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Preface
These proceedings contain the papers from the SIGRAD 2005 conference which was held on 
the 23rd and 24th of November in Lund, Sweden. The topic of this year’s conference is Mobile 
Graphics, that is, graphics on mobile devices, such as mobile phones, PDAs, and portable game 
consoles. As in previous years, we also welcome paper submissions in various other graphics 
areas.

The SIGRAD conference has an explicit ambition to broaden its geographic scope beyond the 
national borders of Sweden. We are therefore very happy to have several international contri-
butions this year. 

The keynote speakers this year are Michael Doggett from ATI, and Ulf Assarsson from Chalmers 
University of Technology. The topic of Michael’s presentation is trends and recent developments 
in graphics hardware, and how that affects us all. Ulf presentation is about his work on soft 
shadow volumes in a broader perspective. Thanks so much for giving these presentations! We 
would also like to thank the program committee that provided timely reviews, and helped in 
selecting the papers for these proceedings.

Many thanks to our generous sponsors: Ericsson Mobile Platforms, TAT, and Aveva. We wish 
all participants a stimulating conference, and hope they take the chance and to create new con-
nections in the Nordic graphics community.

Lennart Ohlsson					    Tomas Akenine-Möller

Program Chair					     Papers Chair
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Connected Minimal Acceleration Trigonometric Curves

Tony Barrera∗

Barrera Kristiansen AB
Anders Hast†

Creative Media Lab,
University of Gävle

Ewert Bengtsson‡

Centre for Image Analysis
Uppsala University

Abstract

We present a technique that can be used to obtain a series of con-
nected minimal bending trigonometric splines that will intersect
any number of predefined points in space. The minimal bending
property is obtained by a least square minimization of the accelera-
tion. Each curve segment between two consecutive points will be a
trigonometric Hermite spline obtained from a Fourier series and its
four first terms. The proposed method can be used for a number of
points and predefined tangents. The tangent length will thenbe op-
timized to yield a minimal bending curve. We also show how both
the tangent direction and length can be optimized to give as smooth
curves as possible. It is also possible to obtain a closed loop of min-
imal bending curves. These types of curves can be useful tools for
3D modelling, etc.

Keywords: Trigonometric curves, Hermite curves, least square
minimization

1 Introduction

This paper proposes a simple technique that will make it possible to
construct a minimal bending curve through a number of consecutive
points in space, using trigonometric splines [Schoenberg 1964].
Thus, each curve consists of a number of connected trigonometric
Hermite spline segments [Alba-Fernandez 2004]. Each spline will
start in one predefined point and end in the consecutive point, and
the next curve segment will start in that point and end in the next
point, and so forth.

In [Barrera 2005] a similar technique is presented where a mini-
mal bending cubic curve is obtained where both the points andthe
directions at these points are given. That algorithm will compute
optimal tangent lengths. Bartels et al [Bartels 1998] show how a
minimal bending cubic curve can be obtained using the pointsonly
as constraints for the curve. The resulting splines will be Hermite
splines and should not be confused with Catmul-Rom splines [Cat-
mull 1974] which also intersect the given points. However, they
are constructed in a quite different way.

Figure 1 shows a trigonometric Hermite curve where four points
and tangents are set as constraints. The left part of the curve has

∗e-mail: tony.barrera@spray.se
†e-mail: aht@hig.se
‡e-mail: ewert@cb.uu.se

Figure 1: Multiple connected trigonometric curve with non optimal
predefined tangents.

rather large tangents, which make the curve bend heavily around
the intersection points. On the right side the tangents are rather
short, which makes the curve bend rapidly around the intersection
points. A minimal bending curve will have minimal acceleration
over the curve and this will make the curve smoother. Note that
the length of the tangents have been scaled down to 25% in all the
figures so that the tangents will not be too large compared to the
curve.

Several such curves will be presented in this paper. First wewill
prove that a cubic curve that only has points as constraints will have
this minimal acceleration property. The derivation will serve as an
example when we proceed to discuss trigonometric curves instead.
These curves have the advantage that they can define everything
from straight lines to perfect circles. Next we will show howa
trigonometric curve using points as constraints can be obtained and
then we will show how a curve using both points and tangent direc-
tions can be constructed. In the latter case the tangent is set to an
optimal, while in the first case both tangent length and direction is
set to an optimal. Hence this type of curve will always be smoother,
but we loose the possibility to determine direction in each point,
which might be desirable for camera movements [Vlachos 2001]
etc.

2 Least Square Minimization of Cubic Her-

mite Curves

We will start by proving that a cubic Hermite curve [Hearn 2004]
that intersects a number of given points will actually have the mini-
mal acceleration property. This will serve as an example of how the
minimal acceleration is obtained since the equations are shorter and
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easier to understand than for trigonometric curves. Then wewill go
on to give examples of how this works for trigonometric curves.

The total curvature of a curvef (t) in the parametric interval[0,1]
of one single curve segment is defined by

∫ 1

0
‖κ(t)‖dt (1)

Whereκ(t) is the curvature of the curve att. This formula often
causes very complex expressions, so it is more common to use the
integral

∫ 1

0
‖f′′(t)‖2dt (2)

This integral sums the acceleration, i.e. the square of the second
derivative over the curve. The acceleration is minimized bydif-
ferentiating on some variable and set the result to zero so that the
minimum is obtained. This is the essence of least square minimiza-
tion [Burden 1989]. In our case we would like to find the optimal
tangents that will give a minimal bending curve. If there arek +1
number of points, then there will bek number of curve segments.
Hence we differentiate on the tangents and solve

∂
∂Ti

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k+1(t)‖

2dt = 0 (3)

wherei = 1,2, ...,k +1.

In order to be able to derive the curve we must first compute the
second derivatives of the Hermite curve. A general cubic curve is
defined by

f(t) = At3 +Bt2 +Ct +D (4)

and a Hermite curve has the initial conditions

f(0) = Pi (5)

f(1) = Pi+1 (6)

f′(0) = Ti (7)

f′(1) = Ti+1 (8)

WhereTi and Ti+1 are two tangent vectors to be determined for
minimum acceleration. The Hermite [Hearn 2004] curve is defined
by solving the system







0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0













A
B
C
D






=







Pi
Pi+1
Ti

Ti+1






(9)

The solution of this system is

A = Ti +Ti+1−2Pi,i+1 (10)

B = 3Pi,i+1−2Ti −Ti+1 (11)

C = Ti (12)

D = Pi (13)

wherePi,i+1 = Pi+1−Pi.

