
Multi-Paradigm Language Engineering and
Equation-Based Object-Oriented Languages

(keynote abstract)

Hans Vangheluwe

School of Computer Science, McGill University, Montréal, Canada
Hans.Vangheluwe@mcgill.ca

Abstract
Models are invariably used in Engineering (for design) and
Science (for analysis) to precisely describe structure as well
as behaviour of systems. Models may have components de-
scribed in different formalisms, and may span different lev-
els of abstraction. In addition, models are frequently trans-
formed into domains/formalisms where certain questions
can be easily answered. We introduce the term “multi-
paradigm modelling” to denote the interplay between
multi-abstraction modelling, multi-formalism modelling
and the modelling of model transformations.

The foundations of multi-paradigm modelling will be
presented. It will be shown how all aspects of multi-
paradigm modelling can be explicitly (meta-)modeled en-
abling the efficient synthesis of (possibly domain-specific)
multi-paradigm (visual) modelling environments. We have
implemented our ideas in the tool AToM3 (A Tool for
Multi-formalism and Meta Modelling) [3].

Over the last decade, Equation-based Object-Oriented
Languages (EOOLs) have proven to bring modelling closer
to the problem domain, away from the details of numerical
simulation of models. Thanks to Object-Oriented structur-
ing and encapsulation constructs, meaningful exchange and
re-use of models is greatly enhanced.

Different directions of future research, combining multi-
paradigm modelling concepts and techniques will be ex-
plored:

1. meta-modelling and model transformation for domain-
specific modelling as a layer on top of EOOLs;

2. on the one hand, the use of Triple Graph Grammars
(TGGs) to declaratively specify consistency relation-
ships between different models (views). On the other
hand, the use of EOOLs to complement Triple Graph
Grammars (TGGs) in an attempt to come up with a fully

2nd International Workshop on Equation-Based Object-Oriented
Languages and Tools. July 8, 2008, Paphos, Cyprus.

Copyright is held by the author/owner(s). The proceedings are published by
Linkping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/029/

EOOLT 2008 website:
http://www.eoolt.org/2008/

“declarative” description of consistency between mod-
els to support co-evolution of models;

3. the use of graph transformation languages describing
structural change to modularly ”weave in” variable
structure into non-dynamic-structure modelling lan-
guages.

Keywords Multi-Paradigm Modelling, Meta-Modelling,
Model Transformation, Equation-Based Object-Oriented
Languages, Consistency, Variable Structure

1. Multi-Paradigm Modelling
In this section, the foundations of Multi-Paradigm Mod-
elling (MPM) are presented starting from the notion of a
modelling language. This leads quite naturally to the con-
cept ofmeta-modellingas well as to the explicit modelling
of model transformations.

Models are anabstractionof reality. The structure and
behaviour of systems we wish to analyze or design can
be represented by models. These models, at variouslevels
of abstraction, are always described in someformalismor
modelling language. To “model” modelling languages and
ultimately synthesize (visual) modelling environments for
those languages, we will break down a modelling language
into its basic constituents [4]. The two main aspects of a
model are its syntax (how it is represented) on the one hand
and its semantics (what it means) on the other hand.

The syntax of modelling languages is traditionally par-
titioned into concrete syntaxand abstract syntax. In tex-
tual languages for example, the concrete syntax is made up
of sequences ofcharacterstaken from analphabet. These
characters are typically grouped intowordsor tokens. Cer-
tain sequences of words orsentencesare considered valid
(i.e., belong to the language). The (possibly infinite)setof
all valid sentences is said to make up the language.

For practical reasons, models are often stripped of ir-
relevant concrete syntax information during syntax check-
ing. This results in an “abstract” representation which cap-
tures the “essence” of the model. This is called theab-
stract syntax. Obviously, a single abstract syntax may be
represented using multiple concrete syntaxes. In program-
ming language compilers, abstract syntax of models (due to
the nature of programs) is typically represented inAbstract

1



Syntax Trees(ASTs). In the context of general modelling,
where models are often graph-like, this representation can
be generalized toAbstract Syntax Graphs(ASGs).

Once the syntactic correctness of a model has been es-
tablished, its meaning must be specified. This meaning
must beuniqueandprecise. Meaning can be expressed by
specifying asemantic mapping functionwhich maps every
model in a language onto an element in asemantic domain.
For example, the meaning of a Causal Block Diagram (e.g.,
a Simulink diagram) can be specified by mapping onto an
Ordinary Differential Equation. For practical reasons, se-
mantic mapping is usually applied to the abstract rather
than to the concrete syntax of a model. Note that the seman-
tic domain is a modelling language in its own right which
needs to be properly modelled (and so on, recursively). In
practice, the semantic mapping function maps abstract syn-
tax onto abstract syntax.

To continue the introduction of meta-modelling and
model transformation concepts, languages will explictly
be represented as (possibly infinite) sets as shown in Fig-
ure 1. In the figure, insideness denotes the sub-set relation-
ship. The dots represent model which are elements of the
encompassing set(s).

