EL has been designed to be used in industry directly,
ranging from simple systems to very complex systems
with hundreds of variables and equations. EL has mainly
been successfully used for aerospace applications to
simulate complex systems in Environmental Control and
Life Support Systems (ECLSS) and in power generation
to model complex power plants.

1.9 Mathematical capabilities

EcosimPro has Symbolic handling of equations (e.g.:
derivation, equations reduction, etc.) and robust solvers
for non-linear equations (Newton-Raphson) and DAE
systems (DASSL and Runge-Kutta). EcosimPro controls
the mechanism to interact with these solvers.Also uses
dense and sparse matrix formats depending on the size of
the Jacobian matrix. This allows problems with thousands
of state variables to be simulated.

EcosimPro has Math wizards for:

e Defining design problems

e Defining boundary conditions

e Solving algebraic loops

e Reducing high-index DAE problems
and clever mathematical algorithms based on graph
theory to minimize the number of unknown variables and
equations.

Also incorporate Powerful discrete events handler to
detect when events occur and powerful root finder
mechanism based on Zbrent and Illinois methods. It is
completely transparent to the user so the exact moment of
the crossover of discrete events can be determined.

2. Object Oriented Modeling

Object-oriented Modeling is a powerful and intuitive
paradigm for building models which will outlive the
inevitable changes that are part of the growth and ageing
of any dynamic system. It is not a panacea, but at least it
provides the modeller with powerful features to hide
complexity (encapsulation), to enable reuse (inheritance
and aggregation) and to create models which are
independent and easy to maintain.

Modular development allows a system to be modelled
bottom-up. Basic library components can be combined to
create increasingly complex components by combining
two methods:

e Extension by inheritance from existing
components

e Instantiation and aggregation of existing
components

These ideas are applied to create a component which
represents a complete system. The intermediate
components can also be simulated. This greatly reduces
development and maintenance time.

2.1 Encapsulation

One of the aims of object-oriented Modeling is
encapsulation of complexity. For example, an engineer
could model a complex problem with a purpose-built
model consisting of hundreds of variables and equations.
Although the model works, it will probably be difficult to
follow and understand, and will certainly be difficult to
reuse for other similar problems.

EL makes the modeller’s life easier with its powerful
abstraction capability and encapsulation of data and
behaviour. Its main elements are libraries and
components.

The libraries encapsulate all the elements involved in a
particular discipline, and are exposed for use by other
libraries. The component is a fundamental item for
Modeling to express a dynamic behaviour associated with
certain data.

With a conventional object-oriented language such as
C++, the public interface is the data and methods declared
public.

In EL a component’s public interface consists of its
ports, construction parameters and data. These elements
are unique and are visible from outside during Modeling,
reinforcing encapsulation and favouring reuse of the
component.

Components are connected by their ports. The port
definition includes the variables for a connection and their
behaviour and restrictions when there are connections
between more than two ports. By defining the behaviour
of the ports, the system is able to automatically insert
several connection equations, so the user does not need to
be concerned about them. To add a new component, the
user only has to be concerned about its internal behaviour
and not about the connection equations.

2.2 Inheritance
Inheritance is what gives EL its tremendous power for
sharing interfaces and behaviour.

In all fields of simulation, when many components are
developed it becomes apparent that they share much of
the same behaviour. EL can bring together common data
and equations in parent components, to be inherited by
their child components. This allows the creation of
libraries based on parent components with a linear rather

97

than geometric order of complexity. A new component
based on another parent will include all its data and
behaviours.

EL provides multiple inheritance; i.e., a component can
inherit data and behaviour from one or many components
which have previously been designed and tested. This
capability allows the creation of new components reusing
parts of others which have already been created.

2.3 Aggregation

In EL, all Modeling items are components. As described
above, a component can inherit from another (or others),
and can contain multiple instances or copies of others
internally. This concept enforces the capability of reuse
because it allows compound components to be created
based on others which have already been developed.

This paradigm is applied iteratively and has no limit.
The complexity of a final component can be hidden by the
aggregation of tried and tested internal instances of other
components or classes.

2.4 Data Abstraction

EL provides typical numerical data like REAL and
INTEGER as well as other convenient data types like
BOOLEAN and STRING. It also offers enumerative
types to define the user’s own data (very useful in
chemical Modeling).

In addition, EL has multidimensional arrays, 1D, 2D
and 3D tables and pointers to functions.

3. Classes

3.1 Introduction

Classes in EL are the equivalent to classes in classic
object-oriented programming languages such as C++ and
Java, but their use is more restricted (and simple). In fact,
they are like high-level wrappers for producing a C++
class but bearing in mind that the final users are
engineers and not programmers.

There are times when the modeller wants to
encapsulate data and behaviour in the same item, and later
instantiate them and use them by means of certain
methods.The main difference between a class and a
component in EL is that a component is meant to include
dynamic equations and discrete events that the simulation
tool arranges and solves, whereas a class represents a set
behaviour and only allows the publication of variables
and methods.

Classes are normally used in EL to support the
Modeling of complex systems where the use of functions
is sometimes improved if all the functions referring to the

same utility are grouped together and share memory by
means of common variables.

The general syntax to define classes is as follows:

class_def : CLASS IDENTIFIER (IS_A
scoped_id_s)?

DESCRIPTION?

(DECLS var_object _decl_s)?

(OBJECTS class_instance_stm s)?

(METHODS method_def s)?

END CLASS

As all elements are optional, a very simple valid class
would be:

CLASS math
END CLASS

An example of a slightly more complete class would
be:

CLASS point2D “class reprenting a 2D
point”

DECLS

PRIVATE REAL x

PRIVATE REAL y

METHODS

METHOD NO_TYPE set2D(IN REAL valueX,
IN REAL valueY)

BODY

x = valueX

y = valueY

END METHOD

METHOD NO_TYPE get2D(OUT REAL valueX,
OUT REAL valueY)

BODY

valueX = x

valueY =y

END METHOD

END CLASS

This class represents the coordinates of a 2D point. It
has a description, two private variables named “x” and
“y” and two methods named “set2D()” and “get3D()".

3.2 Inheritance

As seen above, a class can be inherited from one class
(simple inheritance) or more (multiple inheritance) at the
same time, in which case it will inherit all the associated
variables and methods exactly as if they had been defined
in the class itself.

To give an example of simple inheritance we can
define a new class point3D as:

CLASS point3D IS _A point2D "a 3D
point™
DECLS

98

PRIVATE REAL z

METHODS

METHOD NO_TYPE set3D(IN REAL valueX,
IN REAL valueY, IN REAL valueZz)
“Method to init a 3D point”

BODY

set2D(valueX,valueY)

z = valuez

END METHOD

METHOD NO_TYPE get3D(OUT REAL valueX,
OUT REAL valueY,OUT REAL valueZz)
“Method to obtain a 3D point”

BODY

get2D(valueX,valueY)

valuezZ = z

END METHOD

END CLASS

This example shows how inheritance is used to inherit
"point3D" class from "point2D" class and thus inherit
their variables “x” and “y” and the methods “set2D()” and
“get2D()”.To see an example of multiple inheritances,
another class can be created.

CLASS statusClass “a status class”
DECLS

PRIVATE BOOLEAN status

METHODS

METHOD NO_TYPE setStatus(IN BOOLEAN
sta)

BODY

status= sta

END METHOD

METHOD BOOLEAN getStatus(Q)

BODY

RETURN status

END METHOD

END CLASS

Then it can be inherited in the definition of point3D.

CLASS point3D IS _A point2D,
statusClass ““a 3D point”

END CLASS

Here, the child class will inherit all variables and
methods from parent classes; in other words, every
point3D object will have access to all the public parts of
classes “point2D”,“statusClass” and “point3D”.

Variables or methods cannot be inherited with the same
name as this would produce an error in the compiler.

3.3 DECLS Block

With the DECLS block of a class, any kind of basic EL
variable can be defined, whether this be a simple variable
or a multidimensional array. For example, the following

declarations are valid:

CLASS testClass

DECLS

REAL X = 9.9

REAL z,y = 1.1

INTEGER v[3] = {1, 2, 4}

BOOLEAN stat
STRING str =
END CLASS

"hello world"

Defined in it are variables such as REAL, INTEGER,
BOOLEAN and STRING. Initial values are also assigned.
The general syntax for defining variables in classes is as
follows:

\Y/ : PRIVATE? CONST? data_type name_s
("= init_expression)? STRING_VALUE?

Examples of declarations are:
PRIVATE REAL x =1
PRIVATE CONST REAL x = 1

REAL speed= 1 “speed of the aircraft
(m/s)”

3.4 OBJECTS Block

This section allows us to declare objects that are instances
of classes. The objects are written in the OBJECTS block
of classes, components, functions and experiments. The
general syntax of the objects declaration is as follows:

PRIVATE? names STRING_VALUE?

Valid declarations are:

OBJECTS

point3D pil

PRIVATE statusClass objectl, object2
Point2D points[3,4]

3.5 METHODS Block

Methods define the functional interface of a class. They
are subroutines connected to a definition of a class. They
are always declared within a class in the METHODS
block and can only be invoked from instances of that
class.

Like functions, a method can return a basic EL type
and has a number of call arguments which are defined
when the method is written.

The general syntax of a method is:

99

method_def :
IDENTIFIER
"(" EOL* func_arg_decl_s ")*
STRING_VALUE?

(DECLS var_decl_s)~?

(OBJECTS class_instace_stm s)?
(BODY seq_stm_s)?

(END METHOD)?

PRIVATE? METHOD data_type

An example of its use is:

CLASS example

DECLS

PRIVATE REAL x

METHODS

-- method to increment x with value v
(returns nothing)

PRIVATE METHOD NO_TYPE incr(IN REAL v)
BODY

X= X + v —- iIncrease the class
variable x

END METHOD

-- method to return the value of x
after increasing it with value v
METHOD REAL popValue(IN REAL v)

BODY

incr (v)

RETURN x

END METHOD

END CLASS

3.6 Using Classes

Classes defined in EL can be used in functions,
components, experiments and in other classes.

Instances in classes are always defined in the
OBJECTS block of each statement, as described
above.These objects are used the same way as in other
object-oriented programming languages. All their
variables of instance and public methods (eg, those which
are not tagged PRIVATE in their definition) are directly
accessible by using the point (.) operator. The general rule
is:

OBJECTREF.METHOD(..-.)
OBJECTREF.VARIABLE

For example:
objectl.setValue(5)

objectl.speed= 4
objectl.foo.setValue(4)

The following class uses objects of “example” class
defined in the previous section:

CLASS useExample
METHODS

METHOD NO_TYPE use()

DECLS

REAL v

OBJECTS

example ex -- declare object named ex
BODY

ex.popValue(2)

RETURN v

END METHOD

END CLASS

3.7 Class Associated With a Partition

When generating a partition, the tool can automatically
generate an internal class representing the mathematical
model generated. This provides a number of advantages:
e Any partition can be encapsulated in a single
class
e This class provides an interface for interacting
with the partition. For instance, initialization of
variables, steady and transient calculations, get
values of variables,etc
e Simulations can be embedded in components,
functions, experiments and classes, since they
are programmed with the class interface
e Multiple experiments can be executed in the
same run
e Child classes (inherited from the partition
classes) can be created by adding new variables
and methods. In fact, a child class could provide
complex experiments embedded in a single
method.

To automatically generate the class associated with the
partition, the user must select the option:

“Generate an associated class for a partition”

located in GUI option Edit->Options->General. In this
case, each time the modeller makes a partition, an internal
class will be generated with the name:

“ComponentName_PartitionName™

Use the underscore (_) separator to create a joint name
from the component and partition names, such as
aircraft_transient.

Once the internal class has been created, the modeller
can declare an object of that class from any OBJECTS
block, such as:

OBJECTS
aircraft_transient air

3.7.1 Access to Variables During Simulation

The user can access any model variable of the partition in
these special classes. Since the variables can be of
different types, there are different methods that allow the

100

user to access the type of variable, to see if the variable
exists, etc. Here is an example of available methods:

INTEGER getNumberVars ()

REAL getValueReal (IN STRING name)
BOOLEAN setValueReal (IN STRING name,
IN REAL v)

3.7.2 Operations Allowed with Classes of Models

By using these types of classes, you can perform any
calculation with the partitions as if you were writing an
experiment. For example, you can perform steady state
and transient calculations on the same model.

Let's look at an example of an experiment carried out
on the component aircraftGear from the DEFAULT_LIB
library. The experiment expl carries out the following
transient study:

EXPERIMENT expl ON
aircraftGear.default

INIT

-- Dynamic variables
y3 =0

y3" =0

y2 = 0.

y2® = 0.

x = 0.

X" = 60.96

BODY

REPORT_TABLE(reportAll™, ™ * ™)
TIME = O.

TSTOP = 10.
CINT = 0.05
INTEGQ

END EXPERIMENT

This same experiment can be written using these
special classes. Suppose we create a new component
called useAircraft and that in its initialization (INIT
block) we want it to perform a transient calculation of the
partition aircraftGear_default just as we did in the
experiment. The code would be:

COMPONENT useAircraft
OBJECTS

aircraftGear_default air

INIT

-- set initial values
air.setTraceProgramme(TRUE)
air.setvValueReal ("'y3", 0)
air.setValueReal ("'y3"", 0)
air.setValueReal ("'y2", 0)
air.setValueReal ("'y2"", 0)
air.setvValueReal ("'x", 0)
air.setValueReal ("'x™"", 60.96)
-- iIntegrates the model

air .REPORT_TABLE('rAir"™, "™ * ™)
air.TIME = O.

air_.TSTOP = 10. In this example, it has been embedded the same

air.CINT = 0.05 experiment in a method of a new class called
air.INTEG(Q) “aircraftTransient”. Thus, we can now re-write the class
END COMPONENT useAircraft as:
When using this component, a transient study will be COMPONENT useAircraft
executed for the aircraftGear model at the beginning of OBJECTS
the calculation. This way, we have managed to embed a aircraftTransient air
calculation of a mathematical model into another INIT
component. This makes the language very powerful for -- run the experiment
embedding mathematical models inside others. air.run()

END COMPONENT

3.7.3 Activation of Flags This, as can be seen, is a great simplification, since it
only calls the method “run()” which encapsulates the
whole experiment. These classes have all the properties of

By default, performing calculations on any class a normal class and can define new variables and methods,

associated with a partition will not produce any on-screen be inherited by others, etc. This gives great flexibility for

messages or log files. _ _ encapsulating experiments in methods of classes and
There is a set of functions to activate and deactivate reusing them later.

these flags which print simulation messages when
running, return the actual status of flag for tracing the

simulation, print simulation messages in the log file, 3.7.5 Anilustrative example: Initialization of models
check assertions when running, ...
The main objective of this problems is to allow to start a

374 Creation of Classes Based on Partition Classes simulation from stationary conditions.To formulate this
kind of problems in EL, classes are used.

