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Abstract. The architectural description language for automotive embedded
systems EAST-ADL is presented in this paper. The aim of the EAST-ADL
language is to provide a comprehensive systems modeling approach as a means
to keep the engineering information within one structure. This facilitates
systems integration and enables consistent systems analysis. The EAST-ADL
encompasses structural information at different abstraction levels, requirements
and variability modeling. The EAST-ADL is implemented as a UML2 profile
and is harmonized with AUTOSAR and a subset of SysML. Currently, different
ways to model behavior natively in the language are investigated. An approach
for using SysML parametric diagrams to describe equations in composed
physical systems is proposed. An example system is modeled and discussed. It
is highlighted that parametric diagrams lacks support for separation between
effort and flow variables, and why this separation would be desired in order to
model composed physical systems. An alternative approach by use of SysML
activity diagrams is also discussed.

Keywords: EAST-ADL, automotive embedded systems, UML, SysML,
parametric diagrams, physical modeling, continuous systems, Modelica

1 Introduction and goals

New functionality in automotive systems is increasingly realized by software and
electronics. A system level function, such as an adaptive cruise controller will then be
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partitioned into functions that are realized by software and electronics (the vehicle
embedded system), and other functions realized in mechanical subsystems. The
complexity of embedded systems calls for a more rigorous approach to system
development compared to current state of practice. A critical issue is the management
of the engineering information that defines the embedded system. This issue should
be understood in the light of current development practice which is characterized by
the involvement of a very large number of specialists/groups/companies: all
participants are working on the same system but using different tools, models,
information formats, and subsets of the complete information. In current practices,
integration of artifacts from different parties takes place at a very late stage of the
development process where electronic control units are integrated into the overall
embedded system of a vehicle. There is a need to shift this hardware level integration
to model level integration [2]. Model based development has the potential to improve
the cost efficiency of the products including their quality.

In this paper, we will discuss one aspect of model based development, the
modeling of the environment to the developed system. Environment models serve
several purposes in an architecture description language (ADL). An environment
model defines implicitly the context and relevant use of the systems and functions in
the embedded systems architecture. Validation activities such as simulation, interface
consistency, formal verification all benefit from an environment model. The
environment of an automotive embedded system may include all kinds of systems and
behaviors that are part of the embedded system itself. The focus here is on physical
continuous time systems. In particular we investigate the representation of continuous
systems in SysML parametric diagrams, using Modelica [6] compatible constructs.

The presented approach is a part of an effort to refine an architecture description
language for automotive embedded systems. An initial version of this language,
EAST-ADL, was developed in the EAST-EEA project [19]. Further work on the the
language is pursued in the ATESST project [17]. For other aspects of the EAST-ADL,
see [3].

2 Overview of the EAST-ADL

The EAST-ADL is intended to support the development of automotive embedded
software by capturing all the related engineering information. The scope is the
embedded system (hardware and software) of a vehicle and its environment. The
EAST-ADL system model is organized in parts representing different levels of
abstraction and thus reflects different views and details of the architecture. The levels
implicitly reflect different stages of an engineering process, but the detailed process
definition is company specific.

The EAST-ADL language constructs support:

o vehicle feature modeling including concepts to support product families
o concepts for defining variability in all parts of a model

o vehicle environment modeling to define context and perform validation
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o structural and behavioral modeling of software and hardware entities in the context
of distributed systems.

e requirements modeling and tracing with all modeling entities

o other information part of the system description, such as a definition of component
timing and failure modes, necessary for design space exploration and system
verification purposes

The language is structured in five abstraction levels (see Fig. 1), each with

corresponding environment system representation (in parenthesis):

o Operational Level supporting final binary software deployment (operational
architecture)

o Implementation Level describing reusable code (platform independent) and
AUTOSAR compliant software and system configuration for hardware deployment
(implementation architecture)

o Design Level for detailed functional definition of software including elementary
decomposition (design architecture)

o Analysis Level for abstract functional definition of features in system context
(analysis architecture)

o Vehicle Level for elaboration of electronic features (vehicle feature model)

o am gnvironmeny )

Wehicle Level
Analysis Level
Design Level
Implementation Lewvel

Operational Level

Fig. 1. EAST-ADL language abstractions. Note that the environment model spans all
abstraction levels, and that requirements and variability constructs apply to modeling elements
regardless of abstraction level.