As one can always, at some level of abstraction, repre-
sent a model as a graph structure, all models are shown as
elements of the set of all graphsGraph. Though this re-
striction is not necessary, it is commonly used as it allows
for the design, implementation and bootstrapping of (meta-
)modelling environments. As such, any modelling language
becomes a (possibly infinite) set of graphs. In the bottom
centre of Figure 1 is the abstract syntax setA. It is a set of
models stripped of their concrete syntax.

1.1 Meta-models

Meta-modelling is a heavily over-used term. Here, we will
use it to denote the explicit description (in the form of a fi-
nite model in an appropriate meta-modelling language) of
theAbstract Syntax set. Often, meta-modelling also cov-
ers a model of the concrete syntax. Semantics is however
not covered. In the figure, theAbstract Syntax set is de-
scribed by means of itsmeta-model. On the one hand, a
meta-model can be used tocheckwhether a general model
(a graph)belongs totheAbstract Syntax set. On the other
hand, one could, at least in principle, use a meta-model to
generateall elements of the language.

1.2 Concrete Syntax

A model in the Abstract Syntax set (see Figure 1) needs
at least one concrete syntax. This implies that a concrete
syntax mapping functionκ is needed.κ maps an abstract
syntax graph onto a concrete syntax model. Such a model
could be textual (e.g., an element of the set of all Strings),
or visual (e.g., an element of the set of all the 2D vector
drawings). Note that the set of concrete models can be
modelled in its own right.

1.3 Meaning

Finally, a modelm in the Abstract Syntax set (see Figure 1)
needs a unique and precise meaning. As previously dis-

cussed, this is achieved by providing a Semantic Domain
and a semantic mapping functionM. Rule-based Graph
Transformation formalisms are often used to specify se-
mantic mapping functions in particular and model transfor-
mations in general. Complex behaviour can be expressed
very intuitively with a few graphical rules. Furthermore,
Graph Grammar models can be analyzed and executed.

1.4 Formalism Transformation

In an attempt to mimimize accidental complexity [2], mod-
ellers often transform a model in one formalism to model
in another formalism, retaining salient properties.

2. Domain-specific Modelling
Domain- and formalism-specific modelling have the poten-
tial to greatly improve productivity as they [5].

• match the user’s mental model of the problem domain;

• maximally constrain the user (to the problem at hand,
through the checking of domain constraints) making the
language easier to learn and avoiding modelling errors
“by construction”;

• separate the domain-expert’s work from analysis and
transformation expert’s work.

• are able to exploit features inherent to a specific do-
main or formalism. This will for example enable spe-
cific analysis techniques or the synthesis of efficient
(simulation) code exploiting features of the specific do-
main.

The time required to construct domain/formalism-specific
modelling and simulation environments can however be
prohibitive. Thus, rather than using such specific environ-
ments, generic environments are typically used. Those are
necessarily a compromise. The above language engineering
techniques allow for rapid development of domain-specific
(visual) modelling environments with little effort if map-
ping onto a semantic domain (such as an EOOL) is done.

3. Consistency/Co-evolution of Model Views
In the development of complex systems, multiple views on
the system-to-be-built are often used. These views typi-
cally consist of models in different formalisms. Different
views usually pertain to various partial aspects of the over-
all system. In a multi-view approach, individual views are
(mostly) less complex than a single model describing all
aspects of the system. As such, multi-view modelling, like
modular, hierarchical modelling, simplifies model develop-
ment. Most importantly, it becomes possible for individual
experts on different aspects of a design to work in isolation
on individual views without being encumbered with other
aspects. These individual experts can work mostlyconcur-
rently, thereby considerably speeding up the development
process. This realization was the core of Concurrent En-
gineering. This approach does however have a cost associ-
ated with it. As individual view models evolve, inconsisten-
cies between different views are often introduced. Ensuring
consistency between different views requires periodic con-

2



Figure 1. Modelling Languages as Sets

certed efforts from the model designers involved. In gen-
eral, the detection of inconsistencies and recovering from
them is a tedious, error-prone and manual process. Auto-
mated techniques can alleviate the problem. Here, we focus
on a representative sub-set of the problem: consistency be-
tween geometric (Computer-Aided Design – CAD) models
of a mechanical system, and the corresponding dynamics
simulation models. We have selected two particular but rep-
resentative modelling tools: SolidEdge for geometric mod-
elling [8], and Modelica [1] for dynamics and control sim-
ulation.

The core geometric entities are Assemblies. Solid-
Edge Assemblies are composed of other Assemblies, Parts
and Relationships. Relationships describe mechanical con-
straints between geometric features of two distinct parts,
and there can be many such relationships between parts.

On the dynamics side, to represent an equivalent struc-
ture in Modelica, we have a model which can be hierarchi-
cally composed of other models, bodies, relationships and
geometric features. This last type of model element is in-
troduced to have a counterpart to represent the geometric
information which is intrinsic to a SolidEdge part.