We can also create our own classes by inheriting them For instance:
from the automatically generated class of partition. This
way, a more user-friendly interface can be created for In a problem of an eletrical engine:

operating with a mathematical model.

For example, a new class can be created by inheriting it
from the class aircraftGrear_default and writing the
experiment written in the INIT block of the example
in the previous section in a method of the class.

CLASS aircraftTransient IS _A
aircraftGear_default

METHODS

METHOD NO_TYPE run(Q)

BODY

-- set initial values
setTraceProgramme(TRUE)
setValueReal ("'y3", 0)
setValueReal ("'y3""", 0)

setValueReal ("'y2", 0) Figure 2. Electrical engine schematic.
setValueReal ("'y2""", 0)
setValueReal ("'x", 0) whose model is given by:

setValueReal ("'x""", 60.96)
-— integrates the model
REPORT_TABLE('rAir™, " * ™)
TIME = O.

TSTOP = 10.

CINT = 0.05

INTEGQ

END METHOD

END CLASS

101

Figure 3. Electrical engine dynamic equations.

The codification in EL is for instance:

COMPCNENT engine

DATL

REAL R = 0.2 -- electric resistance (ohwios)

REAL L = 0.01 -- electric inductance (H)

REAL k1 = 0.006 -- arwature constant [(lbs-pie/d)

REAL £ -- damping ratio of the mechanical syatem|lhs-pie/rad/seq)
REAL J = 0.001 -- mowent of inertia of the rotor (slug-piel)

REAL k2 = 0,055 -- zpeed constant (V.seg/rad)

DECL3

REAL V -- source voltage (V)

RELL omega -- angular velocity

REAL i -- armatura cUrrent

REAL T -- motor torgue applied to the shaft

CONTINUQUS

J * owega' = k1*i - £ *omega - T
L#i' = V - R*i - ki*omegs

END COMPONENT

Figure 4. Electrical engine dynamic codification in EL.

The partition to work with that model for example
could be:

102

Figure 5. Partition of the system.

where the variables “V” and “T” are the boundary
variables and “i” and “w” are the states and outputs of the
process.

Intuitively, if the model were easy, to start with
stationary conditions, only would be necessary write the
equations in the INIT block by this way:

Figure 6. Initializations.

turning the derivatives into null and clearing the outputs
up.
But this operation only could be done if the model
equations are easy.

In general this problem could be solved using classes
and creating a static partition with the component. In this
case the static partition would be for example:

Figure 7. An example of a partition to initialize the
dynamic model at stationary conditions.

where V and W are the boundary variables and inputs.
With “w” and “v” values could be computed the i(0)
value.

Figure 8. First calculation.

and with the i(0) value, could be computed the T(0)
value.

Figure 9. Second calculation.

This partition could be used in the INIT zone of the
dynamic component, so another component would have
been created with the static equations.

Figure 10. New component structure schematic.

103

So, the codification of the component
would be:

using classes

CLASS Stationary IS_A engine_static

METHODS
METHOD MO_TYFE runi)

BODY
STEADY (]

END METHOD

END CLAZS

COMPCONENT engine test
DATRA
REALL R = 0.2 -

REAL L = 0.01 -
REAL k1 = 0.006 -

electric resistance ([ohmios)

electric inductance (H)

armature constant (lbs-pie/A)

REALL £ —— damping ratio of the mechanical system(lbs-pie/rad/seq)
REAL J = 0.001 —- mwoment of inertia of the rotor (slug-pie2)

REAL k2 = 0.055 -- speed constant (V.seg/rad

DECLS

REAL ¥ -- source voltage (V)

RELL omega -- angular velocity

RELL 1 -- armatura current

RELL T -- wotor torgque applied to the shaft
CEJECTS

Stationary stac

INIT

--1i0
--TO

(VO-k2 *omegald) /B
k1*i0-f *owega0

omega = §.

Vo= 5.

stac.setValueReal ("omega’, omega
stac.setValusReal ("W, V)

stac.setTraceProgrante (TRUE)
stac.STEADY ()

i
T

stac,.getWValu=sReal (1"
stac.getWalusReal ("T"

CONTINUOUS

J ¥ omega' = ki1*i - £ *owega - T
L¥i' =V - R*1i - kKZ*omega

END COMPONENT

Figure 11. New Electrical engine dynamic codification
in EL using classes to initialize .

Finally using that component and that class the
simulation will start from stationary conditions.

4. Conclusions

The object-oriented programming language of
EcosimPro, known as EL, is therefore one of the pioneer
languages that has to deal with this new way of Modeling
physical systems.

So finally the advantages of this type of methodology
that offers the modeller over the others are going to be
list:

References
[1]

EcoEC: EcosimPro External Conections Version 4.4. EA
International. 2008

e The modeller encapsulates data and behaviour
into individual components (minimise global
data)

e A component hides the complexity by making
public only a certain part of the component

(2]
3]
[4]

EcoEML.: EcosimPro EL Modeling Language Version 4.4.
EA International. 2008

EcolGS: EcosimPro Installation and Getting Started
Version 4.4. EA International. 2008

EcoMASG: EcosimPro Mathematical Algorithms and
Simulation Guide Version 4.4. EA International. 2008

7 : [5] EcoUM: EcosimPro User Manual Version 4.4. EA
e The public interface comprises parameters, data International. 2008
and ports, while the local variables, discrete [6] EcovU: EcosimPro Version 4.4 Upgrade. EA

events and equations remain private

e The complexity grows in a linear rather than a
geometrical way

e Reuse of tested components

e Inheritance simplifies the Modeling by sharing
many common data and equations. Less code,
more productivity and easier maintainability

e A component can contain equations that can be
inserted at the time of simulation or not,
depending on certain parameters passed to the
component

e Use of virtual equations. Some equations change
from parents to children. Users can decide to
overwrite a parent equation with their own

e Equations format is declarative. Algorithms will
symbolically transform the equations so that they
fit in the best possible way to be solved
numerically

e In general, it be can quoted the following
considerations in the revolution of object-
oriented Modeling:

e Modeling is non-causal. In other words, when a
component is modelled, the causality of
equations is not given. This will be solved during
the final moment of simulation. Libraries of
generic and reusable components can therefore
be created in all situations

e Tried and tested components are constantly
reused through simple or multiple inheritance
and aggregation

e There is extensive use of hidden information and
encapsulated data to deal with the complexity,
solving each Modeling problem in its associated
component and not taking other global data into
account

e It is easier to make changes in the models
because everything is divided into parts

[7]

International. 2008
WWW.ecosimpro.com

Acknowledgements

A few words of thanks to the Empresarios Agrupados
staff for giving me kindly all the information that | need.

104

Activation Inheritance in Modelica

Ramine Nikoukhah
INRIA, BP 105, 78153 Le Chesnay, France

ramine.nikoukhah@inria.fr

Abstract

Modelica specifies two types of equations: the equations
defined directly in the "equation" section, which are
supposed to hold all the time, and the equations defined
within a "when" statement. The latter are "activated" by
explicit events at corresponding times. In making the
analogy with Scicos, the equations of the first type are the
counterpart of "always active" blocks whereas the second
type equations are "event activated" blocks. A useful
feature in Scicos is the mechanism of activation
inheritance. In this paper, we examine the possible
extension of the Modelica specification to introduce a
similar mechanism in Modelica.

Keywords Modelica, Synchronous languages, Scicos,
modeling and simulation

1. Introduction

Modelica (www.modelica.org) is a language for modeling
physical systems. It has been originally developed for
modeling systems obtained from the interconnection of
components from different disciplines such as electrical
circuits, hydraulic and thermodynamics systems, etc.
These components are represented symbolically in the
language providing the compiler the ability to perform
symbolic manipulations on the resulting system of
differential equations. But Modelica is not limited to
modeling continuous-time systems; it can be used to
construct hybrid systems, i.e., systems in which
continuous-time and discrete-time components interact
[1]. Modelica specification [2] defines the way these
interactions should be interpreted and does so by inspiring
from the formalism of synchronous languages. Modelica
hybrid formalism can be interpreted or extended to
include many features available already in Scicos. We
have examined some of these issues in previous papers

[4][5]. We consider here the implementation of the
activation inheritance mechanism of Scicos in Modelica.

Scicos (www.scicos.org) is a modeling and simulation

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Link6ping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:

http://www.eoolt.org/2008/

105

environment for hybrid systems. Scicos formalism is
based on the extension of synchronous languages, in
particular Signal [3], to the hybrid environment. The class
of models that Scicos is designed for is almost the same
as that of Modelica. So it is not a surprise that Modelica
and Scicos have many similar features and confront
similar problems. Just as in Modelica, Scicos is event
driven, to be more precise, activation driven, i.e., the
activation of equations are explicitly specified. This is in
opposition to data-flow formalism where the activation is
implicitly derived from the flow of data.

The data-flow mechanism has however many
advantages in certain situations. That is why Scicos
includes an activation inheritance mechanism providing a
data-flow-like behavior without perturbing the overall
formalism. The activation inheritance is treated at an early
compilation phase.

In this paper, we examine the extension of the Modelica
specification to implement an inheritance mechanism
similar to the one available in Scicos. We work here only
with flat Modelica models (usually obtained from the
application of a front-end compiler).

This extension can have many applications. In the last
section, we consider its possible use in the problem of
code generation for control applications.

2. Basic Idea

There is a clear distinction between equations activated by
inheritance and those that are declared “always active” in
Scicos. This is not the case in Modelica where both types
are placed in the equation section outside of when
clauses. To distinguish the two types of activations, we
propose a new when clause in this section. We start by
considering only discrete dynamics.
Consider the following valid Modelica code:

discrete Real z;

Real u,y;
equation

u=2*y;

y=pre(z);

when sample(0,1)

z=pre(z)+u;
end when;

then

and compare it to

discrete Real u,y,z;

equation
when sample(0,1)
u=2*y;
y=pre(z);
z=pre(z)+u;
end when;

then

Both codes are correct and should yield identical
simulation codes on any reasonable compiler/simulator.
In our proposal, the two codes are considered
semantically equivalent. The former being transformed to
the latter in a first phase of compilation by the compiler.

To see where the activation inheritance comes into
play in this example, note that the equations defining u,
and y are not “explicitly activated”; we say then that these
equations inherit their activations. Such an equation is
activated only if at least one of the variables on which it
depends may potentially change value. This of course is
very similar to a data-flow behavior. In this particular
example, the equation defining u depended on z, that is
why it was moved to the when clause. The equation
defining vy depended on u, now in the when clause, so it
was also moved inside the when clause.

This may seem like a minor issue however it allows us
to present useful extensions as we shall see later.

3. Presence of Discrete States

To show that the activation inheritance mechanism cannot
be assimilated with code optimization, consider the
following code:

equation
u=2*y;
y=pre(z);
j=pre(Jj) ty;
when sample(0,1)
z=pre(z)+u;
end when;

then

This code is not currently legal in Modelica whether j is
defined discrete or not. We are not going to worry about
declarations as discrete; from our point of view, this is
redundant information that can only be useful for
checking the model. Indeed, the placement of the variable
in the equation section is enough to determine its discrete
nature.

Now consider the effect of the transformation we had
proposed on the previous example on this new one:

equation
when sample(0,1)
u=2*y;
y pre(z);
=pre(J) +y;
z=pre(z)+u;
end when;

then

This is a valid Modelica code. As we propose that the pre
and post versions be considered semantically equivalent,
then the first version should be considered valid as well.
Note that in this example we do not merely try to propose
a code optimization strategy. Unlike memory-less
equations where too much activation does not affect the

106

simulation outcome, the activation instants of the equation
j=pre (j)+y; must be uniquely specified in order to
obtain an unambiguous model. Clearly without a rigorous
definition of the concept of activation inheritance, the
extension that we propose cannot work.

4. Multiple Inheritance

Let us now examine the situation where an equation
depends on more that one variable updated in different
when clauses:

equation
a=k+m;
when sample(0,1)
k=pre (k) +1;
end when;
when sample(.5,1)
m=pre (m)-1;
end when;

then

then

In this case, the variable a can potentially change value at
both sample(0,1) and sample(.5,1). So the
transformation is carried out as follows:

equation
when sample(0,1)
k=pre (k) +1;
a=k+m;
end when;
when sample(.5,1)
m=pre (m) -
a=k+m;
end when;

then

then

This is an easy case because the two when clauses are

primary (see [5]), i.e. asynchronous. The situation is a bit
more complicated when this is not the case. Consider the
following example:

equation
z=pre(z)+a+b;

when sample(0,1)
a=pre(a)+l;

end when;

when a>3 then
b=a;

end when;

then

Clearly, we would not obtain a correct model if we placed
the definition of z in both when clauses. In particular z
would be incremented wrongly twice by a+b when a
crosses 3. The fundamental reason is that in this case the
two when clauses are not asynchronous. The activations
updating a and b when a crosses 3 are in fact
synchronous (same activation). In [5], we showed how
the secondary when clauses are removed in the process of
compilation. Adding the inheritance mechanism, in our
case this yields the following code:

when sample(0,1) then
a=pre(a)+1;
if edge(a>3) then

b=a;

end if ;
z=pre(z)+a+b;
end when;

The situation is of course more complex in the presence
of multiple primary and secondary when clauses but the
inheritance rules are clearly defined and the compiler can
treat them in an unambiguous manner.

5. Always Active in Modelica

So far we have considered only cases where the model
contained no continuous-time dynamics. In general, the
main component of a Modelica model runs in continuous-
time and the expressions within an equation section,
but outside any when clause, have been associated
systematically to the “always active” components in
Scicos. It is for this reason that in our Modelica compiler,
we replicate all these expressions inside the body of all
when statements. For example in the following example:

equation
a=f (k+3);
b=sin (time) ;
when sample(0,1)
k=pre(k)+1;
end when;
when sample(.5,1)
m=pre (m)-1;
end when;

then

then

we obtain

equation
when continuous then
a=f (k+3) ;
b=sin(time) ;
end when;
when sample(0,1)
k=pre (k)+1;
a=f (k+3);
b=sin (time) ;
end when;
when sample(.5,1)
a=f (k+3);
b=sin (time) ;
m=pre (m)-1;
end when;

then

then

This represents of course the result of the brut force
application of the systematic transformations; the final
code can be much smaller after optimization. The when
continuous clause corresponds essentially to the pure
continuous-time dynamics, the part that would be left to
the DAE solver, see [5] for more details.