2.1 EAST-ADL definition, implementation and relation to other languages

In defining the EAST-ADL language, a two step procedure is adopted. The final
language is implemented as a UML2 profile. A domain model is first defined,
capturing only the domain specific needs of the language. The domain model thus
represents the meta-model, the language definition. Basic concepts of UML are used
for this purpose, such as classes, compositions and associations. Based on the Domain
model, a UML2 profile implementation, the “UML viewpoint” is defined with
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stereotypes, tags and constraints. This implementation is delivered as an XMI file
ready for use in UML2 tools. As a proof-of-concept, an Eclipse based prototype tool
with supporting analysis features, Papyrus [20], has been implemented. The EAST-
ADL language also incorporates relevant aspects from SysML [14] and MARTE [9].
SysML is a modeling language that supports the specification, analysis, design,
verification and validation of systems which may include hardware, software,
information, processes, personnel, and facilities. SysML is defined in terms of a
UML2 profile. MARTE is an ongoing effort to define a UML profile for Modeling
and Analysis of Real-Time and Embedded systems, initiated to overcome the UML
limitations of modeling such systems. The EAST-ADL is also being harmonized with
the new automotive domain standardization AUTOSAR [18]. AUTOSAR focuses
mainly on the implementation level of abstraction, whereas the EAST-ADL supports
the overall comprehensive systems modeling.

Inspiration in the development of the EAST-ADL is also gathered from the SAE
Architecture and Analysis Description Language (AADL) [16] and safety standards
such as the ISO 26262 Functional Safety (committed draft planned for beginning
2008).

Considering the multitude of languages that in different ways address embedded
systems, a relevant question is how the EAST-ADL relates to other modeling
language efforts. This was partly elaborated in the previous text, but the main reasons
for introducing “yet another language” are summarized here for clarity:

e EAST-ADL vs. UML: UML is a general modeling language for software
engineering, which contains no specifics for automotive embedded systems.
The EAST-ADL provides a tailoring of UML2 through a profile dedicated
for such systems.

e EAST-ADL vs. SysML: SysML is a UML2 profile for systems engineering.
EAST-ADL incorporates several SysML concepts and specializes them as
needed for automotive embedded systems.

e EAST-ADL vs. AUTOSAR: AUTOSAR focuses on software and hardware
implementation. The EAST-ADL complements AUTOSAR with e.g.
functional specifications and requirements and reuses AUTOSAR concepts
for the implementation level abstractions.

e  Why not proven proprietary tools and languages such as MATLAB/Simulink
[13], ASCET [5] or Modelica? The very fragmentation into multiple
domain/discipline tools that target different aspects of the system is a key
driver for developing the EAST-ADL. The EAST-ADL language provides
an information structure for the engineering data required as a basis for
automotive embedded systems development. In the ATESST project,
interfaces in terms of model transformations and tool interfaces for the
prototype tool Papyrus are developed to domain tools/languages.

e Why not information management tools such as product data management
tools (PDM)? Such tools lack an information model for automotive
embedded systems and the connections to external domain tools. The EAST-
ADL domain model could be used as a basis for information management in
existing PDM-like tools. Moreover, the use of UML2 allows native behavior
to be defined. The fact that UML2 is a standard allows the EAST-ADL to be
used with several UML tools.
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2.2 Behavior modeling approach in EAST-ADL

With respect to behavior the goal of the EAST-ADL is to provide native behavior
descriptions, for primitive components, as well as for compositions. Native behavior
is useful for example to describe the desired overall behavior of the vehicle systems
as well as the environment. The objective includes a native behavioral notation that
allows simulation and verification within the defined system model, but also concerns
the integration of external tools, as part of today’s industrial practice for designing
behavior algorithms of vehicle applications. Integration here refers to the ability to
import/export models to and from external tools based on model transformations.

3 Physical systems modeling in SysML

The overall goal is to find a representation of continuous systems in SysML to be
used in the EAST-ADL. Parametric diagrams and Modelica models have many things
in common (equation based, acausal, modular etc.), so the hypothesis was to see how
they relate to each other. The approach was to make a proof-of-concept description of
a Modelica model using native SysML constructs.

3.1 Modeling physical systems

To get a complete description of the system, not only the embedded system needs to
be modeled, but also the environment it interacts with. In control theory this is
referred to as the plant model. One possibility in the EAST-ADL is to rely on legacy
tools, most notably Simulink and ASCET, for defining plant behavior. The functions
that compose the environment model define the structure, and a link to a behavioral
definition in the external tool is provided for each of these. The complete behavior of
the environment model is the result of the composition of the parts. Alternatively, and
this is elaborated below, an equation-based behavioral definition is used for
environment model behavior. This behavior is defined as a part of the EAST-ADL,
and would be understood by EAST-ADL compliant tools.