Associations (correpondences) that must exist between
SolidEdge and Modelica models are shown in a meta-
model triple in Figure 2. Note that this model isdeclarative
as it does not specify how and what to modify to correct
possible inconsistencies. Triple Graph Grammar theory [7]

introduced by Schür provides a procedure for automatically
deriving operational update transformations (in the form of
triple graph rewrite rules) from the declarative meta-model
[6]. If either the geometry or dynamics models change, the
association model can be used to determine what has been
added or deleted from either side.

On the other hand, the use of EOOLs to complement
Triple Graph Grammars (TGGs) in an attempt to come
up with a fully “declarative” description of consistency
between models to support co-evolution of models;

4. Modelling of Variable Structure
Various formalisms have been devised to describe the dis-
continuous change of the structure of systems. The rule-
based description of graph transformations is ideal to el-
egantly describe structural change. A rule’s left-hand-side
describes the conditions under which a state-event occurs.
In modelling languages for hybrid systems, crossing con-
ditions on variable values are used to specifywhena state-
event occurs. The handling of a state-event may introduce
discontinuous changes in the value of variables. The rule-
based approach adds detection of particular object configu-
rations to the low-level variable-value conditions. A rule’s
right-hand-side describes the handling of the state-event.
This may not only include variable value changes, but also
creation/destruction of entities and their interconnections.
A promising avenue for future research is the modular

3



SE-Part

+Geometry

SE-Assembly

Relationship*

1

1*

Axial Align

Planar Align

Planar mate

2

+constrains

1

Model
1

*

Body

Geometric Feature

+Type

1

*

Relationship

Axial Align

Planar Align

Planar mate

Plane

Axis/Line

1

*

*

+has

1

1

*

2

+constrains

1

SolidEdge meta-model Association meta-model
Modelica meta-model for 
SolidEdge Library

Assembly-Model-Link

Part-Link

Relation-Link

+*

1

1 1
1

1

1 1

1

1

1..*

1

1

1 1

Figure 2. Relating SolidEdge and Modelica models

“weaving in” of rule-based variable structure description
language constructs into non-dynamic-structure modelling
languages such as EOOLs.

References
[1] Modelica

TM
Association. A unified object-oriented language

for physical systems modeling. Modelica homepage:
www.modelica.org, since 1997.

[2] F. P. Brooks. No silver bullet: Essence and accidents of
software engineering.Computer, 20(4):10–19, 1987.

[3] Juan de Lara and Hans Vangheluwe. AToM3: A tool for
multi-formalism and meta-modelling. InEuropean Joint
Conference on Theory And Practice of Software (ETAPS),
Fundamental Approaches to Software Engineering (FASE),
Lecture Notes in Computer Science 2306, pages 174 – 188.
Springer, April 2002. Grenoble, France.

[4] D. Harel and B. Rumpe. Modeling languages: Syntax,
semantics and all that stuff, part i: The basic stuff. Technical
report, Jerusalem, Israel, 2000.

[5] Steven Kelly and Juha-Pekka Tolvanen.Domain-Specific
Modeling: Enabling Full Code Generation. Wiley, 2008.

[6] Alexander Königs. Model Transformation with Triple Graph
Grammars. InModel Transformations in Practice Satellite
Workshop of MODELS 2005, Montego Bay, Jamaica, 2005.

[7] Andy Schürr. Specification of Graph Translators with Triple
Graph Grammars. In G. Tinhofer, editor,WG’94 20th
Int. Workshop on Graph-Theoretic Concepts in Computer
Science, volume 903 ofLecture Notes in Computer Science
(LNCS), pages 151–163, Heidelberg, 1994. Springer Verlag.

[8] SolidEdgeR©. www.solidedge.com.

Short Biography
Hans Vangheluwe is an Associate Professor in the School
of Computer Science at McGill University, Montreal,
Canada. He heads the Modelling, Simulation and Design
(MSDL) research lab. He has been the Principal Inves-
tigator of a number of research projects focused on the
development of a multi-formalism theory for Modelling
and Simulation. Some of this work has led to the WEST++
tool, which was commercialised for use in the design and
optimization of bioactivated sludge Waste Water Treat-
ment Plants. He was the coordinator of the ”Simulation
in Europe” Basic Research Working Group. He was also
one of the original members of the Modelica design team.
His current interests are in domain-specific modelling and
simulation and more in general, tool support for Multi-
Paradigm modelling. MSDL’s tool AToM3 (A Tool for
Multi-formalism and Meta-Modelling) developed in col-
laboration with Prof. Juan de Lara uses meta-modelling and
graph grammars to specify and generate domain-specific
environments. He has applied model-driven techniques in
a variety of areas such as modern computer games, de-
pendable and privacy-preservingsystems (the Belgian elec-
tronic ID card), embedded systems, and to the design and
synthesis of advanced user interfaces.

4