This treatment is not really consistent with the
inheritance mechanism we are proposing here. If we
strictly apply the inheritance mechanism described
previously, there wouldn’t be any continuous clause
and the expression a=f (k+3) would appear only in the
first when clause, as it should, but b=sin (time) ;
appears nowhere! Clearly there is a distinction between
the two equations. The inheritance mechanism can work
only if somehow we specify that b=sin(time); is

107

always active. This can be done by introducing a new
when clause:

equation
a=f (k+3);
when always active then
b=sin(time) ;
end when;

when sample(0,1) then
k=pre (k)+1;

end when;

when sample(.5,1) then

m=pre (m)-1;
end when;

This way we explicitly specify that b=sin (time) ;
should be evaluated all the time, but the activation of
a=f (k+3); 1is inherited. In particular for discrete
variables, the compiler replicates this expression only in
when statements in which “k” is computed (appears on
the left hand side of an equation):

equation

when always active then
b=sin (time) ;

end when;

when sample (0,1) then
k=pre (k) +1;
a=f (k+3);

end when;

when sample(.5,1) then

m=pre (m)-1;
end when;

The equations in the always active section are then copied
in all when clauses. Of course if we had a=f (k+m) ;
then the expression would be copied in both discrete
when statements above (multiple inheritance).

The use of the always active clause corresponds
exactly to the block property “always active” in Scicos.
To require such a clause however would break backward
compatibility in Modelica. A possible solution would be
to note that in almost all cases, always activation, which is
associated with variables evolving continuously in time,
originates from the use of the built-in variable time or
the operator der (). It is then possible to implement a
pre-compiler filter that scans over the flat Modelica model
and place the equations in which der () and time appear
inside an always active clause. The rest of the
continuous variables follow naturally by applying the
inheritance rule.

6. Applications

There are three closely related issues that need to be
carefully studied in Modelica: separate compilation of a
part of a model, code generation for controller
applications and general external functions allowing for
internal states. The heart of all three problems is the
ability to isolate any part of a diagram, and under certain
conditions, generate a C code providing the overall
behavior of this part with a canonical API.

The simplest situation is when this part of the diagram
contains only memory-less event-less dynamics in which

case the C code would be an external function as it
already exists in Modelica.

The situation becomes more interesting when the part
of the diagram we are considering contains discrete states.
Consider for example a classical controller configuration
where a continuous-time plant is controlled by a discrete-
time, single frequency controller. By isolating the
controller part, we end of with models driven
synchronously. Based on the current interpretation of the
Modelica specification by Dymola, these discrete blocks
are each driven by a sample event generator; the use of
an identical period and phase in the sample statements
provides the synchronization. We have tried to show in

[5] that this form of implicit synchronization detected
only during simulation puts useless constraints on the
model and the compiler, and it should be avoided. An
alternative solution was proposed in [6] where the
keyword sample was given a macro status allowing for
proper synchronization via a clock calculus similar to that
used in Simulink and SampleCLK blocks in Scicos.

Another technique to synchronize the discrete blocks
would be the explicit use of events as signals. For that, we
introduced a new type called Event in [4]. In this
approach, every discrete block would have an event input
port (called activation input port in Scicos) driving its
activations. This way, a single sample event generator
can be hooked up to all discrete blocks driving them
synchronously.

The inheritance mechanism provides an alternative
solution to the synchronization problem. In most cases,
there are already blocks in the discrete part that work
almost on the inheritance mechanism. For example a
simple Gain block used in this part is not driven by any
event: the corresponding equations are placed in the
equation section. We have seen that this is pretty much an
inheritance mechanism relying on compiler optimization.
With the inheritance mechanism we have introduced,
models with states such as discrete-state space blocks can
also be driven via inheritance. In fact it almost suffices to
remove the when, end when statements from the
existing models. In an actual implementation, it suffices
to drive a first block (usually the analog to digital
converter block defining the boundary between plant and
controller) with the proper sample event generator. The
rest of the blocks then follow through by the inheritance
mechanism synchronously as they should. The advantage
of the inheritance solution is that the discrete part need
not even run on a fixed frequency clock.

Let us examine these ideas on actual examples. In the
following Modelica diagram, we have a purely discrete
single frequency system.

unitDelay
1

z

gain

108

The Memory block is driven by a sample event
generator (equations are all within a when clause) but the
Gain block contributes an equation to the equation
section, outside the when clause. The inheritance
mechanism would move the Gain equation into the when
clause yielding a purely discrete system (a system where
all variables are discrete).

The Scicos counterpart of this Modelica model is

1/z

where the only difference is the explicit presence of an
event clock (generator). Note that the event clock needs
not have fixed frequency in this case.

Consider now the case where there are two discrete
blocks in a diagram:

unitDelay unitDelay 1
1 1
- >—> -
z V4

If each block has its own sample event generator, as it is
the case today in the discrete Modelica library, the Scicos
counterpart would be

G ©)
U7

1/zr— 1/zi

This diagram is not synchronous in Scicos even if the two
event generators have identical periods. The simulation
result for this diagram would not be predictable in Scicos

and we think it should not be in Modelica either unless a
new definition is associated with the keyword sample as
we have proposed in [6] where the keyword sample was
given a macro status allowing for proper synchronization
via a clock calculus similar to the one used in Simulink
and SampleCLK blocks in Scicos. The corresponding
Scicos diagram using SampleCLK blocks would be the
following:

[+ N [

G ol
12— 1/z

In this case, the Scicos compiler starts by performing the
necessary computations on SampleCLK blocks’ periods
and offsets to find the unique slowest clock that by
subsampling can replace the activations of these blocks.
In this case the computation is trivial because the two
blocks have identical periods; the equivalent diagram
after this first phase is the following:

®
n o

1/z20— 1/z‘.

By adopting the proposed interpretation for the Modelica

keyword sample in [6], Modelica compiler would
function similarly.

In Scicos, it is also possible to construct directly this
latter diagram, i.c., to drive both memory blocks by the
same event block. This is not possible to do in Modelica
unless we adopt the Event type suggested in [4]. In that
case we would be able to express the Memory block as
follows:

model Memory
input Event el;
output Real vy;
input Real u;
discrete Real z;
equation
when el then
z=u;
y=pre (z) ;
end when;
end Memory;

109

We would also need an event generator block, something
resembling the following:

Event e(start=t0) ;
discrete Integer k(start=0) ;
equation
when pre (e) then
k=pre (k) +1 ;
e=k*T+t0 ;
end when ;

In Scicos, a Memory block, like any other block, can also
be defined without an activation input port in which case
it inherits its activation from its regular input. To see how
this works, consider a slightly more complicated diagram
that corresponds to a simple controller part of a
Plant/controller diagram:

CID'
> NDF?» 1/2»— 1/27

In this case the Memory blocks (and the sum block as
well) are activated by inheritance. The Modelica
counterpart of this Memory block would be:

model Memory
output Real vy;
input Real u;
discrete Real z;
equation
z=u;
y=pre (z);
end Memory;

This means in particular that in a controller model, by
defining all discrete blocks “inheriting”, i.e., without any
built-in when sample clauses, it suffices to drive only
the interface between the plant and the controller with an
event generator. This interface would be a model such as
the following:

model AD
discrete output Real vy;
input Real u;
parameter Real T=1;
equation
when sample (0, T)
y=u;
end when;
end AD;

then

It is the activation in the when sample clause of this
block that is inherited by the controller part which would
then run synchronously. The following is the general
picture of this setup:

©)
M
<< AD

Discrete
Controller

Continuous time

—
Plant

The continuous-time plant does not inherit any activation
because it is already always active. This configuration is a
classical representation used by control engineers. Note
that no D/A block is necessary here because the output of
discrete blocks hold their outputs constant until their next
activation, nonetheless such a block can be used to clearly
indicate the boundaries of the controller.

7. Conclusion

We have proposed an activation inheritance mechanism in
Modelica that can be used to synchronize a set of discrete
blocks, for example the controller part of a standard
plant/controller configuration. This extension is one
possible way to solve the synchronization issues in the
discrete block library.

With this new extension, we have three different
solutions to the synchronization problem: the use of
macro sample clauses (similar to SampleCLK in Scicos)
in different discrete blocks, the use of event input/outputs
allowing the activation of multiple blocks via a single
event generator, and activation inheritance. These
solutions are complementary and can very well co-exist in
Modelica; they do in Scicos.

The macro sample solution is limited to periodic
systems. It is particularly wuseful for modeling
synchronous multi-frequency systems. Having access to
the sample parameters in each block allows also the
computation of blocks parameters as a function of
sample parameters. For example, the parameters of a
discrete linear system block may be computed as a
function of the sampling period using the exact
discretization method.

The use of the Event type provides full control over the
activation and synchronization of discrete blocks and is a
key element needed for separate compilation in Modelica.
It allows synchronous, asynchronous, single frequency,
multi-frequency and sporadic activations.

Finally inheritance activation provides a modeling
facility that avoids the need for explicitly defining the
activation of each block. The use of inheriting blocks
provides a viable alternative in the single frequency case
to the other two solutions.

110

Acknowledgments

This work has been supported by the ANR project
SIMPA2-C6E2.

References

[1] M. Otter, H. Elmgqvist, S. E. Mattsson, “Hybrid Modeling
in Modelica based on the Synchronous Data Flow
Principle”, CACSD’99, Aug; 1999, Hawaii, USA.
Modelica Association, Modelica® - A Unified Object-
Oriented Language for Physical Systems Modeling,
www.modelica.org/documents/ModelicaSpec30.

A. Benveniste, P. Le Guernic, C. Jacquemot.,"Synchronous
programming with events and relations : the Signal
language and its semantics", Science of Computer
Programming, 16, 1991, p. 103-149.

R. Nikoukhah, “Extensions to Modelica for efficient code
generation and separate compilation”, in Proc. EOOLT
Workshop at ECOOP’07, Berlin, 2007.

R. Nikoukhah, “Hybrid dynamics in Modelica: Should all
events be considered synchronous”, in Proc. EOOLT
Workshop at ECOOP’07, Berlin, 2007.

R. Nikoukhah, S. Furic, “Synchronous and Asynchronous
Events in Modelica: Proposal for an Improved Hybrid
Model”, in Proc. Modelica Conference, Bielefeld, 2008.

P. Fritzson - “Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1”, Wiley-IEEE Press, 2003.

S. L. Campbell, Jean-Philippe Chancelier and Ramine
Nikoukhah, “Modeling and Simulation in Scilab/Scicos”,
Springer, 2005.

(2]

[3]

[4]

[6]

[7]

Selection of Variables in Initialization of Modelica Models

Masoud Najafi

INRIA-Rocquencourt, Domaine de Voluceau, BP 105, 78153, Le Chesnay, France
masoud. naj afi @nria.fr

Abstract mentary systems that can be used as building blocks. They
. can have several inputs and outputs, continuous-time states,
oped for the initialization of Modelica models. The Gui discrete-time states, zero-crossing functions, etc. New cus-
allows the user to fix/relax variables and parameters of the {0M blocks can be constructed by the user in C and Scilab
model as well as change their initial/guess values. The out- [anguages. In order to get an idea of what a simple Scicos
put of the initialization GUI is a pure algebraic system of hybrid models looks like, a model of a control system has

equations which is solved by a numerical solver. Once the been implemented in Scicos and shown in Figure 1.
algebraic equations solved, the initial values of the vari-

ables are used for the simulation of the Modelica model.

When the number of variables of the model is relatively @

small, the user can identify the variables that can be fixed

and can provide the guess values of the variables. But, this

task is not straightforward as the number of variables in- I

creases. In this paper, we present the way the incidence noise
matrix associated with the equations of the system can be o
exploited to help the user to select variables to be fixed and
to set guess values of the variables during the initialization
phase.

Num(s)
Keywords Modelica, initialization, coupling algorithm, m+3 Den(s) I&I

numerical solver, Scicos reference Plant utput/control
trajectory |

In Scicos, a graphical user interface (GUI) has been deve

freq_div

1. [Introduction

Scicos is a free and open source simulation software used Num(z) -

for modeling and simulation of hybrid dynamical systems Den(z) -

[3, 4]. Scicos is a toolbox of Scildbwhich is also free Controller

and open-source and used for scientific computing. For

many applications, the Scilab/Scicos environment provides

an open-source alternative to Matlab/Simulink. Scicos in- Figure 1. Model of a control system in Scicos

cludes a graphical editor for constructing models by inter-

connecting blocks, representing predefined or user defined Besides causal or standard blocks, Scicos supports a

functions, a compiler, a simulator, and code generation fa- subset of the Modeli¢danguage [7]. The diagram in Fig-

cilities. A Scicos diagram is composed of blocks and con- ure 2 shows the way a simple DC-DC Buck converter has

nection links. A block corresponds to an operation and by been modeled in Scicos. The electrical components are

interconnecting blocks through links, we can construct a modeled with Modelica while the blocks that are used to

model, or an algorithm. The Scicos blocks represent ele- control the On/Off switch are modeled in standard Scicos.

- : The Modelica compiler used in Scicos has been devel-

WWW.SCIcos. org oped in the SIMPA project. Recently the ANBRRNTL

2 www.scilab.org SIMPA2 project has been launched to develop a more
complete Modelica compiler. The main objectives of this
project are to extend the Modelica compiler resulted from

2nd International Workshop on Equation-Based Object-Oriented the SIMPA pl‘Q]ECt to fu”y _SL_IF_)pOI’t |nher|t_ance and hyb“d
Languages and Tools. July 8, 2008, Paphos, Cyprus. systems, to give the possibility to solve inverse problems
Copyright is held by the author/owner(s). The proceedings are published by

Linkdping University Electronic Press. Proceedings available at: 3www.modelica org

http://ww. ep.|iu.sel/ecp/ 029/ o ’ o .

EOOLT 2008 website: 4 Simulation pour le Procédé et I'Automatique

http://ww. eool t . or g/ 2008/ 5French National Research Agency

111

(ﬁ«l

Figure 2. Model of a DC-DC Buck converter in Scicos
using Modelica components

oo

by model inversion for static and dynamic systems, and to
improve initialization of Modelica models.

An important difficulty when simulating a large Model-
ica model is the initialization of the model. In fact, a model
can be simulated only if it is initialized correctly. The
reason lies in the fact that a DAE (Differential-Algebraic
Equation) resulting from a Modelica program can be simu-
lated only if the initial values of all the variables as well as
their derivatives are known and are consistent.