A typical plant model is described by differential equations, but can also include
hybrid systems. Example of the latter kind is a gearbox, or the state-transition
between different properties of a road, e.g. from ice to water. The interface between
the plant and the embedded system is in form of inputs (actuators act as inputs to the
plant) and outputs (sensors act as outputs from the plant to the control system). In the
implementation, this will be realized as an interface between a discrete embedded
system and a continuous “real world”. During modeling and design, this interface
could be continuous to continuous at the Analysis Level (from Fig. 1), or discrete to
discrete when modeling and simulating a plant model.

Just like the embedded systems, plant models can be described at different levels of
abstraction, see Fig. 2. These abstraction levels are adapted from [12], and have been
proven useful when discussing how models could be described in a uniform way, e.g.
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are the models on the same abstraction level, and can they be integrated on that level?
There are also levels orthogonal to this, e.g. more or less advanced models, more or
less validated models etc. These abstraction levels are not directly correlated to the
EAST-ADL abstraction levels of the embedded system.

Acausal Causal | = Discretized | —_ Simulation
models models

models behavior

Fig. 2. Different levels of abstractions of environment models

Acausal models. At the highest level of abstraction for environment models, there are
acausal models, where models are described by one or several differential or algebraic
equations, possibly combined with state machines to model hybrid systems. The
acausal Modelica components are on this level of abstraction, where equations and
their relation to the outside world are modeled. Acausal models are generally more
flexible and reusable than models at a lower abstraction level [6].

Causal models. At the causal level of abstraction, it is defined what is input, and
what is output inside the system, and between components in a composed system.
Typical causal models include bond graph representations [11], or block diagrams,
like continuous Simulink models.

Time-discretized models. To solve a differential equation numerically it is typically
discretized in time. A discretized model is an algorithmic representation in the sense
that it generates a defined output for a certain input and internal state. A model can be
discretized in different ways, e.g. using forward/backward Euler.

Simulation behavior. To perform the calculations of the discretized models, a solver
and a scheduler is needed as part of the simulation engine. The simulation engine can
decide the time-step, execution order, triggering, communication, etc. of the model.
Typical numerical tools to solve differential equations are Simulink and ASCET [5].
Here, the simulation behavior of the continuous time model can be described using
the same Model Of Computation (MOC) as for the model components of the
embedded system.

Proceeding to lower abstraction levels means that the model gets more sophisticated,
in the sense that the model can produce simulation results. On the other hand, the
models get more specialized and differ more from the original system. Moreover,
numerical errors could be introduced at all transformations. Tools and methods could
use many of these abstraction levels, and hide some from the user. For example, a
continuous Simulink model is modeled as a causal model. The choice of solver
provides a way of (indirectly) discretizing the model since it implies a discrete-time
implementation through the simulation behavior built into the tool. The Dymola [4]
tool makes a point of taking the equations from the highest abstraction level to the
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lowest, while ASCET uses models close to the lowest level, and letting the user have
control over the real-time hardware-in-the-loop simulation.

3.2 SysML parametric diagrams

SysML consists of four behavioral and five structural diagrams. Seven of these
diagrams are partially reused from UML, while two are new: the requirement
diagrams and the parametric diagrams [14]. The parametric diagrams’ conceptual
foundation is the composable objects representation (COBs), developed at Georgia
Institute of Tecnology [10], the academic partner of the SysML team [14]. COBs
provide five basic views of a system, Shape Schematic, Relations, Constraint
Schematic, Lexical COB structure and Subsystem, of which Relations, Constraint
Schematic and Subsystems have equivalent representation in parametric diagrams.

Parametric diagrams describe constraints between variables, like equations, and
how they are related to each other. The SysML specification gives an example of
Newtons equation, which can be modeled in continuous time [14]. The constraints are
acausal, and by combining many modular subsystems, acausal relationships for a
large system can be achieved. In addition, state machines can tell which equations to
be used in the parametric diagrams, to be able to describe hybrid systems.

4 Investigation of an example system

As an example system an electrical circuit from [6] was chosen. It was chosen since
the Modelica representation is well-described in this reference, and since it has
sufficient complexity: different dynamical features and parallel branches. The model
also highlights that different causality is needed for the resistors in the two branches.

Fig. 3. The example electrical circuit. An alternating voltage source is applied to a circuit
containing two resistors, one capacitance and one inductor.
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4.1 Definition of a component with SysML

An electrical component is specified using the two-pin class, where general equations
common for many electrical components are stored. These equations are also linked
together in a parametric diagram.

bdd
<<constraint>>
TwoPin
parameters
pv
pi
nv
ni
i
v
<<constraint>> <<constraint>> <<constraint>>
voltageq currenteq currenteq2
<<constraint>> <<constraint>> <<constraint>>
{v=p.v-n.v} {0=p.i+n.i} {i=p.i}
parameters. parameters parameters.
p.vivoltage p.i:current p.i:current
n.v:voltage n.i:current ircurrent
vivoltage

Fig. 4. Constraint definition of the electrical TwoPin Modelica class within a SysML block
definition diagram (bdd). There is a separate parametric diagram to show the relation between
the equations.