Hence
f′′(t) = 6At +2B (14)

and
‖f′′(t)‖2 = 36A2t2 +24A ·Bt +4B2 (15)

where we use the notationA2 = A ·A and so forth. Substituting
equations (10) through (13) into equation (15) and differentiating
on T1 as in equation (3) gives

∂
∂T1

∫ 1

0
‖f′′(t)‖2dt = 8T1 +4T2 −12P12 (16)

Moreover we have

∂
∂T2

∫ 1

0
‖f′′(t)‖2dt = 4T1 +16T2 +4T3 −12P12 −12P23 (17)

∂
∂T3

∫ 1

0
‖f′′(t)‖2dt = 4T2 +16T3 +4T4 −12P23 −12P34 (18)

and finally

∂
∂Tk+1

∫ 1

0
‖f′′(t)‖2dt = 8Tk +4Tk+1 −12Pk,k+1 (19)

Next we set each equation equal to zero and solve for each tan-
gent. After dividing each equation by four this yields a system of
equations





















2 1 0 0 ... 0 0 0
1 4 1 0 ... 0 0 0
0 1 4 1 ... 0 0 0
. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

0 0 0 0 ... 0 1 2









































T1

T2

T3

.

.

.

Tk+1





















=





















3P12

3(P12+P23)

3(P23+P34)

.

.

.

3Pk,k+1





















(20)

A system involving a matrix of this form is called atridiagonal
system and can be solved efficiently using a specialized algorithm
[Lengyel 2004]. This is the same system, which is derived in [Bar-
tels 1998]. However, they derive it in a different way were they
set up a system requiringC2 continuity at the intersection points.
Nevertheless, our derivation proves that this type of curvehave the
minimal acceleration property.

3 Trigonometric Hermite splines

Trigonometric splines (or trigonometric polynomials) were intro-
duced by Schoenberg [Schoenberg 1964] and have been investi-
gated extensively in math and computer aided geometry literature,
[Walz 1997], [Lyche 1979], [Han 2003], just to mention a few.
However, they have not gained much interest in computer graphics.
One reason is probably that it involves the computation of trigono-
metric functions and those have been computationally expensive.
With faster hardware they may gain the interest from the computer
graphics community as a modelling tool, since it is possibleto con-
struct everything from straight lines to perfect circle arcs. The latter
is impossible with cubic curves.

A trigonometric spline can be constructed from a truncated Fourier
series [Schoenberg 1964], [Walz 1997]. An Hermite spline is
defined by two points and the tangents in these points and therefore
we have four constraints and thus we need four terms in the Fourier
series. The trigonometric curve is therefore defined as

f(θ ) = a+bcosθ +csinθ +dcos2θ (21)

Using the conditions in (5) through (8), the curve is found bysolv-
ing







1 1 0 1
1 0 1 −1
0 0 1 0
0 −1 0 0













a
b
c
d






=







P1
P2
T1
T2






(22)
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The solution is

a =
1
2
(P1 +P2−T1 +T2) (23)

b = −T2 (24)

c = T1 (25)

d =
1
2
(P1−P2 +T1 +T2) (26)

By forcing d to be equal to zero in equation (21) we get

f(θ ) = a+bcosθ +csinθ (27)

This is obviously the equation for a circle and this proves that it is
possible to construct a perfect circle arc using these curves. Since
the curve is parametric it is easy to see that it is possible toconstruct
straight lines using the trigonometric splines. The coefficients are
vectors and the function produces a point in space and each coor-
dinate has its own expression and the only thing that differsis the
coefficients, and therefore it is no problem to construct a straight
line even though trigonometric functions are involved.

4 Least Square Minimization of Trigono-

metric Hermite Splines

Once again we use equation (3) in order to optimize both tangent
length and direction for the Trigonometric Hermite spline defined
in equation (21). This will yield a system of equations that must be
solved.





















A 2B 0 0 ... 0 0 0
B A B 0 ... 0 0 0
0 B A B ... 0 0 0
. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

0 0 0 0 ... 0 2B A









































T1

T2

T3

.

.

.

Tk+1





















=





















2CP12

C(P12+P23)

C(P23+P34)

.

.

.

2CPk,k+1





















(28)

where we have

A = 15π −16 (29)

B = 6π −11 (30)

C = 6π −4 (31)

Figure 2 shows how the proposed approach will yield a curve that
is much smoother than the curve in figure 1, since both the tangent
direction and length are set to an optimal, giving a minimal bending
curve.

4.1 Optimal tangent length

If we want our curves to have the same direction as the tangents in
the intersection points, then we can change the computationso that
we solve for optimal tangent length only instead of solving for both
optimal tangent length and direction. In this case we introduceαi
as the length of each tangentTi.

The equation now becomes

∂
∂αi

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k+1(t)‖

2dt = 0 (32)

wherei = 1,2, ...,k +1.

Figure 2: Multiple connected minimal acceleration trigonometric
curves, with both optimal tangent direction and length.

The resulting coefficient matrix is





















AT2
1 2BT1 ·T2 0 0 ... 0 0 0

BT1 ·T3 AT2
2 BT2 ·T3 0 ... 0 0 0

0 T2 ·T3 AT2
3 BT3 ·T4 ... 0 0 0

. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

0 0 0 0 ... 0 2BTk ·Tk+1 AT2
k+1





















(33)

And the variables to solve for are


















α1
α2
α3
.

.

.

αk+1



















(34)

Finally the column of constants is



















2CT1 ·P12
CT2 · (P12+P23)
CT3 · (P23+P34)

.

.

.

2Ctk+1 ·Pk,k+1



















(35)

In figure 3 it is clear that the tangents have the same directions as in
figure 1. However, the tangents have optimal length and the curve
is thus smoother.

