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ABSTRACT 
This paper discusses the design and analysis of an experiment performed in a con-
tinuous process (CP). A full factorial design with replicates is used to test three types 
of pellets on two levels of a process variable in an experimental blast furnace process. 
Issues and considerations concerning the experimental design and analysis are dis-
cussed. For example, an adaptive experimental design is used. We propose a multi-
variate approach to the analysis of the experiment, in form of principal component 
analysis combined with analysis of variance. The factorial design in CPs is found to 
have a promising potential. However, CPs also demand special considerations when 
planning, performing and analyzing experiments, and therefore further development 
of experimental strategies and connected methods of analysis for CPs is needed. 
Keywords: Experimental design; factorial experiments; multivariate data analysis; principal compo-
nent analysis; blast furnace experiments; split-plot design. 
 
INTRODUCTION 
The need to experiment frequently arises when trying to increase process knowledge 
in industry. The field of Design of Experiments (DoE) deals with methods for effi-
cient experimentation, i.e. deriving required information about, e.g. a process, at the 
least expenditure of resources (Barker, 1994). Factorial designs are important tools in 
DoE and are exhaustively treated in literature; see e.g. Box et al. (2005) and Mont-
gomery (2005). Discontinuous processes, i.e. processes where parts or batches are 
produced, dominate applications of DoE in practice as well as in literature. Continu-
ous processes (CPs), which together with batch processes are frequent in process in-
dustry, use nondiscrete materials (Dennis & Meredith, 2000). In CPs the product 
gradually and with minimal interruptions passes through a series of different opera-
tions and the product exhibits characteristics such as liquids, powders, slurries, and 
pellets (Fransoo & Rutten, 1994). DoE applications in CPs have attracted considera-
bly less attention and Vanhatalo & Bergquist (2007) argue that CPs warrant special 
consideration due to their characteristics. Examples of design and analysis of experi-
ments in CPs are scarce in literature. Yet, as we will show in this article, the call for 
experiments in CPs does appear in industry. Consequently, there is a need for further 
research on experimental design and connected methods of analysis for CPs. 

The purpose of this paper is thus to describe experiences from using a factorial de-
sign when doing experiments in a CP. More specifically, we discuss experimental 
design issues and connected methods of analysis. Furthermore, we address special 
considerations and deliberations that were needed during the experimental effort. 

METHOD 
Branches of industry, where continuous processes can be found, are the pulp and pa-
per industries, chemical industries, parts of medical and food industries, as well as 
parts of mining and steel industries, and suitable cases to study are likely to be found 



in any of these. In this work, an Experimental Blast Furnace (EBF) operation was 
selected as a case, because the research engineers at the EBF plant (EBF engineers) 
were interested in developing their experimental designs in general and testing facto-
rial experiments in particular.  

The experimental effort at the EBF plant can be partitioned into three phases: pre-
experimental planning; performing the experiment; and doing the analysis. A team 
consisting of EBF engineers and scholars in quality technology and statistics collabo-
rated during all these phases. Also, observations and interviews were used as com-
plementary data collection methods. During the pre-experimental planning phase a 
checklist, developed from recommendations by Coleman & Montgomery (1993), was 
used to structure the experimental planning activities; see Vanhatalo & Bergquist 
(2007). 

The Experimental Blast Furnace (EBF) 
The EBF was inaugurated in 1997 by Luossavaara-Kiirunavaara AB (LKAB), a lead-
ing Swedish producer of highly developed iron ore products (pellets in particular). 
The EBF is a pilot scale blast furnace, specifically designed for experimental use and 
intended mainly for product development but also to improve knowledge about 
LKAB’s customers’ process - the blast furnace process. The blast furnace can be char-
acterized as a high temperature counter current reactor for reduction and smelting of 
iron ore into hot metal (Geerdes et al., 2000). Coke and coal are used to reduce iron 
oxide, normally in form of sinter and/or pellets, into liquid iron. The production ca-
pacity is approximately thirty-five tons of hot metal per day (compared to up to 
10,000 tons/day for the largest full scale furnaces).  