This diagram is also linked in the parametric diagram of the resistor, where variables
link to the FlowPorts of the resistor. The component is defined as a SysML block,
where bidirectional FlowPorts are used to represent connections. The capacitor,
inductance, ACSource etc. can be defined in a similar way.

par

r:ResistorEquation
Resistor.R

Resistor.p.v

Resistor.n.v

Resistor.n.i

Fig. 5. SysML parametric (par) diagram of the resistor. The Resistor.x.y variables are linked to
the FlowPorts of the resistor, and the Resistor.R is a property of the Resistor.
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4.2 Composing a system

ibd Circuit J

AC: VoltageSourceAC [}

Gnd:Ground

4|
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Fig. 6. Internal block diagram (ibd) of the circuit. SysML ItemFlow is specified between
components, and have the same function as connectors in Modelica

The example system is composed using instances of the components defined in the
previous section. The parameters can then be assigned values. In a first attempt,
ItemFlow is specified between the components to be connected, used the same way as
connectors would be used in Modelica. ItemFlow is a SysML stereotype describing
the flow of items across a connector or an association. This is an intuitive way to
connect the components, since it is related to the physical layout of the circuit. The
problem is that when calculating the current from these parametrics, a wrong result
will occur: The current will be the same everywhere in the system, which is not
possible due to Kirchoff’s current law. In Modelica this is handled by defining the
current as a “sum to zero”-variable, and the voltage as an “equality”-variable. In a
connection having many branches, the equality variable will have the same value for
all branches, while the “sum to zero” variables will be summed to zero. Here, a
workaround has to be made. A possible solution is to include a parallel flow split
component, which is shown in Fig. 7. One of the two-pin current equations must also
be changed fromO=p.i+n.i to p.i=n.1i.
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ibd Circuit )
EIAC: VoltageSourceAC

FIL:FlowSplit
& &

Gnd:Ground

FIL:Flowsplit

Fig. 7. An acausal representation of the system, where the equations are fully
described by the underlying parametric diagrams

4.3 Block diagram model expressed as an activity diagram

The system could also be described at the causal level of abstraction. The circuit
could be transferred to a bond graph representation. There are systematic approaches
for electrical circuits, see for example [8]. Bond graphs could be described using
SysML activity diagrams [15]. A bond graph model can also be converted to a block
diagram [11], which could be expressed as an activity diagram, as described in [1].
This representation is shown in Fig. 8. To execute this diagram, initial values are
needed on both “Add”-actions. When simulating a model in Simulink, the execution
order is however typically not from input to output, it is decided by which blocks
have direct-feed through and those that have internal state, see [13] for more
information on this.

act

) t] - [1 Integrate
Divide over time

Voltage
function

Output 11

Fig. 8. An activity diagram describing the circuit. This is similar to the Simulink representation,
although the sequencing of the actions differ



5 Discussion and Conclusions

An attempt to make modular simulation models of physical systems using SysML
has been tested and evaluated. The concepts includes internal block diagrams with
attached parametric diagrams, bi-directional FlowPorts, and ItemFlow, The approach
is maybe not the intended way to use these diagrams. The intention in SysML is to
connect parametric diagrams to each other to generate a composed parametric
diagram for the system. Then, the governing equations in this parametric diagram are
separated from the structure in the internal block diagrams.

Although parametric diagrams are acausal, they do not contain any separation
between effort and flow variables, which is fundamental when modeling physical
systems [11]. Both Modelica (using flow) [6] and VHDL-AMS (using
across/through) [7] contain such constructs. The solution of introducing the
flow-split block is not an appealing solution; the point of using acausal diagrams is
then somehow lost. Another solution would be to introduce stereotypes for flow
variables, to show that they are to be summed to zero. A parametric diagram could be
manually generated, or in principle automatically generated, based on the properties
of the internal block diagram.

The behavior of the composed system could of course also be modeled using a
non-modular parametric diagram. An optimized system model of the example system
contains seven equations [6], which could easily be modeled using a single parametric
diagram.

Using activity diagrams it is possible to model a block model version of the
system. The activity diagram is a behavioral diagram, as opposed to the parametric
diagrams (which are structural). This is a way to capture the structure of a Simulink
model which is the causal representation of the system. This is an interesting path and
will be further investigated in the ATESST project.

The compatibility between Modelica and UML representations needs further
investigation. The advantage of having a Modelica compatible description is that it
could be translated to Modelica models, and then simulated in existing Modelica
tools.
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