5 A Closed Loop

It is possible to connect any number of minimal acceleration
trigonometric curves together into a closed loop as shown infig-
ure 4. The end point for the last segment is set to be the same as
the start point for the first segment. Likewise, the tangentsat this

3



Figure 3: Multiple connected minimal acceleration trigonometric
curve.

point is set in the same way. The equation to solve is now changed
so that we have

∂
∂Ti

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k (t)‖2dt = 0 (36)

wherei = 1,2, ...,k. Note that this time there arek number of points
andk number of curve segments.

This yields the following system





















A B 0 0 ... 0 0 B
B A B 0 ... 0 0 0
0 B A B ... 0 0 0
. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

B 0 0 0 ... 0 B A









































T1

T2

T3

.

.

.

Tk





















=





















C(Pk,1 +P12)

C(P12+P23)

C(P23+P34)

.

.

.

C(Pk−1,k +Pk,1)





















(37)

where we have

A = 15π −16 (38)

B = 6π −11 (39)

C = 6π −4 (40)

The presence of the nonzero entries in the lower-left and upper-right
corners make this system acyclic tridiagonal system. It can also be
solved efficiently [Press 1992].

5.1 Optimal Tangent Length

Now we proceed to show how a closed loop can be constructed
when we want a specific tangent direction in each point. The equa-
tion to solve is

∂
∂αi

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k (t)‖2dt = 0 (41)

wherei = 1,2, ...,k.

Figure 4: A closed loop of a trigonometric curve with optimaltan-
gent length and direction

The coefficient matrix now becomes




















AT2
1 BT1 ·T2 0 0 ... 0 0 BT1 · tk

BT1 ·T3 AT2
2 BT2 ·T3 0 ... 0 0 0

0 T2 ·T3 AT2
3 BT3 ·T4 ... 0 0 0

. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

BT1 ·Tk 0 0 0 ... 0 2BTk−1 ·Tk AT2
k





















(42)

And the variables to solve for are


















α1
α2
α3
.

.

.

αk



















(43)

Finally the column of constants is


















CT1 · (P12+Pk,1)
CT2 · (P12+P23)
CT3 · (P23+P34)

.

.

.

CTk · (Pk−1,k +Pk,1)



















(44)

In figure 5 the tangent directions have been predefined. The curve
is made smooth by the proposed minimal acceleration technique, so
that the tangent length is set to an optimal.

6 Conclusions

We have presented a method that can be used to obtain minimal
bending trigonometric Hermite curves, which can have a number
of different constraints, like intersection points and tangent direc-
tions. These curves can be used in a number of areas, such as 3D-
modeling and camera movements.

4



Figure 5: A closed loop with optimal tangent length for predefined
tangent directions.
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Texture Compression: THUMB – Two Hues Using Modified Brightness

Martin Pettersson Jacob Ström

Ericsson Research

Abstract

We present a new texture compression system called THUMB, that
can be used either as a stand-alone compression system or in com-
bination with the iPACKMAN algorithm. We show how the com-
bined system improves quality in the test images we have used,
especially in the image blocks most problematic to iPACKMAN.

1 Introduction

Bandwidth is usually the factor limiting performance in
rasterization-based rendering hardware [Aila et al. 2003]. Knittel et
al. [1996] and Beers et al [1996] show how texture compression can
be used to reduce bandwidth during rendering. By transferring the
texels over the bus in compressed form, and decompressing needed
texels on-the-fly, texture bandwidth can be reduced significantly.
Previously introduced image compression techniques such as the
CCC scheme [Campbell et al. 1986] can be used for the compres-
sion.

For mobile devices, which are powered by batteries, these band-
width savings are also important from a power consumption per-
spective, since such off-chip memory accesses are often the most
energy consuming operations in a computer system [Fromm et al.
1997]. In low-power processes, such as the ones used for mobile
devices, off-chip memory accesses are more than an order of mag-
nitude more energy consuming than accesses to a small on-chip
SRAM memory. The bandwidth savings can therefore be trans-
lated into energy savings. The texture compression system pre-
sented here was originally intended for use on mobile devices, but
could be used on PC systems and game consoles as well.

A texture compression system differs from a normal image com-
pression system in a number of ways. First, it needs to allow ran-
dom access to the texels, since rendering can start in any location
in the texture, and be traversed in a non-scanline fashion. Most
texture compression systems are therefore block-based fixed rate
codecs, where each block of the image is given a fixed number of
bits, which makes it simple to calculate the address of a particu-
lar block. Second, the decompression of a block should ideally be
of low complexity. If some sort of filtering is used, many paral-
lel decompression units are needed to process a single pixel. For
instance, if trilinear filtering is used, eight parallel decompression
units are needed to process one pixel per clock. By decompressing
the texels right before filtering, it is possible to keep compressed
texels in the texture cache, which means that the cache can be made
several times smaller in terms of chip surface area. Third, it is ad-
vantagous to avoid texture dependent look-up tables (LUTs), such
as color palettes, since the indirect addressing they introduce give
rise to latencies that are hard and costly to hide.

Our new texture compression system is developed with
iPACKMAN texture compression [Ström and Akenine-Möller
2005] in mind, and designed to be a complementing mode in that
coder, taking care of the blocks that iPACKMAN has most difficul-
ties with. However, it can also be used as a stand-alone codec, and
we have presented results for both usages.

2 Previous Work

We will now go through previous work that is related to texture
compression.

Delp and Michell [1979] present a scheme called block trunca-
tion coding (BTC) for gray scale images. The image is divided into
4× 4 blocks, and two shades of gray are encoded in the block, to-
gether with a bit mask that decides for each pixel what shade to
choose. The bit mask is thus 16 bits, and eight bits are used for
each gray level, resulting in 32 bits per 4x4 block or 2 bits per pixel
(bpp).

Campbell et al [1986] extend the BTC algorithm to color images
in a system called CCC — Color Cell Compression. Each 4× 4
block now includes two colors instead of two gray scales. By us-
ing a 256-wide color palette, the colors can be represented with
eight bits each, yielding 2 bpp for color images. However, only
two colors are possible per block, which limits image quality. Fur-
thermore, having a color palette is a drawback in today’s systems,
where memory accesses are slow in relation to computation.