A DAE associated with a Modelica model can be ex-
pressed as

0= 1)

wherez, 2/, y, p are the vector of differential variables of
size N4, derivative of differential variables of siz&,, al-
gebraic variables of siz&,, and model parameters of size
N,, respectivelyF'(.) is a nonlinear vector function of size
(N4 + N,). Since, the Modelica compiler of Scicos sup-
ports index-1 DAEs [1, 2], in this paper we limit ourselves
to this class of DAEs.

In Scicos, in order to facilitate the model initialization,
the initialization phase and the simulation phase have been

F(z',2z,y,p)

In Modelica, thest art keyword can be used to set
the start values of the variables. The start values of deriva-
tives of the variables can be given within thaei t i al
equat i on section. For small programs, this method can
easily be used but as the program size grows, it becomes
difficult to set start values and change thiexed attribute
of variables or parameters directly in the Modelica pro-
gram; initialization via modifying the Modelica model is
specially difficult for models with multiple levels of inher-
itance; the visualization and fixing and relaxing of the vari-
ables and the parameters are not easy. Furthermore, the user
often needs to have a model with several initialization sce-
narios. For each scenario a copy of the model should be
saved.

In Scicos, a GUI has been developed to help the user to
initialize the Modelica models. In this GUI, the user can
easily change the attributes of the variables and the pa-
rameters such asni ti al / guess val ue, nax, n n,
nom nal , etc. Furthermore, it is possible to indicate
whether a variable, the derivative of a variable, and a pa-
rameter must be fixed or relaxed in the initialization phase.

In the following sections, the initialization methodology
for Modelica models and the initialization GUI features
will be presented.

2. Initialization and Simulation of Modelica

Models

The flowchart in Figure 3 shows how initialization and
simulation of Modelica models are carried out in Scicos.
The first step in both tasks is removing inheritances. This
provides access to all variables and generates a flat model.
The flat model is used to generate the initialization and the
simulation codes. Note that the initialization data used for
starting the simulation is passed to the simulation part by
means of an XML file containing all initial values.

In Scicos, three external applications are used in initial-

separated and two different codes are generated for eachization and simulationTr ans| at or , XM_L2Mbdel i ca,

phase: The initialization code (an algebraic equation) and
the simulation code (a DAE).

In the Initialization phasey’ is considered as an alge-
braic variable i(e., dz) and then an algebraic equation is
solved. Modelica parametepsare considered as constants
unless they are relaxed by the user. There afg € N,)
equations and2(Ny + N, + NN,) variables and parame-

ters that can be considered as unknowns. In order to have a

square problem solvable by the numerical solV&T, € Ny)
variables/parameters must be fixed. The values afhdp
are often fixed and given by the user and the valuagrof
andy are computed. But the user is free to fix or relax any
of variables and parameters. For example, in order to ini-
tialize a model at the equilibrium statéy is fixed and set
to zero whereas is relaxed to be computed. Another ex-
ample is parameter sizing where the value of a parameter is
computed as a function of a fixed variable. In this case, the
parametep is relaxed and the variableis fixed.

In the simulation phase, the values obtainedafpt,
y, p are used for starting the simulation. During the simu-
lation, the value op (model parameters) does not change.

112

andMvbdel i caC.
Transl at or is used for three purposes:

e Modelica Front-end compiler for the simulation: when
called with appropriate optiongr ansl at or gener-
ates a flat Modelica program. For thar, ansl at or
verifies the syntax and semantics of the Modelica pro-
gram, applies inheritance rules, generates equations for
connect expressions, expandsor loops, handles
predefined functions and operators, performs the im-
plicit type conversion, etc. The generated flat model
contains all the variables, the derivatives of differen-
tial variables, and the parameters defined with attribute
f i xed=f al se. Constants and parameters with the at-
tribute f i xed=t r ue are replaced by their numerical
values.

Modelica Front-end for initialization: when called with
appropriate options;Tr ansl at or generates a flat
Modelica program containing the variables and the pa-
rameters defined with attributei xed=f al se. The
derivatives of the variables are replaced by algebraic

| MyLibs.mo | lMyModeI.moi
Front-end
Simulation ¢ Initialization

MyModel_flat.xml

i MyModel_incidence.xml'

| MyModel_flat.xml !

Initialization
GUI

Modelica compiler

Simulation
(Dynamic)

,,,,,,,,, v
i MyModel initc |
""" Computing '

: (finding initial values) :

............... e

Update data
MyModel_flat.xml

Figure 3. Initialization flowchart in Scicos

variables. Furthermore, the flat code contains the equa- 3.
tions defined in theé ni ti al

equat i on section in

generates a C program for the Scicos target. The main fea-
tures of the compiler are the simplification of the Modelica
models and the generation of the C program ready for simu-
lation. It supports zero-crossing and discontinuity handling
and provides the analytical Jacobian of the model. It does
not support DAEs with index greater than one. Another im-
portant feature of the Modelica compiler is the possibility
of setting the maximum number of simplification carried
out during the code generation phase. Thus, the compiler
can be called to generate a C code with no simplification
or a C code with as much simplification as possible. This is
an important feature for the debugging of the model.

A new feature ofivbdel i caC is generating the inci-
dence matrix. When a C code is generated, the correspond-
ing incidence matrix is generated in an XML file. The in-
cidence matrix is used by the initialization GUI to help the
user.

As shown in Figure 3, once the user requests the ini-
tialization of the Modelica model, the Modelica front-end
generates a flat Modelica model as well as its correspond-
ing XML file. The XML file is then used in the initializa-
tion GUI. In the GUI, the user can change the variable and
parameter attributes defined in the XML file. The modi-
fied XML file is then translated back to a Modelica pro-
gram. The Modelica program is compiled with the Mod-
elica compiler and a C program is generated. The C pro-
gram is used by the Scicos simulator to compute the value
of unknowns. Once the initialization finished, whether suc-
ceeded or failed, the XML file is updated with the most
recent results. The GUI automatically reloads and displays
the results. The user can then decide whether the simulation
can be started or not.

In order to simulate the Modelica model, similar to the
model initialization, a flat model is generated. Then, the
Modelica compiler simplify the model and generates the
simulation code. The generated code is simulated by a nu-
merical solver. The initial values, needed to start the simu-
lation, are read directly from the XML file. The end result
of the simulation can also be saved in an another XML file
to be used as a starting point for another simulation.

Initialization GUI
In Scicos, a GUI can be used for the initialization of the

the Modelica programs. Constants and parameters with \jodelica models. Figure 4 illustrates a screen shot of the
the attributef i xed=t r ue are replaced by their nu-

merical values.

e XML generator: when called with -xml option, Transla-
tor generates an XML file from a flat Modelica model.
The generated XML file contains all the information in

the flat model.

Once the XML file generated, the user can change vari-

able and parameter attributes in the XML file with the help
of the GUI. The modified XML file have to be reconverted
into a Modelica program to be compiled and initialized.
This is done byXM_2Mbdel i ca.
Model i caC, which is a compiler for the subset of the
Modelica language, compiles a flat Modelica model and

113

GUI corresponding to the Modelica parts of the Scicos di-
agram of Figure 2. In this GUI, the Modelica model is dis-
played in the hierarchical from, as shown in Figure 4. Main
branches of the tree represent components in the Modelica
model. Subbranches are connectors, partial models, etc. If
the user clicks on a branch, the variables and parameters
defined in that branch are displayed and the user can mod-
ify their attributes. In the following subsections, some main
features of the GUI will be presented.

3.1 Variable/Parameter Attributes

Any variable/parameter has several attributes which are
either imported directly from the Modelica model such as

% MOMDAl -, HEOUCEO -, Selecled - SEelecled (an) - Lhanged (an) Searcn:

Method: ISundiaIs j Initialize | Residual error: |7 Check |

Equation=33 Unknown=53 Fized Par=11 Free Par=0 Fized Yar=0

Free Var=53 Discrete=0 Input=1

— Model tree

o

— Varaibles & parameters attributes

Mame Type Fixed Walue Weight Max rin Maominal Comment Selection

E—-&O) DC_DC_Buck_Converter_im i War falze (0.0] 1 n

W Var false (0.0 1} 1 n

I &ninPutPortl
E—risd Capacitor

——dip

L &n

E—aiGround1

E—diVoltage Sensorl
EF—aCurrent Sensorl
E—diResistor
F—oDiode

[iZarnnetantiinltanal ,/ }\JJ |

Figure 4. Screen shot of the initialization GUI in Scicos for the electrical circuit of Figure 2

nane,type, fi xed etc. or defined and used by the GUI
i.e.,i dandsel ecti on.

nane is the name of the variable/parameter used in
the Modelica program. The user cannot change this
attribute in the GUI.

i d is an identification of the variable/parameter in the
flat Modelica program. The user cannot change this
attribute in the GUI.

t ype indicates whether the original type has been
par anet er orvari abl e in the Modelica program.
The user cannot change this attribute in the GUI.

f i xed represents the value of thd i xed’ attribute
of the variable/parameter in the Modelica program. The
user cannot change this attribute in the GUI.

wei ght is the confidence factor. In the current version
of Scicos, it takes either valuér 1. wei ght =0 cor-
responds to thé i xed=f al se in Modelica whereas
wei ght =1 corresponds tbi xed=t r ue. The default
value ofwei ght for the parameters and differential
variables is one, whereas for the algebraic variables
and the derivatives of differential variables (converted
to variables) is zero.

val ue is the value of the variable/parameter. If the
wei ght =1, the givenval ue is considered as the fi-
nal value and it does not change in the initialization. If
wei ght =0, the givenval ue is considered as a guess
value. If the user does not provide any value, it is auto-

114

matically set to zero. The user can modify this value in
the GUI.

e sel ecti onis used to mark the variables and parame-
ters. This information will be used by the GUI for selec-
tive display of variables/parameters and to influence the
Modelica compiler in the model simplification phase.

Note that if the user sets theei ght attribute of a vari-
able to one, it will be considered as a constant and in the ini-
tialization phase it will be replaced by its numerical value.
On the other hand, if the user sets thei ght attribute of
a parameter to zero, the parameter will be considered as an
unknown and its value will be computed in the initializa-
tion phase. This is in particular useful when the user tries
to find a parameter value as a function of a variable in the
Modelica model.

3.2 Display Modes

Accessing to variables and parameters of the model be-
comes easier, if different display modes of the GUI are
used:

e Normal mode is the default display mode. Clicking
on each branch of the model tree, the user can visual-
ize/modify the variables/parameters defined in that part
of the Modelica model.

e Reducedmode is used to display the variables of the
simplified model. When the user pushes the initializa-
tion button, the flat Modelica model is compiled and
a simplified model is generated. In this display mode,

only the remaining variables are displayed. This display
mode is in particular useful when the numerical solver

cannot converge and the user should help the solver ei-

ther by influencing the compiler to eliminate the unde-
sirable variables or by giving more accurate guess val-
ues.

e Selectedmode is used to display only the marked vari-

4.1 Fixing the Variables

Consider the following equation set, composed of two
equations and three unknowns.

0= f(z)
F{ O:g(x,y,z)

Since the degree of freedom is one, the user should

ables and parameters of the active branch. A variable provide and fix the value of a variable. But, it is clear that

or parameter can be marked by putting’ in its se-
lection field in the GUI. By default, all parameters, all
differential variables and all algebraic variables whose
start values are given are marked. Marking is useful in

x cannot be fixed, because its value is imposed by the first
equation. In this case, the GUI should prevent the user from
fixing z.

Consider the next set of equations composed of three

particular when a branch has many variables/parametersequations and five unknowns.

whereas the user is interested in a few ones. In this
display mode, unmarked variables/parameters are not

shown.

¢ Selected (all)mode is used to display all marked vari-
ables and parameters of the Modelica model.

e Changed mode is used to display the variables and
the parameters whoseei ght attributes have been
changed, such as the relaxed parameters.

3.3 Initialization Methods

Once the user modified the attributes of the variables and
the parameters, the initialization process can be started byOf

clicking on the "Initialize" button. The initialization con-
sists of calling a numerical solver to solve the final alge-

braic equation. There are several algebraic solvers available

in Scicos such aSundi al s andFsol ve [8, 9, 10].

Once the solver finished the initialization, the obtained
results, either successful or not, are put back into the XML
file and new values are displayed in the GUI. If the result

is not satisfactory, the user can either select another initial-

ization method or help the solver by giving initial values
more accurately. This try and error can be continued un-
til satisfactory initialization results are obtained. Then, the
simulation can be started.

4. Problems in Variable Fixing and Variable
Selection

The initialization of DAE (1) can be formulated as the
following algebraic problem
0= F(dIOa o, yOapo) (2)

wherex, dxg, andy, are solutions or the initial values
of differential variables, derivative of differential variables,

0= f(z,u)
F:{ 0=g(x,2) (3
0=h(z,y,zv)

Although the degree of freedom is two, the user cannot fix
(u, 2), (z, z), or (x,u) at the same time. In general, it is not
easy to identify the set of variables that can be fixed. This
is in particular important when the number of equations
increases. In this case, if the user tries to fix an inadmissible
variable, the GUI should raise an error message and prevent
the user from fixing the variable.

This problem can be solved using the incidence matrix
the Modelica model. For example, this is the incidence
matrix of (3):

1 0 0
1 0 1
1 1 1

Fixing u andz means removing andz from the equa-
tions which results in the following equation set and the
incidence matrix.

0= f(z,uo) 1 00
F:q¢ 0=g(x,z) 100
0 = h(z,y, 20,v) 11 1

Although, there are three unknowns and three equations,
the incidence matrix is not structurally full rank. This
means that: andz cannot be fixed at the same time.
Computing the structurally rank of the incidence matrix
is a straightforward way to determine if the user is allowed
to fix variables or parameters of the model. Since the in-
cidence matrix is very often large and sparse in practical
models, we should use special methods for sparse matrices.
Inthe GUI, amaxi mum nat chi ng method (also called a
maximum transversal method) is used to compute the struc-

algebraic variables, and parameter values, respectively. Thetural rank of the incidence matrix. The maximum matching

degree of freedom of the equation (2\Ng + N, therefore
the user should fixV, + N, variables or parameters and
let the solver find the values of the remaining + N,
unknowns.

Fixing the variables/parameters and giving the start val-

method is a permutation of the matrix so that/it§ diag-
onal is zero-free an¢k| is uniquely minimized. With this
method, the structural rank of the matrix is the number of
non-zero elements of the matrix diagonal [6].