 The pilot scale enables a realistic, controlled and safe way to conduct experiments 
and it is possible to create reactions and progress that can be expected of full scale 
blast furnaces. Also, the response time 
in the EBF is much shorter than in 
commercial furnaces. The experimen-
tal costs and risks associated with per-
forming experiments are great even in 
this scale but they are substantially 
lower than in full scale operation. An 
outline of the EBF and examples of 
measurement possibilities are pre-
sented in Figure 1.  

Most experiments performed in the 
EBF include response variables con-
nected to the output from the process, 
such as chemical composition of iron 
and slag, as well as process response 
variables related to energy efficiency 
and stability of the process itself, e.g. 
gas utilization. Both product quality and  Figure 1. Outline of the EBF process. Examples of 
efficiency and stability of the process possible measurements are underlined. 
are important responses to the customer. 
 
BACKGROUND AND PRE-EXPERIMENTAL PLANNING  
The main aim of the experiment was to investigate if three different types of pellets 
(here called A, B, and C) significantly differ with respect to properties and perform-
ance in the EBF process on two levels of a process variable. The chemical composi-
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tion of the A and B type pellets were changed, compared to the standard product C, in 
order to try to induce a possible beneficial effect on their performance in the blast 
furnace. 

In addition, “blast volume” was also considered as an experimental factor. In meta-
phor, the blast volume could be compared to the “throttle” of the process and increas-
ing the blast volume would result in a higher production rate, as well as shorter dwell 
time for the pellets in the shaft, and thus a shorter time for the reduction work. Before-
hand, a hypothesis was that increasing blast volume would “stress” the pellets to a 
higher extent, and thereby possible differences in the material strength and perform-
ance could be highlighted in process performance. Two levels of blast volume were 
chosen to be tested (1600 and 1800 Nm3/h). The choice of factors and levels was pre-
ceded by extensive discussion, which is not elaborated here. The same goes for fac-
tors to be held constant as well as disturbance factors and connected strategies to off-
set them. 

We had two experimental factors; one at three levels and the other at two levels. 
The basic 3x2 factorial design requires six runs for each full replicate. The time avail-
able in the EBF was limited to fifteen days in total and replication of runs was consid-
ered crucial. Hence, the next question to consider was how many replications were 
possible. This question was intimately connected to the dynamic characteristic of the 
EBF process, i.e. process inertia; see Black-Nembhard & Valverde-Ventura (2003). 
Twenty-four hours for each run was judged to provide enough replicates but instead 
there was a concern that this time could be too short in relation to the process’ inher-
ent inertia, i.e. the time needed for the responses of interest to react to the changes of 
the experimental factors. Thirty-six hours per run was also considered but was re-
jected as too few replications would be possible, in the light of the probability for one 
or a few runs to be excluded due to process disturbances. Therefore, investigations 
were made with purpose to settle the time needed for change-overs of material to 
manifest themselves in response variables of interest. This was made arguing that the 
responses in iron and slag would be the “slowest” to react among all responses, and it 
was concluded that about six to eight hours was needed. Consequently, using twenty-
four hours for each run would leave about sixteen hours for analysis after excluding 
the first eight hours in each run from the data. However, this made the design sensi-
tive to disturbances as there was a risk of not being able to isolate any reliable analy-
sis period in data for the run if disturbances occurred. Therefore, it was decided to use 
what we choose to call an “adaptive design”, i.e. the planned time for each run was 
twenty-four hours but could be extended if a disturbance occurred, e.g. process equip-
ment failures. By using the adaptive design the prospect was to at least manage a full 
replication of the basic 3x2 design, i.e. at least twelve individual runs. 

An important experimental complication is that process control during experi-
mentation is unavoidable in the EBF process. Without controlling fuel ratio during 
experiments in the EBF, there is a risk for the melt to freeze or overheat, which can 
jeopardize the experimental campaign, the plant as well as personal safety. The melt 
temperature control of the EBF is further complicated since it is manual, requiring 
human deliberations at certain processing states, and the control includes a large but 
often unknown time lag. Since only twenty-four hours were planned for each run in 
the design it was therefore important to develop a strategy to maintain a good thermal 
state in the process when switching between runs, and to control the process by sev-
eral minor adjustments in fuel rather than less and bigger adjustments. 