The de facto standard today is the S3TC texture compression
method by Iourcha et al. [1999], and it can be seen as an extension
of CCC. To increase quality compared to CCC, four colors can be
chosen in each pixel, yielding two bits per pixel in the bit mask.
To avoid a texture dependent LUT, no color palette is used. Instead
two colors in RGB565 format are stored in the block, and two more
colors are interpolated in-between these two colors. This means
that colors in a block are restricted to lying on a line in RGB space.
However, this is a rather good approximation of the color distribu-
tion in blocks from most natural images. An example can be seen
in the left diagram in Figure 1, which shows a cross section of the
RGB space, and where the colors of a block are plotted as points
in RGB space. The point cloud is approximated by four equidistant
reconstruction points along a line, as shown in the right diagram.
The two end points (marked with squares) are the colors stored in
the block, whereas the two middle points (marked with circles) are
interpolated. With 64 bits per 4× 4 block, the rate of S3TC is 4
bpp.

R

B

R

B

Figure 1: Left: Possible distribution of the colors of a 4× 4 block
in RGB-space. Right: In S3TC the colors are approximated by four
equidistant points along a line.

Akenine-Möller and Ström [2003] present a variant of S3TC
called POOMA, where the biggest difference is that only one in-
between color is used, and blocks are 2× 3 pixels. Here the main
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Figure 2: Here, the core idea of PACKMAN is illustrated. To the
left, the base color for each 2×4 block is shown. The image in the
middle shows the per pixel luminance modulation. The rightmost
image shows the decompressed image.

target is to reach 32 bits per block to match bus-sizes of mobile
phones on a rendering system without a texture cache. However,
this reduces quality and increases the rate as compared to S3TC,
and the block size of 2× 3 pixels is awkward for hardware imple-
mentation.

Beers et al. [1996] use vector quantization for texture compres-
sion to reach compression rates of 1-2 bpp. However, this requires a
big LUT, which introduces indirect addressing resulting in latencies
that can be hard to hide.

Fenney [2003] uses a different approach, exploiting the fact that
an upscaled low-resolution version of an image is often similar to
the image itself. Fenney uses two such low-resolution images A
and B, both upscaled bilinearly two times, yielding only one color
sample each per 4× 4 block. Each pixel can then choose its color
from either image A, image B, or from two blend values between
A and B. Using 16 bits for each color and 2 bits per pixels for
choosing the blend value results in 64 bits per block or 4 bpp. A 2
bpp mode is also present.

Since our work is built on the PACKMAN [Ström and Akenine-
Möller 2004] and iPACKMAN algorithms, we will go through them
in more detail in the next section.

3 PACKMAN and iPACKMAN

The PACKMAN algorithm exploits the fact that the human visual
system is more sensitive to changes in luminance than in chromi-
nance. It takes the rather radical approach of only having a single
chrominance per 2×4 pixel block, represented as a RGB444 color
(12 bits). Each pixel can then modify the luminance of this base
color additively, as shown in Figure 2. More specifically, a mod-
ifier value is added to all three components (R, G and B) of the
base color. The modifier value is taken from a small table of four
entries, and hence two bits, called pixel indices are needed to se-
lect the value for each pixel. Finally, four bits are spent on a table
codeword, to select the small table from a list of 16 prefixed tables.
Altogether, 32 bits are used for 2×4 pixels, giving a rate of 4 bpp.

3.1 iPACKMAN

This algorithm has been improved under the name iPACKMAN
(also called Ericsson Texture Compression, ETC) in two ways
[Ström and Akenine-Möller 2005]. First and most important, a dif-
ferential mode is introduced, allowing two neighboring 2×4 blocks
to be coded together. The base color of the left block can then be
encoded using RGB555, i.e., with higher precision, and the right
base color also in RGB555 format, but coded using a differential
dRdGdB333, where dR, dG and dB can assume values between
−4 and +3. Thus, for pairs of blocks with similar base colors,
the chrominance resolution effectively goes up from RGB444 to
RGB555 in both blocks. Blocks that cannot be encoded well using

Figure 3: Left: Original. Right: Image compressed using
iPACKMAN. Note the blocky artifacts coming from that only one
hue is allowed per subblock (not visible in b/w reproduction).

the differential mode will be coded as before, i.e., with two indi-
vidually coded RGB444 colors. This mode is called the individual
mode.

The second improvement is that blocks can be flipped so that a
4×4 block consists of either two 2×4 block next to each other, or
two 4× 2 blocks on top of each other. Two mode bits are needed,
one to choose between individual and differential mode, and one
to indicate the flip status. Space for these two bits are created by
shrinking the number of possible tables from 16 to eight, thus re-
ducing the number of table bits in each sub-block from four to three.
Figure 8 shows the bit layout in the differential (top) and the indi-
vidual (bottom) modes.

These two small differences have a substantial effect on image
quality, which jumps 2.5 dB in terms of Peak Signal to Noise Ratio
(PSNR), suddenly putting iPACKMAN on par with S3TC. Visu-
ally, iPACKMAN lacks the disturbing banding artifacts that are a
result of the low chrominance resolution in PACKMAN. However,
iPACKMAN does not change the fact that only one chrominance
can be used for a block of eight pixels.

4 THUMB Texture Compression

In this section, we present our new THUMB texture compression
scheme. First we describe the design and motivate the different
design choices. Then follows descriptions for decompression and
compression of the stand-alone version of THUMB. The last sub-
section describes how THUMB can be combined with iPACKMAN
to get a better solution.

4.1 Basic Design and Motivation

Almost all fixed-rate block compression techniques have particu-
lar blocks that are coded worse than others. This is also the case
for iPACKMAN. The overall performance of iPACKMAN is very
good, but subblocks with more than one distinct hue are sometimes
coded with poor result as the pixel value can only be modified in
the direction (1,1,1) in RGB space. An image with typical prob-
lem blocks is shown in Figure 3. The image is cropped from a
larger image showing a road with a yellow line. Since the human
visual system is good at picking up block artifacts such as these, the
main goal of this paper is to be able to better handle such blocks.
However, we do not want to compromise quality in other blocks in
order to reach that goal, so our secondary goal is that overall quality
should stay the same or increase.