When the user tries to fix a variable or a parameter, the

ues of the relaxed variables/parameters are essential in thenitialization GUI computes the new structural rank of the
initialization of models. But they are not easy and straight- incidence matrix. If the fixing operation lowers the rank,
forward for large models. In the next subsections the way an error message will raised and the modification will be
these problems are handled in Scicos will be explained. inhibited.

115

4.2 Selection of Variables to Be Eliminated Suppose that the compiler eliminatgs but the user
does not know the start value afwhile y has a physical
interpretation and its nominal value can be given. In this
case, the initialization GUI should propose to the user all
variables that can replacgi.e.,y.

Proposing alternative variables for formal simplification
is done in the initialization GUI. In the next sections, it will

Another recurrent problem in solving algebraic equations
is the convergence failure of the solver. Newton methods
are convergent if the initial guess values of unknowns are
not too far from the solution. So, the user should provide
reasonable initial guess values. If the problem size is small

and the user knows the nominal values of the unknowns,
the user can provide the guess values. But in large models, P& Shown the way these problems can be handled by the use

it is nearly impossible to give all guess values. In medium of the incidence matrix of the model. This is done using the

size Modelica models, we usually end up with models with Maximum flow algorithms.
many variables whose start values are not specified by the .
user.)lln this case, their initial guess values arepautomati)éally 5. Maximum Flow Problem
set to zero which is not often a good choice. Furthermore, The maximum flow problem is to find the maximum feasi-
many variables of a model are redundant and the user doesble flow through a single-source, single-sink flow network
not know for which ones the initial guess should be given. [5]. The maximum flow problem can be seen as a special
This often happens with variables linked by thennect case of more complex network flow problems. A directed
operator in Modelica. Suppose that two Modelica compo- graph or digraplt is an ordered pai¢ := (V, A) with
nents are connected via a connectog, « Vis the set of vertices or nodes,
connect (Bl ockl.x, Block2.y); e Ais the set of ordered pairs of vertices, called directed
edges or arcs.
During the model simplification, the compiler may elim-
inate eitherBl ock1. x or Bl ockl. y. Even if the user
knows the guess values of both, it is not reasonable to ask
the user to provide them. Since the user has no influence
on the compiler’s variable selection, this may cause a prob-
lem in solving the initialization equation. Considerg.,
the following situation.

An edgee = (u,v) is considered to be directed from
u to v; v is called the head and is called the tail of the
edgey is said to be a direct successorgfandu is said to
be a direct predecessor of The edge(v, u) is called the
inverted edge ofu, v).

Given a directed grapti(V, E), where each edge, v
has a capacity(u, v), the maximal flowf from the source

0 — x—3 01 s to the sinkt should be found. There are many ways of
F: (z—3)2+1 e solving this problem, such as linear programming, Ford-
0 = xz—vy Fulkerson algorithm, Dinitz blocking flow algorithm, etc
[12, 11].

Here, if the user sets the initial guessyoto 10 and leaves
the guess value of unspecifiedi.e., z = 0, although 5.1 Ford-Fulkerson Algorithm
y = 10 is close to the solution, the Newton’s method will
likely fail. The reason is that the solver ignores the initial
value ofy and uses that of. In fact, there is no way to tell
the solver the guess value which is "more" correct than the
others.

The Ford-Fulkerson algorithmcomputes the maximum
flow in a flow network. The name "Ford-Fulkerson" is of-
ten also used for the Edmonds-Karp algorithm, which is a
specialization of Ford-Fulkerson. The idea behind the al-
. o) gorithm is very simple: as long as there is a path from the
.T.he §0Iut|on 'S,to formally simplify the equations t_)y source to the sink, with available capacity on all edges in
eliminating the variables whose guess-values are not given, e path, we send flow along one of these paths. Then we

by replacing them with the variables having given guess- i,y another path, and so on. A path with available capacity
values. For that, in the initialization GUI, variables with is called an augmenting path.

known guess-values are marked and the Modelica compiler Algorithm: Consider a grapl@(V, E), with capacity
is told to eliminate the unmarked variables. The user, of ., "y and flow f(u, v) — 0 for the edge from: to v. We
course, can modify the list of these marked variables. want to find the maximum flow from the sourseto the

The compiler tries to eliminate the variables as much as g+ - Atter every step in the algorithm the following is
possible, but a problem may arise when the compiler fails maintained:

to eliminate all of unmarked variables. Since, the simulator

sets their guess-value to zero, the original problem still ® f(u,v) < ¢(u,v). The flow fromu to v does not exceed
persists. In this case, the user should be asked to provide the capacity.

the guess-value of the remaining variables. But, usually the e f(u,v) = —f(v,u). Maintain the net flow between
user has no idea about the nominal values of the remaining andw. If in reality a units are going from: to v, and
variables or even does not know the physical interpretation b units fromv to u, maintain f(u,v) = a — b and
of them. As an example, consider the following set of fv,u) =b— a.

equations for which no guess-values are given. ¢ S F(uv) = 0= fin(u) = four(u) for all nodesu
v) - n — Jout ’

[0 = f(o) excepts andt¢. The amount of flow into a node equals
F 0 = z—y the flow out of the node.

116

This means that the flow through the network is a legal For the problem of proposing alternative variables that
flow after each round of the algorithm. We define the resid- can be initialized instead of a variablé, based on the

ual networkG((V, E¢) to be the network with capacity bipartite graph in Figure 5, we build another directed graph
cf(u,v) = c(u,v) — f(u,v) and no flow. Notice that it ~ as shown in Figure 6. In this graph, a source vertex and a

is not certain that? = E¢, as sending flow om, v might target (sink) vertex have been added to the graph. The edge

closeu, v (it is saturated), but open a new edge: in the connecting the source vertex ¥§ has infinite capacity.

residual network. All m edges connecting the target vertex to the variable
vertices have the capacity(except the edge connected to

1. f(u,v) < 0 for all edgeg(u, v) the vertex;). The edges are mono-directional.

2. While there is a patlp from s to ¢ in Gy, such that
cf(u,v) > 0 for all edgequ, v) € p:

(a) Findcy(p) = min{cy(u,v)|(u,v) € p}
(b) For each edgéu,v) € p

i f(u,v) — f(u,v)+ cr(p)

i. f(v,u)«— f(v,u)—cs(p)

The pathp can be found withe.g.,abreadth-firstsearch
or adepth-firstsearch inG¢(V, E¢). The former which is
called the Edmonds-Karp algorithm has been implemented
in Scicos.

By adding the flow augmenting path to the flow already Figure6. Directed graph for the problem of proposing all
established in the graph, the maximum flow will be reached alternative variables for;
when no more flow augmenting paths can be found in the
graph. When the capacities are integers, the runtime of
Ford-Fulkerson is bounded BY(E * fiq2), WhereE is
the number of edges in the graph afig, .. is the maximum
flow in the graph. This is because each augmenting path
can be found inO(E) time and increases the flow by an
integer amount which is at leagt The Edmonds-Karp
algorithm that has a guaranteed termination and a runtime
E[pdependent of the maximum flow value runsxV £2) 6. Initialization Iterations
ime.

Now, the problem of finding all alternative variables for
V; is transformed into that of finding of all feasible paths
from the source to the target. All predecessors of the target
are possible alternative variables that can be used instead of
V. Inthe initialization GUI, when the user double-clicks on
a variable, its alternative variables are displayed. This is a
useful help during the initialization.

The role of the GUI and the marking in the initialization

5.2 Problem of Proposition of Alternative Variables loop (see the flowchart in the Figure 3) can be summarized

In order to handle this problem, we build the bipartite graph in the following algorithm.

shown in Figure 5. The left-hand side vertices indicate 1. The GUI automatically marks the model parameters, the
unknowns, and each vertex at the right-hand side indicates differential variables and the algebraic variables whose
an equation. The edges are bidirectional and their capacity = guess value are given.

Is infinite. 2. Inthe GUI, the user can

Variables Equations e visualize/modify thef i xed attribute of the vari-
ables and the parameters.

e change the guess values of variables and parameters
(final values if they are fixed).

e modify whether a variable or a parameter is marked
or not.

3. Initialization is invoked.

e If necessary, the model is compiled. The Modelica
compiler tries to reduce the number of unknowns by
performing several stages of substituting and elimi-
nation. In this phase the marked variables are more
likely to be eliminated by the compiler.

Figure5. Bipartite graph of variables and equations
¢ A numerical solver is used to find the solution of the

Note that, at this stage of initialization, the number of reduced model.

unknowns and the number of equations are identical and e The obtained solution values are send back to the
the incidence matrix is full rank. GUI to be displayed.

117

4.
5.

6. Goto step 2
7. Start the simulation

If the obtained results are satisfactory, gsiep 7. References

The user can readjust the guess values of the remaining [1] K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical
unknowns. If there are still unmarked unknowns in the solution of initial-value problems in differential-algebraic
reduced model, either the user can provide more accu- equations SIAM pubs., Philadelphial 996.

rate guess values for them or can click on the variables [2] P.N. Brown, A. C. Hindmarsh, and L. R. Petzold. Consistent

to see their alternatives variables. The alternative vari- initial condition calculation for differential-algebraic sys-

ables should be marked to be remained in the reduced tems. SIAM Journal on Scientific Computing9(5):1495-

model. 1512, 1998.

[3] S. L. Campbell, J-Ph. Chancelier, and R. Nikoukhah.
Modeling and simulation Scilab/Scico$pringer Verlag,
2005.

[4] J. P. Chancelier, F. Delebecque, C. Gomez, M. Goursat,

7. Example R. Nikoukhah, and S. SteerAn introduction to Scilab

Springer Verlag, Le Chesnay, France, 2002.

The model of a thermo-hydraulic system is shown in

Figure 6. In this model, there are a pressure source, two

pressure sinks, three pipes (pressure losses), a constant

volume chamber, and two flow-meter sensors linked to

a Scicos scope.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein.Introduction to Algorithms MIT Press
and McGraw-Hill, 2nd edition, 2001.

[6] Timothy A. Davis. Direct Methods for Sparse Linear
Systems (Fundamentals of Algorithms 2¥ociety for
Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2006.

[7] P. Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1Wiley-IEEE Press, 2004.

[8] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee,
R. Serban, D. E. Shumaker, and C. S. Woodward. Sundials:

L Suite of nonlinear and differential/algebraic equation
MScope solvers.ACM Transactions on Mathematical Softwar 31(3)
pages 363-396, 2005.
m——m—{B [9] A.C. Hindmarsh. The pvode and ida algorithmsLNL

technical report UCRL-ID-141558000.

[10] M. Najafi and R. Nikoukhah. Initialization of modelica
models in scicos.Conference Modelica 2008, Bielefeld,
Germany;, 2008.

is composed of 132 equations, 131 relaxed variables an

Figure7. Athermo-hydraulic system [11] Ronald L. Rivest and Charles E. Leisersdntroduction

to Algorithms. McGraw-Hill, Inc., New York, NY, USA,
1990.

d [12] D. D. Sleator and R. E. Tarjan. A data structure for dynamic
trees. INSTOC '81: Proceedings of the thirteenth annual

As shown in Figure 8, the initial non-simplified model

1 relaxed parameter.€., 132 unknowns). The number of
fixed parameters and variables are 36 and 1, respectively.

When the model is simplified, the model size is reduced
to only 11 unknowns. In Figure 9, where the display mode
is Reduced, the remaining variables as well as their solu-
tion values are shown.

8. Conclusion

In the Modelica models, initialization is an important stage
of the simulation. At the initialization, variables and pa-
rameters can be fixed or relaxed and their start values can
be changed by the user. In this paper, we presented a spe-
cial GUI to facilitate the task of selecting fixed and relaxed
variables.

Acknowledgments

The author would like to thank Sébastien Furic (LMS.Imagine
Co.) for a number of helpful comments.
This work is supported by the ANR/SIMPA2-C6E2 project.

118

ACM symposium on Theory of computipgges 114-122,
New York, NY, USA, 1981. ACM.

® NHOrMal < HeOuced -, JEIECIE < SJEIeCIed (al) < Lhanged (an) searcn:

Method: ISundiaIs j Initialize Residual error: |? Check

Equation=132 Unknown=132 HFxed Par=36 Free Par=1 Fized Yar=1 Free Var=131 Discrete=0 Input=0
— Model tree |~ Varaibles & parameters attributes
Mame Type Fixed Yalue Weight Max Idin Maminal Comment Selection
+ Branching_im region var false (0.0 [i] 1 n il
EH “ar false (0.0 1} 1 Bilan d&a |n
A5 VolumeAl BQ var false [0.0 0 1 Bilan de n
rha YWar false [998 1] 1 hasse vally
el Hm War false [100000 |1 1 Enthalpie |y
Fm “ar false |100000 |0 1 Pression my
—gCe2 Tr War false |300018 [0 1 Tempeatur|y
der_Hm Par true |0 1] 1 y
——Gacst
i Cs2
B——Gc Puits11 —
——é&gPerte DP11
F—5g Sourcell
B—fdPerteDP12 |
[l &7 Powta NP / QJ -

Figure8. The initialization GUI for the model in Figure 6 (the display modeds nal and the variables and the parameters
of the blockVol umne are shown)

< Normal # Reduced ., Selected -, Selecled (all) «, Changed (all) ~ Search:| |

Method: |Sundials j Compute Residual error: (16577051 Check

Equation=132 Unknown=132 Fxed Par=36 Free Par=1 Fixed Var=1 Free Var=131 Discrete=0 Input=0
—Model tree— ———————— JJ — Varaibles & s attributes
Name Type Fixed Value Weight hax Iin Mominal Comment Selection
E—é Branching_im W region FPuits11 regian Var false |1 0 1 n £
G PerteDP11.0l Var false [301.702 |0 1 Dehit mazgn
E—FqVolumeAl region Sourcel 1 region Var false |1 0 1 n
(=] PerteDP12.0) Var false (4144 0 1 Déhit mazgn
E—fdPuits11 H PerteDP12.C2 H Var false [F10161 [0 1 Enthalpie |n
Pm PerteDP13.Pm Var false [153677 |0 1 Pression my
E—5 PerteDP11 region Puits12.region Var false 1 0 1 n
Hin CapteurD1.CZ Hm Var false [100000 |0 1 Enthalpie |n
E—&iSourcell H CapteurD1.C2 H Var false (100000 |0 1 Enthalpie |n
Hm CapteurDZ.CZ Hm Var false (100000 (0 1 Enthalpie |n
EH—EiPerteDP12 H CapteurD2.C2 H Var false (100000 |0 1 Enthalpie |n
E——&PerteDF13
E—Puits12
E—g CapteurD1 B
E——giCapteurD2 ||
o Stonnart /]] |

Figure 9. The remaining variables as well as their initial values after the model simplification. The display mode is
Reduced.