The run order was not completely randomized, since all three types of pellets could 
not be acquired in good time before the experiment. Also, the blast volume was set to 



be on the same level for a couple of runs at a time in order to facilitate process con-
trol, especially during the six first runs of the design. It was also decided to start the 
experiment by running the process at 1800 Nm3/h in blast volume due to the remain-
ing uncertainty about the appropriateness of this choice of high level for the blast vol-
ume factor. If problems were to occur then the corresponding run(s) could be ex-
cluded from the design, the levels of the blast volume reset, and the experiment con-
tinued only loosing a smaller part of the valuable experimental time in the EBF. With 
exception for the first run, the type of pellets in each run was randomly assigned with 
the restriction that each run would imply a change of pellet type. The experimental 
design is summarized in Table I. 

Table I. The run order of the twelve performed runs in the 3x2 factorial experimental design. 
Run 

number 
Pellets 
type 

Blast 
volume 
[Nm3/h] 

Hours 
available 

for analysis 

Run 
number 

Pellets
type 

Blast 
volume 
[Nm3/h] 

Hours 
available 

for analysis 
1 C 1800 24 7 B 1800 17 
2 A 1800 17 8 C 1800 22 
3 B 1800 17 9 A 1600 17 
4 C 1600 17 10 C 1600 10 
5 B 1600 17 11 A 1800 19 
6 A 1600 17 12 B 1600 19 

PERFORMING THE EXPERIMENT 
The adaptive design was a useful strategy to cope with the disturbances that did occur. 
In runs 1 and 8 (see Table I), problems with malfunctioning process equipment af-
fected the process to such an extent that the decision was made to prolong these runs 
for a couple of hours respectively. During run 10, there was a snowstorm during 
which a material conveyor belt broke and for a couple of hours no pellets could be 
transported into the EBF plant. This did of course affect the process, but since there 
was a shortage of type C pellets the run could not be prolonged. Hence, run 10 pro-
vides the smallest number of hours of normal operation for analysis. 

In a best case scenario fifteen individual runs would have been possible, but due to 
disturbances during previous runs these could not be performed. All in all 12 runs 
were conducted, i.e. two replicates of the 3x2 factorial design. 

DOING THE ANALYSIS 
We start by presenting an overview of the steps in the analysis process in Figure 2.  
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Figure 2. The main activities of the experimental analysis process. 

At the outset, time periods representing normal process operation, where no apparent 
disturbances were present, needed to be established. In doing this about eight hours of 
process data were excluded in connection to each change-over between experimental 
runs. Logbooks and visual inspection of time series plots over important variables 
were used in this step. Next, response variables of interest were classified and selected 
from the many possible responses that are logged continuously in the process. In do-



ing this we had to consider that several of the response variables were in fact calcu-
lated from the same sensors in the furnace or from other response variables. We there-
fore tried to avoid including more than one variable carrying on exactly the same in-
formation. However, the remaining responses are still correlated to different degrees. 

An arduous work to retrieve and match data from the process monitoring system 
was the next step and this included reworking of data matrices to get the same resolu-
tion of the data. 

Univariate analysis of responses was first considered as a possible way to analyze 
the data, i.e. generating separate ANOVA tables for all the responses of interest as 
well as studying univariate time series plots. However, after completion it did not 
provide the fundamental overview of the experimental results. Moreover, by making 
so many separate ANOVAs and using an individual significance level of 5 % there 
was an increased risk to find effects that were not real effects. 

Before progressing to multivariate analysis, time lag between different responses 
was considered. The time-delay (inertia) differs between different response variables, 
e.g. changes in carbon injection feed rate would influence the composition of the fur-
nace exhaust gas immediately, while it may take hours until such change would affect 
the liquid metal composition. Based on the EBF engineers’ experience we chose to 
use a time lag of four hours between process response variables and output responses 
(iron and slag).  

Next, principal component analysis (PCA) was conducted in order to summarize 
the many and correlated responses in the process and try to derive latent variables that 
could be used to interpret the “strongest” signals in response data; a description of 
PCA can be found in, e.g. Johnson & Wichern (2002). 

The PCA was conducted on a data matrix consisting of 213 observations (hours of 
operation) and 52 response variables (mean-centered and scaled to unit variance); see 
Figure 3 for a summary of the data matrix. 
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Figure 3. A summary of the data matrix (213 observations and 52 variables) used in PCA. The re-
sponse variables are divided into “process responses” (Ypx) and lagged “output responses” (Yox). 