Our new scheme is called Two Hues Using Modified Brightness,
or THUMB for short. Just like iPACKMAN, it is based on 4× 4
blocks. In the stand-alone version, each block is coded with 64 bits.
As the name suggests, THUMB can handle up to two different hues
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in a block. To allow this, two independent base colors are used to
code each block. This is also the case for iPACKMAN where each
base color is restricted to a 2× 4 subblock. In THUMB however,
each base color can be used for any pixel in a block. The colors are
encoded in RGB554 format.

Modifying the brightness for each pixel has proved to be a good
solution for iPACKMAN. Therefore this approach has been used in
THUMB as well. The technique however is somewhat different. 32
bits are used as pixel indices, giving us two bits to code each one
of the 16 pixels in a block. Hence, we can have four different paint
colors.

R

B

R

B

d

d

d

d

Figure 4: Left: The colors of the original block can be located in
two different hues in RGB space. Right: Two base colors (marked
with squares) are selected. Four paint colors (marked with circles)
are derived by adding a distance d in direction (1,1,1) to form an
H-pattern.

These paint colors can be chosen in several ways since we are
using two independent base colors per block. THUMB defines two
different patterns of how to retrieve the four paint colors. In the first
pattern, these paint colors are derived using a distance d added in
direction (1,1,1) from the base colors. This pattern is called the H-
pattern, since the paint colors and the base colors can be placed as
an H in RGB space. The H-pattern is illustrated in Figure 4, where a
cross section of the RGB space is shown. Note that, just as in S3TC,
the colors are approximated with line segments. Whereas S3TC can
choose any orientation of the line segment (see Figure 1), the line
segments in THUMB must be oriented parallel with the intensity
direction (1,1,1). On the other hand, THUMB can use two line
segments whereas S3TC can use only one.

Sometimes the colors of the original block are clustered more
around one base color than the other. A different pattern might then
be a better match. In the second pattern, the first two paint colors
are the base colors themselves. To get the other two paint colors,
the distance d is added to the first base color in direction (1,1,1). In
this way, three paint colors with the same hue can be represented in
a block. The fourth paint color is then chosen independently from
the first three. This pattern is called the T-pattern, since the paint
colors can be placed to form a T in RGB space as illustrated in Fig-
ure 5. A pattern bit is used to resolve which one of the two patterns
to use when generating the paint colors. The patterns are approx-
imately equally common. The distance d is coded using three bits
in the stand-alone version. As a total we will have eight possible
distance values to choose from for each block. The distances are
taken from a hardware lookup table. This table was created using
a combination of different optimizing techniques for a test suite of
twenty images. The optimized table is shown in Table 1. We have
tried approximating the tables using shifts as well, and even though
it only gives a small performance loss, it is not clear that we actually
would gain much in terms of HW complexity.

R

B

R

B

d

d

Figure 5: Left: An uneven distribution of the original block colors.
Right: The T-pattern. Both base colors are used as paint colors. The
distance d is added in direction (1,1,1) to get the other two.

table index 0 1 2 3 4 5 6 7
distance 3 6 11 16 23 32 41 64

Table 1: Hardware lookup table with optimized distances.
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Figure 6: Hardware diagram for a possible THUMB decoder. The
bit layout can be seen to the left. The expanded color components
have been combined to RGB-colors to make the diagram more read-
able.

4.2 Decompression

Figure 6 shows a possible implementation of how to decode a pixel
in THUMB. At most, the values of twenty bits are needed to retrieve
a pixel. The two bits from the pixel indices are used to determine
which one of the paint colors to decode. Below is a description of
how each paint color is derived:

1. To retrieve the first paint color, the first base color must be
read. Each component is expanded to eight bits to form a 24-
bit RGB-color. The distance is read from the lookup table,
and added to each component of the base color. The color
components are then clamped to the interval [0,255], resulting
in the first paint color.

2. The second paint color is decoded in a similar way as the first
one. The only difference is that the distance is negated before
it is added to the components of the base color.

3. Decoding the third paint color is a bit trickier than the first two
ones. Depending on the value of the pattern bit, two different
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paint colors can be acquired. If the pattern bit is zero, the first
base color is expanded and used as the paint color without
adding a distance. If the pattern bit is set, the second base
color is expanded and the distance is added to get the third
paint color.

4. The pattern bit is also needed to determine the fourth paint
color. If the pattern bit is zero, the second base color is ex-
panded and used as paint color. If the pattern bit is set, the
negated distance is added to all components of the expanded
second base color to get the fourth paint color.

4.3 Compression

The problem of compression is to find the best possible pair of base
colors. Exhaustive search is not yet feasible due to the number of
combinations that must be tested. Iterating over all possible base
colors (228), patterns (2), distances (23) and paint colors (4) means
that up to 234 different combinations would have to be tried for each
pixel. Therefore, three non-exhaustive compression methods have
been developed.

LBG Compression. The LBG vector quantization algorithm
[Linde et al. 1980] is used to find the two base colors. Since
we only have two reconstruction values (the base colors), the
algorithm converges quite fast. Starting with two random base
colors, only ten iterations are needed to get a satisfying result.
After the base colors are found, all possible patterns, distances
and paint colors are tried. The parameter combination giving
the lowest Mean Square Error (MSE) is chosen for the block.
Encoding a 512×512 texture takes less than five seconds us-
ing a 800 MHz PC with 256 MB of RAM.

Radius Compression. This method is much slower than LBG
compression, but will also give a better result. Initially, two
base colors are found using the LBG-algorithm as above.
Then for each quantized base color, all possible colors within
a (2k+1)×(2k+1)×(2k+1) cube centered around the base
color are tried. Loosely speaking, k can be called the radius
of the cube, hence the name. The encoding time increases
very quickly with respect to k, while the gain in image qual-
ity is decreasing: Since there are two colors per block, and
they cannot be tested independently, radius compression is
(2k + 1)6 times slower than LBG compression. For instance,
radius compression with k = 1 is 729 times slower than LBG
compression, k = 2 is 15625 times slower and so on. In prac-
tice, the extra encoding time for a radius level over two will
not justify the small gain in quality. The gain in image qual-
ity using the first level of radius is on average around 1 dB
in terms of Peak Signal to Noise Ratio (PSNR), compared to
LBG compression.