119

Supporting Model-Based Diagnostics with Equation-Based Object
Oriented Languages

Peter Bunus®

Abstract

The paper focuses on the application of equation-based
object oriented languages to creating models for model-
based diagnosis. We discuss characteristics and language
constructs essential for diagnostic purposes. In particular,
we describe the main features of the declarative modeling
language Rodelica, which is based on the well-known
language Modelica but enhances it with additional fea-
tures related to diagnosis. Rodelica is used in a commer-
cial model-based diagnosis tool to build and exploit com-
plex diagnostic models of industrial size. Developed
models can be used in an interactive diagnostic process as
well as for the generation of more compact forms of diag-
nostic knowledge like diagnostic rules or decision trees
which are popular for on-board diagnostics or trouble-
shooting in the service bay. A case study concludes the
paper, illustrating those applications and emphasizing
their implications for the language itself.

Keywords: model-based diagnostics, Modelica, Rodelica,
constraint propagation, interval arithmetic, failure mode,
decision tree.

1. Introduction

In today’s global economy, time to market decreases due
to the global competitive pressure and due to the in-
creased customer’s demand for new products with new
and improved functionality. A company’s market share
depends largely on its capability to satisfy the ever in-
creasing customer requirements with respect to function-
ality and reliability. The shortened development times and
the increasing complexity of the products - as indicated
by the significantly increasing electrical and electronic
content - may lead to difficulties if not handled appropri-
ately. Despite careful development and construction,
some of these components may eventually fail. To avoid
unnecessary damage, environmental or financial, there is
a need to locate and diagnose these faults as fast as possi-

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkodping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

Karin Lunde?

'Department of Computer and Information Science, Linképing University, Sweden,
petbu@ida.liu.se
“University of Applied Sciences Ulm, Germany,
k. lunde@hs-ulm.de

121

ble. This can be done with a diagnostic system, which
should alert the user if there is a fault in the system and, if
possible, indicate the reason behind it.

The importance of the ability to perform high quality
and high reliability diagnostics on a system lies in:

o Lowering the repair and maintenance time of the real
system which results in lower maintenance costs and
increased customer satisfaction.

o Lowering the number of sound components that are
replaced erroneously during maintenance and repair.

o Lowering the downtime and non-operational time of
critical systems.

In the last decade, model-based technology in diagnosis
matured so far that it was transferred from academic re-
search into real applications. It provides an alternative to
more traditional techniques based on experience, such as
rule-based reasoning systems or case-based reasoning
(CBR) systems. Early model-based diagnosis tools in-

clude MDS (Mauss, et al. 2000 [11]), RAZR
(Sachenbacher, et al. 2000 [15]) and RODON (Lunde, et
al. 2006 [9]).

In early diagnosis systems, the knowledge about inter-
relations between observations (symptoms), possible fail-
ure causes, and repair actions were encoded in simple
rules like this: “If the back rest of a passenger seat system
(business class) cannot be moved to the upright position
although the forward activation button is pushed then the
hydraulic controller may be defective or the forward acti-
vation button might be disconnected”. Rule-based sys-
tems are fairly simplistic. As it can be seen from the pre-
vious example, they provide a set of assumptions and a
set of rules that specify how to act on the set of assertions.
The advantage of the rule-based systems is that they are
very efficient with respect to memory and computing
time. For this reason, they are still widely used in prac-
tice, especially for on-board diagnostics when the lack of
computational power is an issue. However, in modern
systems on-board rules are automatically generated by
model-based tools, which are able to produce more com-
plete and systematic rule sets compared to the traditional
hand-written ones.

In a case-based reasoning system, system expertise,
fault detection and fault isolation is embodied in a library
of past cases rather than in classical rules. When pre-
sented with a new target problem, a case-based reasoning

system will first attempt to retrieve from the case data
base a similar case that is relevant to solve the target
problem. For a diagnostic problem, a case usually consists
of a symptom, and a repair solution. The foundations of
cased-based reasoning systems are described by Pal and
Shiu 2004 [13], and an overview of industrial cases is
given by Althof, et al. 1995 [1].

In comparison, the model-based approach tries to use
the knowledge incorporated in a model to derive the
symptom-failure associations as well as appropriate repair
actions automatically. The existence of a modeling lan-
guage that can be used for capturing model knowledge for
diagnostics purposes is central for model-based-diagnosis.
Early model-based diagnosis systems used traditional
general purpose programming languages for specifying
models. However, in some aspects, general purpose pro-
gramming languages are inadequate to the task of formal-
izing significant domains of engineering practice. They
lack the expressiveness and power of abstraction required
by engineers. In this paper, we propose a declarative
equation-based language called Rodelica. It is derived
from the standardized modeling language Modelica
(Modelica Association 2007 [2]) and differs mainly in the
behavior representation, by using constraints rather than
differential equations. This deviation is due to the re-
quirements of model-based diagnosis.

The rest of the paper is organized as follows: In Sec-
tion 2, we give a brief description of the principles of
model-based diagnosis, by presenting some classical text-
book examples to illustrate and explain the main con-
cepts. In Section 3, we introduce the Rodelica language,
and we highlight the main language constructs that facili-
tate various failure analyses. The extended case study
presented in Section 4 illustrates the potential and the
benefits of the Rodelica modeling language. The model
presented in the paper was built using RODON, a com-
mercial model-based reasoning (MBR) system. The
Rodelica language is an essential part of RODON’s inte-
grated modeling environment. We show how, from the
developed model, we are able to automatically derive
decision trees for troubleshooting of the system in the
workshop, and decision rules for on-board diagnosis. We
will also illustrate an interactive model-based diagnostics
process in which additional measurements are proposed in
case that the initial diagnosis does not result in a single
candidate as a root case. Finally, Section 5 presents our
conclusions.

2. Principles of Model-Based Diagnosis

The basic principle of model-based diagnosis consists in
comparing the actual behavior of a system, as it is ob-
served, with the predicted behavior of the system given by
a corresponding model. A discrepancy between the ob-
served behavior of the real system and the behavior pre-
dicted by the model is a clear indication that a failure is
present in the system. Diagnosis is a two stage process: in
the first stage, the error should be detected and located in
the model, and in the second stage, an explanation for that
error needs to be provided. Diagnoses are usually per-
formed by analyzing the deviations between the nominal

122

(fault free) behavior of the system and the measured or
observed behavior of the malfunctioning system.

In Figure 1, a model of a real system (an airplane pas-
senger seat system) is depicted at the lower left corner. It
might contain, for example, the behavior of the mechani-
cal components incorporated in the seats, or the behavior
of the in-flight entertainment system, or both. Note that,
like all models, the model is only an abstraction of the
real system (depicted at the upper left corner) and can be
incomplete. The granularity of the model and the amount
of information and behavior that is captured into it will
directly influence the method employed by the reasoning
engine as well as the precision of the diagnostic process.

-5 .
Corrections
bOb[;seryed repair actions
Observations €navior
Actual system) _
Passenger seat system = Diagnosis
| Diagnostic
Reasoner
Predicted
Simulation ~behavior

Model of the passenger
seat system

Figure 1. Basic principle of model-based diagnosis

As a general rule, the models are built to enable the iden-
tification of failed least repairable units (LRUs). Once a
model of the real system is built, simulation or prediction
can be performed on the model. The predicted behavior,
which is the result of the simulation, can then be com-
pared with the observed behavior of the real system. This
comparison is usually done by a reasoning engine (in our
case RODON) that is able to detect discrepancies and also
to generate and propose corrective actions that need to be
performed on the real system to repair the identified fault.
We should note that the process of diagnosis (incorpo-
rated in the diagnostic reasoner) is separated from the
knowledge about the system under diagnosis (the model).
This ensures that the model can be reused for other pur-
poses as well, such as optimization and reliability analy-
sis.

The main ideas of model-based reasoning can be illus-
trated by the following simple multiplier-adder circuit
taken from Kleer and Kurien 2003 [7].

A=3
X iLl AL
M1 + F=12
B=2
c=2 —¢ 3
D=3 M2 E_‘ =~
e
= -ﬁ_’_
M3

Figure 2. Multiplier-Adder circuit

The inputs to the system are A, B, C, D and E, while the
outputs of the system are F and G. X, Y and Z are inter-

mediary probing points in the system. If requested, the
user can perform an observation and measure the value in
these points. If the system is supplied with the following
input set: A=3, B=2, C=2, D=3, E=3, then the expected
output should be F=12 and G=12. The output is calcu-
lated by using a deduction-based reasoning, first comput-
ing the intermediate results X=6, Y=6, and Z=6 at the
output of the multiplier gates, which then are becoming
inputs to the adder gates. For computing the results, a
simple inference engine like the ones used by most simu-
lation environments is enough to perform the calculations.
Note that the behavior of the components is formulated in
terms of relations between model variables which are
called constraints. In general, constraints are not directed
(unlike assignments), and may be of various nature, e.g.
equations, inequalities, or logical relations.

A conflict is any discrepancy or difference between the
prediction made by the inference engine and the observed
behavior. Now let us suppose that by observing the real
system one notices that the output value of F is 10, which
is different from the expected calculated value of 12. In
our case, the observation F=10 leads to a conflict that will
be the triggering point for the diagnostic engine to indi-
cate that something is wrong. It means that one of the
components in the system does not work correctly, in
other words: there is a contradiction between the assump-
tions and the observed behavior. In the next step, the di-
agnostic reasoner should find an explanation for the con-
tradictory observation.

A possible explanation of this behavior might be that
adder A1 or the multiplier M1 is defective which might
cause the defective output F=10 (as depicted in Figure 3).

Figure 3. A defective adder A1 or multiplier M1 might
explain the wrongly computed value F=10

A wrongly computed output by the adder A1 might be due
to the fact that the adder itself is defective, in which case
we can add the adder to the possible list of candidates, or
due to the wrong inputs received by the adder. It should
be noted that the inputs of adder A1 are the outputs of
multiplier M1 and M2. The output of M2 is also input to the
second adder A2 that computes the value of G. Since the
value of G was correctly computed, we can exclude M2
from the suspected candidates. A defective M2 would cer-
tainly influence the computed value of G. Therefore, with
the current information about the system we can conclude
that either M1 or A1 is defective.

So far, we have considered only single faults in our
multiplier-adder circuit. Considering multiple simultane-

123

ous faults will give us a new set of candidates, as depicted

in Figure 4.
A=3

X Al

: - >
B=2 F=10
C=2 —eo
D=3
E=3

Figure 4. Multiple fault: Both M2 and A2 are defective

Let us analyze the set of multiple fault candidates shown
in Figure 4 and see if it is consistent with the observation.
The multiplier M2 is defective, which means that it will
produce a wrong output, which will be input to the adder
Al. With a wrong input, the adder A1 will produce a
wrong output, which might explain that we observe F =
10. Moreover, the output of M2 is also input to the adder
A2, which is also defective. It might happen that the de-
fect inside A2 compensates the defect of the multiplier M2,
and by chance, it produces a good value for the output G.
With the given information, this is what we can conclude
about the system. This reasoning method is called abduc-
tive reasoning. It starts from a set of accepted facts and
infers their most likely explanations in the form of hy-
potheses. If at a later time, new evidence emerges which
disagrees with a hypothesis, this hypothesis will be
proven false and must be discarded. In our example, the
hypothesis "M2 and A2 are faulty simultaneously™ might
be disproved by an additional measurement of the value Y
= 6. But without additional information about the system,
it is a valid hypothesis that explains the abnormal obser-
vation. By using the same type of reasoning, more hy-
potheses can be advanced, e.g. “M2 and M3 are simultane-
ously faulty”.

3. Rodelica, a Modeling Language for Diag-
nosis

For modeling diagnosis-related problems, like the exam-
ple presented in the previous section, we describe the
Rodelica language which is strongly related to the equa-
tion-based object-oriented modeling language Modelica.
Rodelica was first proposed by Lunde 2000 [8]. After-
wards, it was implemented, and it is now the modeling
language of the commercial model-based reasoning tool
RODON. Since 2001, Rodelica was exploited in a large
number of industrial-size projects.

The class concept of Rodelica is identical to the class
concept of Modelica. However, we added set-valued data
types as well as a new behavior description with seman-
tics which differ from the equation-based behavior de-
scription in Modelica. Those deviations are motivated by
the requirements of applications in model-based diagno-
sis. We describe the most important diagnosis-related
semantic features of the Rodelica language in the follow-
ing subsections.

3.1 The need for over-constrained systems

Modeling and simulation environments associated to tra-
ditional equation-based modeling languages like Mode-
lica (Modelica Association 2007 [2]) , gProms proposed
by Barton and Pantelides 1993 [3], Ascend proposed by
Piela, et al. 1991 [14] or VHDL-AMS (Christen and
Bakalar 1999 [6]) use numerical solvers for performing
simulations. They rely on the fact that the system of dif-
ferential equations extracted from the model is structur-
ally and numerically nonsingular. The structural singular-
ity checks whether the system of equations is well-posed
or not, but cannot guarantee anything regarding existence
or uniqueness of the solution. For this reason, the struc-
tural consistency checking is considered as a preprocess-
ing phase to the more powerful notion of humerical singu-
larity. The need to ensure that a system of equations ex-
tracted from the model is structurally nonsingular imposes
some additional restrictions on the semantics of tradi-
tional equation-based object-oriented languages. For ex-
ample, a necessary but not sufficient condition for ensur-
ing the structural nonsingularity is that the number of
equations must be equal to the number of variables. The
second necessary condition is that the sparsity matrix as-
sociated to the structural Jacobian with respect to the
higher order derivatives in the system can be permuted in
such a way that it has a non-zero free diagonal. This re-
striction, imposed by the existence of a numerical solver
for computing the solution of the equations, makes it im-
possible to formulate over- or under-constrained models.
Models formulated in traditional equation-based lan-
guages need to be well-constrained. Several methods have
been proposed to check the structural nonsingularity of
the underlying system of equations associated to a model
built using a traditional equation-based language. For the
Modelica language, Bunus and Fritzson 2004 [5] pro-
posed a graph theoretical approach for checking the struc-
tural nonsingularity and for debugging over- or under-
constrained systems. Broman, et al. 2006 [4] proposed a
concept called structural constraint delta to determine
over- and under-constrained systems of equations in mod-
els by using static type checking and a type inference al-
gorithm. Recently, additional restrictions have been added
into the Modelica language in order to ensure that each
model is “locally balanced”, which means that the num-
ber of unknowns and equations must match on every hier-
archical level. The rationale behind these restrictions in-
troduced in Modelica 3.0 is presented by Olsson, et al.
2008 [12].