The software SIMCA-P+ 11.0 (Umetrics AB) was used to conduct the PCA. A model 
with seven principal components (PCs) explained 75.2 % of the total variation in the 
data; see Table II.  

Table II. Explained variance (of the response space) and eigenvalue for each principal component. 

Principal 
component 
number: 

Eigen-
value Explained 

variance 

Cumulative 
explained 
variance 

Principal 
component 
number: 

Eigen-
value Explained 

variance 

Cumulative 
explained 
variance 

1 13.20 25.3 % 25.3 % 5 3.60 6.9 % 66.4 % 

2 9.56 18.4 % 43.7 % 6 2.49 4.8 % 71.1 % 

3 4.23 8.1 % 51.8 % 7 2.10 4.0 % 75.2 % 

4 3.96 7.6 % 59.4 %     

Principal component (PC) score plots were visually examined in order to investigate if 
and how the experimental factors affected the process. Visual effects of the experi-



mental factors could be traced in the first four components. This way of working, la-
belling the score plots according to the levels of the factors, is exemplified in Figure 
4a-b. Note the clear separation of the two levels of blast volume in Figure 4a as well 
as the generally higher values on PC4 for the type “C” pellets in Figure 4b.  
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Figure 4a. Scatter plot of the PC1-PC2 scores 
labeled according to the level of blast volume.  

Figure 4b. Scatter plot of the PC3-PC4 scores, 
labeled according to the type of pellets.  

By visual inspection of the score plots it became evident that the blast volume factor 
seemed to affect the scores of the first three principal components, i.e. it seemed to 
have the largest effect on the processing state; see e.g. in Figure 4a. The type of pel-
lets did not seem to have a substantial effect, but a difference in the level of PC4 was 
found (see Figure 4b). PC loadings were then used to interpret what the dimensions of 
the PCs mainly describe. PC1 appeared to describe a dimension affected by the gen-
eral thermal state in the process. PC2 can be viewed as an indicator of gas distribution 
in the furnace shaft. PC3 describes the gas utilization (efficiency) in the process. PC4 
was interpreted as a chemical dimension of the iron. No sensible interpretation could 
be made of the subsequent PCs. 

The effect of the experimental factors could be visually detected in a subspace of 
the first four PCs, but was there really a significant difference in the PC scores de-
pending on the experimental factors? To answer this question the PC scores for PC1-
PC5 were averaged for each of the twelve runs of the experiment. The scores were 
averaged since there was a high degree of autocorrelation in the data. Also, multivari-
ate analysis of variance (MANOVA) and ANOVA assume independently and nor-
mally distributed observations, which are reasonably achieved by calculating aver-
ages. 

Next, a MANOVA was performed, using Statgraphics Centurion XV software, on 
the averages of the PC scores. At 5 % significance level the MANOVA showed sig-
nificant main effects of the experimental factors, with e.g. Wilks’ Lambda p-values of 
0.041 and 0.013 for pellets and blast volume respectively. The interaction effect was 
not significant. Thereafter, separate ANOVAs for the five PCs were made on the av-
erage of each PC in the twelve runs; see Table III. 

Table III. P-values from the ANOVAs for the averages of the PC scores for each of the twelve runs. 
Values in brackets are from the split-plot method of analysis. (*<0.10; ** <0.05; and ***<0.01) 

Effects PC[1] PC[2] PC[3] PC[4] PC[5] 

Pellets (P) .916  (.900) .464  (.284) .655  (.443) .0003***  (.0012***) .731  (.607) 

Blast volume (BV) .051*  (.171) .008***  (.110) .043**  (.219) .475  (.597) .599  (.722)  

Interaction (PxBV) .904  (.887) .969  (.939) .861  (.731) .177  (.152)  .703  (.573) 