Selective Compression. This solution exploits the fact that all sur-
rounding colors in radius compression are not equally proba-
ble. Empirical studies show that for almost all blocks where
the first radius level is used, it is sufficient to try only the col-
ors shown in figure 7. This means that only nine different col-
ors need to be tested for each base color instead of 27. Thus,
the encoding time is decreased a factor nine, compared to ra-
dius compression. The loss in image quality however, is only
about 0.05 dB.

4.4 Combining THUMB and iPACKMAN

Blocks containing two distinct hues are coded very well with
THUMB. However, the overall performance is in general slightly
worse than for iPACKMAN. This is mainly because iPACKMAN

Figure 7: All colors tried in radius search are not equally common.
In selective compression, only the most frequent colors from radius
compression are tested. The figure shows the constellation of these
colors for the first level of radius.
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Figure 8: Modes in original iPACKMAN. Top: Differential mode.
Bottom: Individual mode.
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Figure 9: Modes in the combined iPACKMAN and THUMB coder.
Note how the individual mode in iPACKMAN has been exchanged
with a 63-bit THUMB mode.

has the possibility to have eight different paint colors per 4× 4
block, as the blocks are divided into two subblocks.

Since iPACKMAN and THUMB are good at different types of
blocks, it makes sense to combine the two. Each block is encoded
using both iPACKMAN and THUMB separately. The one giving
the lowest MSE will be used to represent the block. In order to fit
both iPACKMAN and THUMB into 64 bits, both algorithms need
to be represented using fewer bits.

How to do this is not obvious—the design space is truly huge—
and we have only been able to cover a small number of the pos-
sible constellations. However, the solution that has given the best
result among the ones we have tried is also the one that we think
is the most straight-forward: The individual mode in iPACKMAN
is replaced with a 63-bit THUMB mode, as can be seen in Fig-
ures 8 and 9. This has a number of advantages: Firstly, all decod-
ing hardware for the individual mode in iPACKMAN can be re-
moved and replaced by the THUMB mode. Also, when encoding,
only two modes (differential, THUMB) need to be tested, just as in
iPACKMAN (differential, individual). It is also likely that blocks
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Kodak img 1 Kodak img 2 Kodak img 3 Kodak img 4 Kodak img 5 Lena Lorikeet Avg gain
PVR-TC 33.8 [8.98] 37.1 [6.20] 37.9 [5.61] 37.7 [5.76] 32.4[10.59] 35.9 [7.11] 34.8 [8.08] +0.85 dB
S3TC 34.78 36.86 38.53 37.96 32.80 35.97 34.37 +0.61 dB
iPACKMAN 36.29 38.09 38.62 38.59 34.12 35.17 33.25 +0.21 dB
Stand-alone THUMB 34.80 36.86 37.88 37.34 32.97 35.31 33.69 +0.96 dB
Combined Solution 36.26 38.12 38.92 38.66 34.08 35.66 33.88 —

Table 2: The PSNR is reported from a test suite of images for PVR-TC, S3TC, iPACKMAN, stand-alone THUMB and the combination of
THUMB and iPACKMAN. The rightmost column shows the average gain when comparing the combined system to the other schemes.

that are coded using the individual mode in iPACKMAN will be
well represented with THUMB, since two very different base col-
ors are easily representable in THUMB.

Combining iPACKMAN with THUMB in this way means that
THUMB must operate at 63 bits, since the diff bit occupies one
bit. This is solved by using two instead of three bits for the
distance table. The new optimized table contains the distances
{ 6 13 24 43 }.

5 Results

In this section we compare the image quality of different texture
compression schemes. Our new schemes THUMB and the com-
bined solution are compared to iPACKMAN, S3TC and PVR-TC.

To maximize image quality, the slowest compression mode of
iPACKMAN has been used.

THUMB is encoded with radius compression using the second
level of radius. This is also the case for the THUMB-mode in the
combined solution.

S3TC is encoded using the Compressonator software package
from ATI. The DirectX mode was used in this comparison, setting
the weights to (1,1,1) for the lowest error score.

There is no publicly available codec for PVR-TC, so the results
are taken from Fenneys publication.

The results of PVR-TC was presented in root mean squared error
(RMSE): √

1
w×h ∑

x,y
(∆R2

xy +∆G2
xy +∆B2

xy)

where w and h are the width and the height of the image, and ∆Rxy,
∆Gxy and ∆Bxy are the pixel differences in pixel (x,y) between the
original and the decompressed image in the red, green and blue
component respectively. We have chosen to present our results in
Peak Signal to Noise Ratio (PSNR) instead:

PSNR = 10log10

(
3×2552

RMSE2

)
, (1)

where the scale factor 3 in the numerator is due to the fact that
3×2552 is the peak energy in a pixel.

To be able to compare the results with PVR-TC, the same seven
images used for the testing of PVR-TC have been used here. Just
as in Fenney’s study, these have been cropped to 512×512 pixels.

The results of the comparison between the different schemes are
found in Table 2. It can be seen that the combined solution outper-
forms both S3TC and PVR-TC with over 0.5 dB. Using THUMB
separately is almost one dB worse than using the combined solu-
tion. The same number for iPACKMAN is only 0.21 dB. Gener-
ally in image coding, a difference below 0.25 dB is hard to notice.
However, the main goal of this paper was not to increase overall
quality, but to handle the particular blocks that are most problem-
atic for iPACKMAN, and this objective has been met. Examples
can be seen in Figure 10. The secondary goal, that overall quality
on average should stay the same or increase, has also been reached.

It must be said that seven images are not enough to make a good
statistical analysis of the results. A larger test suite with images

intended for texture mapping would be desirable. What can be said
however, is that THUMB solves some of the worst problem blocks
for iPACKMAN.