As we have seen in Section 2, a model-based diagnosis
reasoning algorithm is triggered by conflicts. In Section 2
Figure 3, we present a situation in which the observed
value F was equal to 10 compared to the computed value
F=12. A model-based diagnosis system should have the
possibility to specify and enter symptoms consisting of
observations. Adding an observation to the model will
automatically add an extra constraint (equation) making
the model over-constrained. Model-based diagnosis sys-
tems like RODON use constraint solvers for performing
diagnosis tasks that do not require the model to be well-
constrained. It should be also noted that the main task of a

124

model-based diagnosis system is to compute a diagnosis
and not to perform a simulation.

The inference engine (constraint solver) will make use
of the constraint network that is automatically extracted
from the model. A constraint network is a set of variables
and relations between them, described by constraints.
Together, they define the admissible values for all vari-
ables. The constraint network is the equivalent to the flat-
tened form of equations extracted by the Modelica com-
piler. Recall that there are no structural singularity condi-
tions imposed on the extracted constraint network. The
inference engine is able to operate with both insufficient
information and redundant information. Inference strate-
gies transform the constraint network into equivalent net-
works which describe the set of solutions in a more ex-
plicit way. Often they do not solve the problem directly,
but they reduce the search space by problem reformula-
tion. Transformations include reduction of variable do-
mains and addition, removal, or modification of con-
straints. The reasoning process is explained in detail in
Lunde 2006 [10].

3.2 The need for failure modes

The multiplier-adder circuit described in Section 2 has
only used the correct behavior description of its constitu-
tive components. The “correct behavior” models are usu-
ally easy to acquire; this kind of information should be
available at the product design phase. As we have seen in
the previous example, one could compute a list of candi-
dates whose abnormal behavior might explain the faulty
observed behavior. However, this list can be significantly
reduced in size if additional information is available, in
the form of models describing the most probable modes
of faulty behavior. A diagnostic engine can use these ad-
ditional behavior modes to check whether the assumption
of an abnormal behavior mode explains the observed sys-
tem behavior. The following example will illustrate why
the specification of the faulty behavior (fault modes) is
very helpful in order to achieve physically sensible diag-
nostic results.

Let us consider the simple electrical circuit from
Figure 5 consisting of three electrical bulbs (B1, B2, B3)
connected in parallel to a battery (BAT). The wire connec-
tion between the battery BAT and bulb B1 is marked w1 in
Figure 5. The connection between B1 and B2 is marked
w2, while a wire connection named w3 connects bulb B2
and bulb B3.

Figure 5. Simple electrical circuit consisting of three
electrical bulbs connected in parallel, and illustrating the
use of failure modes in diagnosis

Now let us consider the following symptom: the circuit is
correctly powered by the battery, and we observe that
only bulb B3 emits light, while B1 and B2 are off (are not
emitting any light). If we admit the possibility of multiple
faults in our circuit, we can conclude that a simultaneous
failure in both B1 and B2 explains the behavior that we
just observed. An alternative explanation consists in a
simultaneous defect of wire w1 and wire w2. As long as
we do not know anything about the nature of the defective
behavior, it is thinkable that the defects in w1l and w2 will
cause bulb B1 and B2 to be switched off, while they com-
pensate each other causing B3 to behave normally, as
observed. Actually, this is physical nonsense, since we
know that an electrical wire can be either disconnected or
have a short to ground, and there is no possible physical
situation in which the failures in two different wires con-
nected in series will compensate each other in that way
and make bulb B3 emit light. Based on a similar formal
reasoning, a diagnostic reasoning engine might errone-
ously consider the failure in the battery BAT and wire w2
as a potential candidate pair that might explain the ob-
served behavior. To avoid those physically impossible
candidates, additional information about how a compo-
nent is most likely to fail should be integrated into any
model intended for diagnosis purposes.

In Rodelica, it is possible to define several failure
modes associated with each component. Let us consider a
simple electrical component that has two pins:
model TwoPin

Pin p1;

Pin p2;

FailureMode fm(max =1);
behavior

// current balance that defines the

// nominal behavior

pl.i + p2.i = 0;
// constraints for the failure mode
// *“disconnected”
if (fm D{
pl.i = 0;

end TwoPin;

Compared to a Modelica representation of a TwoPin
component, it can be noticed that the Rodelica TwoPin
component, besides the nominal behavior, defines the
behavior of the component when it is disconnected. The
disconnected failure mode will have the effect that the
current in pinl will be zero (p1.i = 0). The alternative
behavior of the component is specified with the help of a
type variable FailureMode that acts like a switch be-
tween the two operation modes of the component. In our
case, the failure mode behavior is enclosed between the
brackets of the i f(fm==1) statement.

A Resistor component that extends the TwoPin
component can be defined as follows:

model Resistor extends TwoPin(fm (max =
public Resistance rNom(final min
protected Resistance rAct(final min
behavior
// Basic constraints for nominal
if (fm 0){

2));
0);
0);

case:

125

// Actual resistance is nominal resistance
rAct = rNom;

// Ohms law for voltage drop between pins

pl.u - p2.u = rAct * pl.i;
s
// Extensions for failure mode *‘disconnected':
if (fm == 1){

// Infinite resistance between pin 1 and 2:
rAct = INF_PLUS;

}

// Extensions for failure mode ''short circuit
// between pin 1 and 2":

if (fm == 2) {
// Same potential at pins 1 and 2:
pl.u = p2.u;
// No resistance between pin 1 and 2:
rAct = 0.0;

end Resistor;

It should be noticed that a Resistor component will
inherit all constraints, and thus all failure modes, from the
TwoPin component. By extending TwoPin, the resistor
class has the possibility to add new constraints, thus ex-
tending the inherited failure modes or even adding new
failure modes. By default, nominal behavior is assigned to
the failure mode fm = 0. In the example, it is extended
by specifying that the actual resistance will take the value
of the nominal resistance, and by specifying Ohm’s law
for the voltage drop between pins. Note that constraints
which are not enclosed in any if-statement (like
Kirchhoff’s law in the TwoPin class) are valid in all be-
havior modes. It should be also noticed that the Resis-
tor has an extra failure mode that captures the situation
when there is a short circuit between p1 and p2. In this
case, p1 and p2 will have the same potential (p1.u =
p2.u), and due to the short circuit the resistance of the
Resistor will be equal to zero (rAct = 0). The short-
circuit current is not specified within the resistor class.

Note that the number of constraints in each of the if-
cases is not necessarily identical. This distinguishes Rode-
lica’s if-statement from the if-statement in Modelica,
where each branch is required to contain exactly the same
number of equations, thus ensuring nonsingularity of the
resulting system of equations. However, allowing differ-
ent numbers of constraints is very useful in diagnosis. For
some components, it may be appropriate to specify a ge-
neric failure mode which summarizes all kinds of faulty
behavior which is too complex to describe in detail. For
instance, imagine an electrical connector block with N
pins. By the laws of combinatorics there is a large number
of ways how those pins can be shorted, and it is unfeasi-
ble to provide the equations for each of those potential
failure modes. An elegant way to avoid this complexity is
the additional definition of a universal failure mode con-
taining no constraint at all, which then may serve to ex-
plain any unexpected behavior which is not specified ex-
plicitly.

3.3

Another characteristic of the Rodelica language is the use
of set-valued data types for defining model variables. This

Interval data types

is motivated mainly by the constraint solver, which does
not always compute a single solution but rather constricts
the values of all model values in an iterative way as far as
possible without loosing any solution. In particular, most
continuous model variables have the data type Interval.
This is especially useful when working with data that is
subject to measurement errors or uncertainties. For in-
stance, a leak in a pipe with an uncertain size can be mod-
eled by assigning the diameter a range of reasonable val-
ues, thus avoiding a potentially infinite number of failure
modes.

Consequently, the inference engine uses interval arith-
metics to propagate the values of the variables through the
constraint network. The basic arithmetic operations for
two intervals [a, b] and [c, d] are given below:

[a.b] + [c,d] = [a + c, b + d]
[asb] - [Cvd] = [a - d1 b - C]
[a,b] x [c,d] = [min (ac, ad, bc, bd),
max (ac, ad, bc, bd)]
[a,b] /7 [c,d] = [min (a/c, a/d, b/c, b/d),

max (a/c, a/d, b/c, b/d)]
As an example the following simple Rodelica model
model testlntervalAddition

Interval x = [1,6];

Interval y = [3,7];

Interval z;
behavior

Z =X +Yy;

end testlintervalAddition;

will restrict the possible values of the variable z in the
interval [4 13].

Using interval variable types will have certain
unexpected effects. For instance, consider the piecewise
defined function given below in Figure 6:

A=y
Xx<2 then 1
f(x)=<2<x<5 then x-1
x>5 then 4

_—
-

|
1
5 6 X

' —
1 2 3 4

Figure 6. Piecewise defined example function

In Modelica, this function can be easily represented by the
following model:

model PiecewiseRealFunction
Real x;
Real y;

equation
y = if (x < 2) then 1;

elseif (x >= 2 & x <= 5) then x - 1;
else (x > 5) then 4;
end PiecewiseRealFunction;

Now, let us consider that the variables x and y are of type
Interval and the initial value of x is the interval [0 10].
In this case, the conditions x<2, x>=2 & x<=5 and x>5
are undecidable — for some values in X, they are true, but

126

for others they are false. As a consequence, none of these
constraints can be evaluated and y remains undetermined,
although it is actually clear that the resulting value range
should be y=[1 4]. Modeling with conditional
constraints in a conventional style when interval type
variables are involved in the condition can lead to a loss
of information. For this reason, the “or” clause was
introduced as an alternative to the if-statement. In
Rodelica, the piecewise real function from the example
above would be more appropriately formulated as
follows:

model PiecewiseRealFunction
Interval x(min = 0, max = 10);
Interval y;
behavior
or { (x<2;y=1;}
{x=[25]; y=x-1;}
{x>5;y =4}

end PiecewiseRealFunction;

An or-clause is treated as a single very complex
constraint, whose evaluation is a two-step process: firstly,
the branches of the or clause are evaluated separately; in
a second step, the final result for each variable is
calculated as the set union of the value ranges from all
branches. In case that a conflict in one of the branches is
detected (which means that there is no solution for at least
one variable involved) the branch is excluded from the
merging. As an example, assume that the variable x can
take values between 1.5 and 4 (x=[1.5 4]) and y can
take any real value (y=[- +]). By propagating the
interval [1.5 4] for x, the three or branches of the
piecewise real function previously defined will result in
the following:

x=1[1.52];y =1;
x=[24];y=1[24]-1=1[13];
x=4{}:y = 4;

The third branch will be excluded because it results in a
conflict, which is easily detectable by the empty set
assigned to x. It is the result of the set intersection of the
initial value of X (x = [1.5 4]) and the solution of the
constraint x > 5 whichis x = [5 +]. The unification
of the solutions from the other two branches results in the
overall solution x = [1.5 4]andy = [1 3].

4. Industrial Example

Let us consider as an example a front-light power window
system of a Volvo V70 car. The model was built and ana-
lyzed by means of RODON, and it is formulated using the
Rodelica language. The model of the front light system
contains an Electronic Control Unit (ECU), the front
lights and the associated electrical harness consisting of
electrical wires, fuses and connector blocks. The ECU is
able to set and detect diagnostic fault codes. The activa-
tion of a diagnostic fault code is an indication that some-
thing is wrong in the system. A small section of the front
light system is depicted in Figure 7.

'10/1 left headlight' wire_SB1 '10/2 right headlight'
| ‘WireSE2
T '53/301' ‘53303 -
T ™
™~ -
= ! a2 |3 ! =
= 3‘ ﬁl ﬁl 3I =
= v]z v @
2 B |z H 2
£ £
r X
| ‘544 — | .
T &
T wresss || B A
wire_SBS WiLggSE?
[y II \DI 3' 3'
= = I I
ml ml = =
o o cn| cn|
H H 2 £
= =
['54/3LE"]
I n] B
JI JI g| g|
o, o, — —
w o = &,
= H £ £
= =
11611 11610 e e/
‘ailom A YelMom A “oilNom A “oilom A
hll
+
o %I
@, -
L ﬁl
—_— B wire_GR £
'ZIEE_raIaquh' '20/27
re_GN_W_2
| ‘4156 CFM |

Figure 7. The front-light subsystem model of a Volvo
V70 car developed in RODON.

The front light system is powered by the car battery which
also powers the power-window system of the car. The
power window subsystem contains an ECU of its own as
well as two power window motors with hall sensors,
fuses, and connector blocks and wires. The ECU detects
and sets diagnostic trouble codes for power failure and
Hall sensor failure. The Hall sensors are used to precisely
locate the position of the window.

A small part of the power window model is shown in
Figure 8.

Figure 8. A part of the power-window subsystem model
of a Volvo V70 car developed in RODON

127

The implementation details of the front-light and power-
window subsystem models depicted in Figure 7 and
Figure 8 are not relevant for the discussion in the paper.
Let us just mention that for each component, the nominal
behavior was modeled and augmented with the relevant
failure modes, and that variables whose values can be
measured in the real system have been marked as observ-
able in the model.

Once the model has been created, RODON supports
several diagnostic methods:

¢ Model-Based Diagnosis (MBD), including interactive
MBD which means that additional measurements can
be provided by the user to narrow down the number
of diagnostic candidates.

o The automatic generation of decision trees (or diag-
nostic trouble-shooting trees), which can serve as a
model documentation or to assist the mechanic in a
workshop in a guided diagnosis.

o The automatic generation of diagnostic rules for on-
board diagnostics.

In the following, two of these approaches are illustrated
using the model described above.

41

Model-based diagnosis is the most powerful, but also the
most resource-consuming diagnostic approach. By using
both nominal and faulty behavior, as specified by the
Rodelica model, it is able to detect single or multiple
faults, or to propose additional measurements in an inter-
active way. Available observations and measurements can
be fed to the model in several ways: there are a file inter-
face, a GUI, and a CAN-bus interface for direct commu-
nication with the car. The main principles of MBD were
described in Section 2.