From Table III we can see that the blast volume has a significant effect on the average 
of the PC scores for the first three PCs. Also, there is a significant pellets effect on the 
fourth PC. Since the first four PCs together account for almost 60 % of the variation 
in process data, with diminishing explanatory ability for each successive PC, we con-



clude that the blast volume factor has the largest effect on the processing state. The 
pellet types do not seem to have a pronounced effect on the processing state. How-
ever, this analysis assumes that all factors are subject to the same experimental error. 
This is not the case here where the randomization of the blast volume factor has been 
restricted. Therefore, a split-plot analysis has been performed (see Table III) where 
the blast volume has been treated as the whole plot factor; see Box et al. (2005). Even 
though the randomization in the design has not been restricted as much as in a split-
plot design this analysis provides an idea about relevance of the p-values in Table III. 
We conclude that the significance of the blast volume factor on the first three PCs is 
probably overestimated when assuming the same experimental error for all factors. 
Still, we argue that it is reasonable to assume that the blast volume significantly af-
fects the first three PCs and that the true p-values lie somewhere between the two ex-
tremes given in Table III. That the blast volume would affect the process significantly 
was expected. Nonetheless, since this effect was distinctly displayed in the results, it 
strengthens the acceptance of the overall results and the method of analysis. The in-
teraction effect between the types of pellets and the blast volume that was discussed 
beforehand has not been detected in data.  

To explain what causes the effects on the PCs, PC loading plots were studied. For 
example, the pellets effect on PC4 is mainly due to difference in the chemical compo-
sition of the produced iron, which could be expected since the chemical composition, 
e.g. phosphorous content of the pellets, is different. There is, however, no clear evi-
dence of any other difference in blast furnace performance (efficiency and stability) 
for the three pellets that were tested.  

CONCLUSIONS AND DISCUSSION 
Conducting a factorial type experiment in this continuous process setting was not 
straightforward. Examples of the considerations that needed to be made are: the 
length of the individual runs in the design was affected by the dynamic characteristic 
of the process; an adaptive design was needed in order to try to offset the effects of 
disturbances during the experiment; and complete randomization of the run order 
needed to be abandoned. The adaptive design (being able to prolong runs if distur-
bances occurred) was useful when trying to cope with the disturbances that did occur. 
Without the adaptive design, runs 1, 8, and 10 would have been excluded from the 
experiment, which would have been costly (valuable experimental time would have 
been lost). However, this means that we have a different number of hours for analysis 
for the different runs in the experiment. Run 10 has the smallest number of hours for 
analysis. Since the hours of operation have been averaged during analysis this will 
affect the spread of the average for run 10. However, no problem has been detected 
during residual analysis connected to the ANOVA. 

Due to the many and correlated response variables, a univariate approach to analy-
sis was abandoned as it did not provide the fundamental overview of the results. In-
stead, we argue that in processes like the EBF, where responses are abundant, fre-
quently logged, and correlated, a multivariate approach is beneficial. In this case we 
propose that PCA can be used to derive latent, uncorrelated variables that summarize 
the variation in the process. These can then be used as responses to test for statistical 
significance of the effects of the experimental factors; in this paper MANOVA and 
ANOVA has been applied to averages of PC scores for the runs in the experiment. To 
use Partial Least Squares (PLS) to analyze the data has been considered, but due to 
the qualitative pellets factor this technique was abandoned. The need to restrict the 
randomization order of the experiment to facilitate process control does however af-



fect the analysis as all factors can not be assumed to be subject to the same experi-
mental error. In retrospect, it would have been better to design the experiment as a 
regular split-plot design, with blast volume as whole-plot factor and pellets as sub-
plot factor. In this way, fewer changes in blast volume would have been necessary. 
Furthermore, the statistical analysis would have been more straightforward. The de-
sign in this experiment is somewhere midway between a completely randomized de-
sign and a split-plot design. 

Further, the need for process control of the fuel ratio during experimentation is a 
complicating matter. Even though a control strategy was developed beforehand and 
followed during the experiment, the manual control still continues to create ambiguity 
about experimental results among the experimenters. Questions like “did a decision to 
add or subtract fuel at the wrong time hide important experimental results?” can al-
ways be raised. Still, we argue that in this type of complex process setting, there is no 
such thing as a “perfect” experiment. 

Lastly, using factorial type designs, combined with the method of analysis pre-
sented here, in this continuous blast furnace process show a promising potential. Fur-
ther, as is shown in this article, CPs demand special considerations from the experi-
menter when planning, performing and analyzing experiments. These considerations 
are probably affected by the specific characteristics of the process in which the ex-
periments are to be conducted. We therefore argue that there still is much to be done 
to develop general experimental strategies and connected methods of analysis for CPs.   
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