6 Conclusion

We have presented a new texture compression algorithm, THUMB,
that can be used as a stand-alone system or in combination with
iPACKMAN. If combined, THUMB can improve some of the worst
blocks in iPACKMAN, and at the same time raise overall quality
some. Still, some blocks, such as gradients between two colors il-
lustrated by the explosion in Figure 10, are better handled by S3TC
than with the proposed combination. This opens up for future work,
and perhaps new modes.
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Original S3TC iPACKMAN Stand-alone THUMB Combined Solution

Figure 10: In this figure three examples of typical problem blocks are illustrated. Top: In this example, which shows a road, the main
problem of iPACKMAN can be seen. Subblocks containing two distinct hues are coded poorly. Middle: Here is an example of the strength
of iPACKMAN. Small transitions in luminance are coded well as can be seen around the eye and on the cheek. THUMB and S3TC have
a more blocky appearance. A large image artifact can also be seen in the ear for S3TC. Since the combined solution inherits the strength
of iPACKMAN, these blocks are coded well. Bottom: This last example is a cut-out of an explosion. Here S3TC performs the best thanks
to its linear interpolation between the base colors. As the blocks contain more than one hue, the result tends to be blocky for iPACKMAN.
THUMB encodes the image a little bit better even though some edges can be seen.
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Abstract

Adapting games to the miniature screens and limited process-
ing power of mobile phones is quite a challenge. To accom-
modate these technical limitations, mobile games are often two-
dimensional (2D), tile-based, and seen from above. Such games
rarely present much creativity with respect to dynamic lighting.
Textures are merely plastered onto the tiles. A recent game release
has, however, shown that effects such as dynamic light sources can
spice up a mobile game of this type quite a bit. In this paper we
carry the idea of dynamic lighting effects for tile-based 2D games
even further. In particular, we present simple and efficient tech-
niques for shadows and fluctuating fog which can greatly improve
the gamer’s visual experience.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Color, shading, shad-
owing, and texture

Keywords: lighting effects, mobile games, shadows, fog synthe-
sis, real-time.

1 Introduction

Mobile games rarely feature dynamic lighting effects. An obvious
reason is the limited processing power available. Another reason
is the different gaming experience that one encounter when playing
a game on the small screen of a mobile phone. Since the gaming
experience is different, the gameplay designed for a mobile game
should be adapted accordingly, see [Nok 2003].

On a small screen the player quickly looses track of game charac-
ters and objects. A solution is to make games in a style where every-
thing is seen from above. This ensures the best possible overview.
It, therefore, seems reasonable to assume that two-dimensional,
tile-based games viewed from above always will be relevant on the
miniature screens of mobile phones. For that reason, we propose
some simple methods enabling dynamic lighting effects in games
of this type.

Quite recently the mobile game Darkest FearTM from Rovio Mo-
bile was shipped as the first mobile game marketing itself on its
ability to incorporate dynamic lighting effects in its gameplay, see
[Rov 2005]. And it received an Airgamer Award from Germany’s
leading mobile game reviewer with the review punch line: “Inno-
vative and exciting!” [Biedermann 2005]. This strongly indicates
that lighting effects are worth the effort in this category of games.

∗e-mail: jrf@imm.dtu.dk
†e-mail: njc@imm.dtu.dk
‡e-mail: pfa@imm.dtu.dk

Figure 1: The gamelike scenario we will be working with.

Figure 2: Examples of the lighting effects we will describe efficient
methods for in this paper.

Darkest Fear has lighting effects such as movable light sources
providing an attenuating illumination of the surroundings. More-
over several light sources are turned on and off dynamically. The
shadows of the dynamic characters are merely blobs, which are a
part of the sprites1 associated with a character.

In this paper we suggest a simple technique to do dynamic shad-
ows in tile-based games. Moreover we give a simple technique to
create fluctuating fog in such games.

Figure 1 presents the central part of a sample frame from the
gamelike scenario we will be working with in this paper. This tile-
based demo scenario is compiled for a Windows PC platform, but
could as well have been compiled for a mobile phone platform if
we had had the necessary development tools at our disposal. The
scenery is viewed from above, as we argued is often sensible in
mobile games. In Figure 1 no lighting effects have been applied.
Compare this example to the images in Figure 2, where the sample
frame has been spiced up with the inexpensive lighting effects to
be described in the following sections. Hopefully the reader agrees
that such effects make the scene more interesting.

The lighting effects we present have, clearly, been done before
in games for PCs and consoles. Here the environment is, how-
ever, most often three-dimensional which means that the employed
shadow and fog algorithms are slightly different from the ones we
describe. The types of 2D games which have a third dimension that
is always projected on the same plane, give us an option for inex-

1A sprite is basically a rectangular pixel map.
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Figure 3: Six sprites for animation of the character in our gamelike
environment. The character is a Robin Hood-like person wearing a
hat and having a bow over his back pack. He is seen directly from
above.

pensive calculation of 3D lighting effects. In the following we will
describe how this is done.

2 Lighting Effects

Jim Blinn is one of the pioneers who introduced several lighting ef-
fects for three-dimensional environments in the seventies and eight-
ies. Some of his ideas were planar projection shadows, see [Blinn
1988], and rendering of cloud cover, see [Blinn 1982]. Inspired by
these ideas, we describe, in the following, how shadows and fog (or
cloud cover) effects can be incorporated in two-dimensional games.

The general question to be answered in the following, is how
to create a third dimension in an otherwise two-dimensional gam-
ing environment. And, after this information has been provided,
how can we construct lighting methods that are not processing in-
tensive. To provide answers, we must take advantage of the two-
dimensional nature of the environment.

2.1 Planar Projection Shadows

Consider the sprites for the character of our game, see Figure 3.
The sprites have a resolution of 32 × 32. To find shadows cast by
this character, we must provide some height information.

To keep memory costs low, we decided to make two height
curves. One along each axis in the character sprites, see Figure
4. Let ` denote the number of pixels a height curve covers. In our
case ` = 32. A pair of curves could be constructed for each charac-
ter sprite, but if the difference between the sprites is subtle, there is
no need to have more than a single pair of curves for each character.

The curves are positioned above the character and the curve
along the axis making the largest angle with the direction towards
the light source, is used for calculation of the shadow. Figure 5
illustrates how the shadow outline is found and can be referred to
throughout the remainder of this section.

Each light source in the game should have a 3D position:

L = (xL, yL, hL) ,

where hL is the height of the light source above the xy-plane where
everything is rendered.

Suppose we let C = (xC , yC) denote the position where the
center of the sprite will be drawn next. The 2D direction dL towards
a light source is then given as:

dL = (xd, yd) = (xL, yL)− C .