As an example, we consider the situation in which the
user pushes the power window button with the intent to
slide down the window pane, but the pane does not move.
Obviously, there is a failure in the system that immobi-
lizes the window pane. After entering this symptom into
the tool, we can start the model-based diagnostic process
to find an explanation for the observed behavior, and to
isolate the component that caused that particular behavior.
In the first step, the diagnostic engine will compute a list
of candidates (hypotheses) that explain the observed be-
havior:

Interactive Model-Based Diagnosis

PowerWindowSystem.*11C/35" disconnected,
PowerWindowSystem. "54/10" disconnected,
PowerWindowSytem.DDM. powerWindowSwitchFrontLeft.
switchWindowFront disconnected,
PowerWindowSystem.WindowActuatorLeft.
WindowUpDown disconnected,
PowerWindowSystem.cDDM_B disconnected,
PowerWindowSystem.cWindowActuatorLeft
disconnected,
PowerWindowSystem.wire_B1_Left disconnected,
PowerWindowSystem.wire_B2_Left disconnected,
PowerWindowSystem.wire_R_SB_Left disconnected,
PowerWindowSystem.wire_SB1_Left disconnected,
PowerWindowSystem.wire_SB2_Left disconnected,
PowerWindowSystem._wire_SB3_Left disconnected,
PowerWindowSystem.wire_SB4_Left disconnected,

PowerWindowSystem.wire_VO_Left disconnected

So far, 14 candidates have been identified where each
corresponds to a single fault which can fully explain the
symptom. The list is ordered by the associated confidence
values. These confidence values are part of the model and
can be imagined as “rough order of magnitude” reliability
figures. Components with a lower confidence value are
listed first because they are less reliable than others. In the
absence of confidence values, the tool will sort the candi-
dates by secondary criteria, for instance lexically. In the
graphical user interface, the candidates are highlighted
using color shades ranging from red to blue, with red rep-
resenting lower confidence value and blue representing
less probable candidates. The highlighting of candidates
in the GUI is depicted in Figure 9.

Dealing with such a big number of candidates is not
very efficient in a workshop environment where the me-
chanic needs to isolate the failure in a very short period of
time. There is a need to narrow further down the number
of candidates. This can be done by providing extra infor-
mation to the tool in the form of measurements.

Figure 9. Diagnostics candidates are highlighted in the
model browser

The inference engine can profit from this new information
to validate the previously computed candidates, and pos-
sibly retract those that do not match the measured values.
In Figure 10, in the upper part of the window, the list of
candidates is presented, whereas the lower part shows a
list of potentially useful measurements or observations to
be performed on the system. The latter are ordered by the
estimated impact they will have in reducing the number of
candidates. The first measurement in the list has the big-
gest potential to reduce the number of candidates.

128

Figure 10. Lists of diagnostic candidates (hypotheses)
and of proposed measurements

However, the mechanic is free to choose any measure-
ment from the list. In practice, there might be other selec-
tion criteria which are unknown to the tool. For instance,
checking a fault code activation on the dash board is less
expensive than a voltage measurement on a connector
block, which involves dismounting the door to have ac-
cess to the electrical harness. In the present context, we
choose the first proposal in the list. It is a fault code read-
ing which can be automatically read from the car by the
off-board diagnosis device. If the car dashboard is acti-
vated, the fault code may be read off the dashboard, too.
The status of the fault code is given to the tool by means
of the measurement GUI. It leads to the assignment of the
corresponding value (true or false) to the variable out-
putCircuit.fc which is part of the subsystem Power-
WindowSystem.DDM.. We assume that the fault code is
active. This additional information is used by the reason-
ing engine to exclude some of the candidates from the list.
In the described situation, there are only 4 candidates left:

PowerWindowSystem._WindowActuatorLeft.
WindowUpDown disconnected,
PowerWindowSystem.cWindowActuatorLeft
disconnected,
PowerWindowSystem.wire_R_SB_Left disconnected,
PowerWindowSystem.wire_VO_Left disconnected,

The diagnostic process can be continued by entering fur-
ther measurements from the proposed list until the final
diagnosis is produced (only one single-fault candidate is
left). We call this process, in which the user is requested
to provide additional measurements to progressively re-
fine the diagnosis, interactive model-based diagnosis
(IMBD).

4.2

In environments where fewer resources are available, a
more compact form of diagnostic knowledge representa-
tion is desirable. RODON is able to derive several forms
of compiled diagnostic knowledge from the object-
oriented Rodelica model, automatically, by means of a
systematic simulation of all essential system states. To
this end, the modeler has to specify which single faults
and which operational states of the system are relevant for
the analysis. The Cartesian product of all those opera-
tional states with the set of fault states (plus the state Sys-
tem ok) defines a so-called state space. An automatic
simulation control module can then be used to simulate
each state in the state space, systematically, and to write
the results into a data base, which we call state data base
(SDB). The SDB can be used for risk analyses, like fail-
ure-modes and effects analysis (FMEA), and it provides
the necessary information for generating decision trees
and diagnostic rules.

Decision trees are used to determine which system
state explains a symptom, with minimal effort and costs.
The root node of a decision tree is the symptom. Leaf
nodes are result nodes describing a fault state, e.g. “wl is
disconnected”. The intermediate nodes are decision nodes
which help to discriminate the system state. Decisions
may involve a measurement or a visual check to be done
by the mechanic. To perform a diagnosis for a selected
symptom, the decision tree is traversed starting from the
root node, finally arriving at the leaf node with the correct

Generation of Decision Trees

Figure 11. Generated Fault Tree

Traditionally, the generation of decision trees is done
manually by the system experts, which is an extremely
time consuming and error-prone task. Model-based gen-
eration of decision trees provides a systematic and safer
way to analyze the combinations of all relevant opera-
tional states and component failures that can occur in a
system, thus serving as a valuable tool in the authoring of
troubleshooting documentation.

5. Summary and Conclusions

In this paper, we have presented Rodelica, an equation-
based object oriented language derived from Modelica
and adapted to model-based diagnosis purposes. Some of
the characteristics of the language that makes it suitable
for diagnosis are:

129

diagnosis. The path through the tree to the diagnosis de-
pends on the answers given at each passed decision node.

The generation process is configurable in a very high
degree. In particular, actions required at the decision
nodes may be more or less expensive. Consequently, the
decision nodes in the generated tree are ordered with re-
spect to a cost measure defined by the modeler. For in-
stance, if fault code checks are declared to be cheap in
comparison to actual measurements, then the mechanic
will be asked by the resulting trees to check all helpful
fault codes before encountering a decision node contain-
ing a measurement.

Figure 11 displays a decision tree whose root symptom
is an active fault code at one of the input circuits of the
Hall sensors in the power window subsystem. If this fault
code is activated, the user (the mechanic) is instructed to
check another fault code PDN-0020. In case that this fault
code is active as well, the user is further asked to perform
a visual check on cPDM_A, which is a switch in the power
window system. Otherwise, the user is instructed to make
a continuity test (Ohmic measurement) on one of the
wires. Similarly to the interactive model-based diagnosis,
the user is asked to perform a certain measurement or to
make an observation. Based on the result of the user ac-
tion, a certain branch of the failure tree is followed until
the component that caused the failure is isolated.

e Numerical representation of values in general as
value sets (intervals, sets of discrete or Boolean val-
ues); qualitative representation is possible as well.
This allows to cope with sensor and manufacturing
tolerances as well as with insufficient information in
case of faulty behavior. Both situations are common
in diagnostic applications.

o Relations between variables are formulated as con-
straints. Supported constraint types include equations,
but also inequalities, conditional constraints (if and or
clauses), Boolean relations (formulas or truth tables),
and spline interpolation.

e The number of constraints in a model is not restricted
by the number of variables or by any notion of regu-
larity. A model may be under- or over-determined.
Underdetermined models lead to large value ranges

as the result of the inference process, over-determined
models lead to conflicts which can be used as a start-
ing point for diagnosis.

o In particular, it is possible to define failure modes for
each class, in addition to modeling the nominal be-
havior. Any number of failure modes can be defined
per class or component.

e The solver provides the appropriate computational
methods based on constraint propagation and interval
set arithmetic.

The benefits of using the Rodelica language have been
illustrated in many industrial-size projects. Like the Mod-
elica language, which is considered to be the “de facto”
standard for modeling and simulation of hybrid systems,
we believe that Rodelica can be proposed to constitute the
standard for the exchange of diagnostic models.

Acknowledgements

We would like thank to the development team of RODON
at Sérman Information AB Sweden for valuable discus-
sions and the feedback received for this paper.

References

[1] Klaus-Dieter Althof, Eric Auriol, Ralph Barleta and Michel
Manago (1995). A Review of Industrial Case-Based Reasoning
Tools. Al Intelligence, Oxford, UK

[2] Modelica Association (2007). Modelica - a Unified Object-
Oriented Language for Physical Systems Modeling - Language
Specification Version 3.0. September 2007

[3] Paul Inigo Barton and C.C. Pantelides (1993). Gproms - a
Combined Discrete/Continuous Modelling Environment for
Chemical Processing Systems. The Society for Computer Simu-
lation, Simulation Series, vol: 25, issue: 3. pg 25-34, 1993

[4] David Broman, Kaj Nystrom and Peter Fritzson (2006). De-
termining over- and under-Constrained Systems of Equations
Using Structural Constraint Delta. In Proceedings of Fifth In-
ternational Conference on Generative Programming and Com-
ponent Engineering (GPCE'06), Portland, Oregon, USA, 2006

[5] Peter Bunus and Peter Fritzson (2004). Automated Static
Analysis of Equation-Based Components. Simulation: Transac-
tions of the Society for Modeling and Simulation International.
Special Issue on Component Based Modeling and Simulation.,
vol: 80, issue: 8. pg 2004

[6] E. Christen and K. Bakalar (1999). Vhdl-Ams-a Hardware
Description Language for Analog and Mixed-Signal Applica-
tions. IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol: 46, issue: 10. pg 1263-1272,
1999

[7] Johan de Kleer and James Kurien (2003). Fundamentals of
Model-Based Diagnosis. In Proceedings of IFAC SafeProcess,
Washington USA, June 2003

[8] Karin Lunde (2000). Object-Oriented Modeling in Model-
Based Diagnosis. In Proceedings of Modelica Workshop, Lund,
Sweden, Oct 23-24 2000

[9] Karin Lunde, Ridiger Lunde and Burkhard Munker (2006).
Model-Based Failure Analysis with Rodon. In Proceedings of
ECAIl 2006 - 17th European Conference on Atrtificial Intelli-
gence Riva del Garda, Italy, August 29 -- September 1 2006

130

[10] Rudiger Lunde (2006). Towards Model-Based Engineering:
A Constraint-Based Approach. Shaker, Aachen

[11] Jakob Mauss, Volker May and Mugur Tatar (2000). To-
wards Model-Based Engineering: Failure Analysis with Mds. In
Proceedings of ECAI-2000 Workshop on Knowledge-Based
Systems for Model-Based Engineering, Berlin, Germany, 2000

[12] Hans Olsson, Martin Otter, Sven Erik Mattsson and Hild-
ing Elmqvist (2008). Balanced Models in Modelica 3.0 for In-
creased Model Quality. In Proceedings of 6th International
Modelica Conference, University of Applied Sciences, Biele-
feld, Germany, March 3rd-4th 2008

[13] Sankar K. Pal and Simon C. K. Shiu (2004). Foundation of
Soft Case Based Reasoning. John Wiley & Sons, Inc., Hoboken,
New Jersey.

[14] P.C. Piela, T.G. Epperly, K.M. Westerberg and A.W.
Westerberg (1991). Ascend: An Object-Oriented Computer En-
vironment for Modeling and Analysis: The Modeling Language.
Computers and Chemical Engineering, vol: 15, issue: 1. pg 53-
72,1991

[15] Martin Sachenbacher, Peter Struss and Claes M. Carlén
(2000). A Prototype for Model-Based on Board Diagnosis of
Automotive Systems. Al Communications, vol: 13, issue: 2. pg
83 -97, 2000

Towards an Object-oriented Implementation of
VON MISES’ Motor Calculus Using Modelica

Tobias Zaiczek Olaf Enge-Rosenblatt

Fraunhofer Institute for Integrated Circuits, Design Automation Division, Dresden, Germany,
{Tobias.Zaiczek,Olaf.Enge}@eas.iis.fraunhofer.de

Abstract

This paper deals with a first implementation of the so-
called motor calculus within Modelica. The motor calculus
can be used to describe the dynamical behaviour of spatial
multibody systems in an efficient way. This method rep-
resents an alternative approach to modelling of multibody
systems. In the paper, some fundamentals of motor calculus
are summarized. Furthermore, a simple implementation of
motor algebra by special additional Modelica code within
some components of the Modelica Multibody Standard Li-
brary is presented. This approach fully corresponds with
the paradigm of object-oriented modelling. However, the
present realisation is not equation-based in its full sense be-
cause of the missing possibility of operator overloading (at
least in the available Modelica simulator environment). In-
stead of this, some functions are used carrying out the nec-
essary calculations. Using this implementation, some ex-
amples are given to prove the applicability and correctness
of the implemented approach.

Keywords Motor calculus, Screw theory, Rigid multi-
body system, Modelica

1.

The notion of motor, composed of the words moment and
rotor, was coined by CLIFFORD in 1873 in his algebra of bi-
quaternions [4]. But Clifford did apply his concept neither
to the modelling of motion of a single rigid body nor to
the modelling of spatial multibody systems. The approach
of motor calculus to 3D mechanics was suggested by VON
MISES in 1924 [11, 12]. In the first part [11], VON MISES
introduces the dual motor product. He indicates the role of
the dual motor product as a measure of the instantaneous
change of a motor associated to a rigid body by the action
of a second motor. In the second part [12], VON MISES
applied the motor calculus in the derivation of a general
form of the equations of motion of a rigid body. Due to

Introduction

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkoping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:

http://www.eoolt.org/2008/

131

this work, translations and rotations, velocities and angular
velocities, forces and torques, etc. can be described by
motor calculus (or motor algebra). Hence, this approach is
well suited to investigate the behaviour of spatial multibody
systems.

One of the authors studied motor calculus in his Diploma
thesis [22] initiated and supervised by Prof. K. Reinschke
from the Technical University Dresden (one of the former
institutes of R. VON MISES). Recent publications dealing
with this subject can rarely be found (exept e.g. for [8, 18]).
In the context of the modelling language for heterogenous
systems Modelica (see e.g. [5, 13, 19]), the motor calculus
has not been taken into account up to now.

Within the Modelica community, spatial multibody sys-
tems are usually modelled using the Modelica Multibody
Standard Library (see [14]