To decide which curve we want to use for the shadow (a or b in
Fig. 4), we can calculate:

cosφ1 =
dL · ex

‖dL‖
=

xd
√

x2
d

+ y2
d

, (1)

where ex = (1, 0) is the direction of the x-axis.
When φ1 ∈ [π

4
, 3π

4
] or φ1 ∈ [ 5π

4
, 7π

4
] we want to use curve (a)

otherwise curve (b). This corresponds to saying that when cosφ1 ∈

[−
√

2

2
,
√

2

2
] we use curve (a) otherwise curve (b). Note that there
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Figure 4: An illustration of the height curves for our character.
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Figure 5: A sketch illustrating how the shadow outline is found.
Here curve (b) is the chosen curve, since it has the largest angle
with the direction towards the light source.
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is no need to find the angle φ1 itself as long as the sprites are not
being rotated.

It is, however, desirable to rotate the sprites, since then we only
need to store them facing a single direction. In our game, an angle
φ0 ∈ [0, 2π] specifies how much the character sprite has been ro-
tated around its center2. This complicates the matter a bit. To find
out which curve to use in this case, we calculate

φ = φ0 − sign(yd) cos−1

(

xd
√

x2
d

+ y2
d

)

, (2)

and again, if φ ∈ [π
4
, 3π

4
] or φ ∈ [ 5π

4
, 7π

4
], we use curve (a) other-

wise curve (b).
Note, in (2), that cosφ1 does not supply us with sufficient infor-

mation to determine φ1. We need to consider the sign of yd to get
φ1 ∈ [0, 2π]. It is also important to realize that φ1 should be sub-
tracted from φ0. This follows since φ is the angle between the local
x-axis of the sprite and the direction towards the light source. The
local x-axis has been rotated to have the angle φ0 with the global x-
axis and φ1 is the angle between the global x-axis and the direction
towards the light source, hence, φ = φ0 − φ1.

Depending on whether the character sprites are being rotated in
the game or not, either (2) or (1) determines which curve to be used
for the projection of the shadow. Each curve should have a direction
vector and an origin. The direction of curve (a) is da = (wT /`, 0)
and the direction of curve (b) is db = (0, hT /`), where wT and hT
are, respectively, the width and height of a tile in world coordinate
units3. The needed origin, either Pa or Pb, is found according to
the current position of the sprite.

Let d and P denote the direction and origin, respectively, of the
chosen curve. If the sprite has been rotated, d and P should be
rotated accordingly. Each height value on the chosen curve now
has a corresponding position:

(x0,i, y0,i) = P + id , i = 0, . . . , `− 1 .

Combining the (x0,i, y0,i)-position with the height value h0,i

stored for each position on the curve (see again Fig. 4) gives 3D
points P0,i ∈ R

3 , i = 0, . . . , ` − 1, along the curve. When those
have been established, the direction di from the light source to Pi

is found as
di = P0,i − L

and intersection with the xy-plane can be calculated. This is a
simple calculation, since we are in possession of the parametric
equation of the line with origin at the position of the light source,
L, and direction di through the point on the curve P0,i:

(xi, yi, hi) = L+ ti di . (3)

When hi = 0, the line intersects the xy-plane. Hence, we
quickly discover that

0 = hL + ti(h0,i − hL) ⇔ ti =
hL

hL − h0,i
(4)

finds the value of ti which, inserted in (3), gives the projection of
the ith point on the height curve to the xy-plane in the direction
away from the light source. In other words, the points

(xi, yi) = (xL, yL) +
hL

hL − h0,i
(x0,i − xL, y0,i − yL) (5)

and (x0,i, y0,i) with i = 0, . . . , ` − 1, defines the outline of the
shadow in the xy-plane (see again Fig. 5).

2In fact we use integers and degrees (from 0
◦ to 359

◦) for the angles not
radians, but that is not essential for the description of the concept.

3It is sensible and, of course, convenient to let wT = hT = 1.

Figure 6: Shadows resulting when the described technique is em-
ployed in our case study. In the first three rows the shadow has been
rendered with alpha values interpolated over a single triangle strip.
For comparison the last row has been rendered using two triangle
strips: One representing the umbra region and one representing the
penumbra region. The first with constant alpha value, the second
with interpolated alpha values. While the difference is subtle, the
advantage of the second approach is that we can control the size of
the penumbra region.

Having the shadow outline, the shadow can be visual-
ized in many different ways. With a slight abuse of nota-
tion let P0,i = (x0,i, y0,i), and let Pi = (xi, yi). We
simply draw the shadow as a triangle strip using the points
P0,i, Pi, P0,i+1, Pi+1, . . . , P0,`−1, P`−1. To give a touch of soft-
ness to the shadows, we make the points Pi quite transparent
(α = 0.1) while the points P0,i are left opaque (α = 1). Stan-
dard linear interpolation of the alpha values between the vertices of
each triangle (Gouraud shading, see [Gouraud 1971]) is performed4

when the triangle strip is rendered. Examples from our case study
of the resulting shadows are given in Figure 6.

Linear interpolation of the alpha values is physically incorrect,
but seems visually more pleasing than a hard shadow. If distin-
guishable umbra and penumbra regions are desired, it is necessary
to render the shadow as two triangle strips. First we project the
height curve to a plane which is moved a constant c closer to the
light source. The constant determines the size of the penumbra re-
gions and the shadow outline found at the plane moved closer to
the light source will describe the umbra region (the idea to move

4In OpenGL and OpenGL ES, Gouraud shading happens automatically
when the smooth shading model has been chosen.
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the intersection plane closer to the light source was proposed by
Gootch et al. [1999] for rendering of planar soft shadows in 3D en-
vironments). The projected points Pu,i = (xu,i, yu,i) are found
using (3) with tu,i = ti − c when ti − c ≥ 1 otherwise tu,i = 1.
Now the points P0,i, Pu,i, . . . , P0,`−1, Pu,`−1 can be used to draw
the triangle strip for the umbra region with a constant alpha value,
eg. α = 0.75.

The second strip is drawn using the points
Pu,i, Pi, . . . , Pu,`−1, P`−1, where the points Pi are the ones
found in (5). The points Pu,i should be rendered with the same
alpha value as before, but the points Pi should be rendered with
α = 0. A few examples of the shadows resulting from this two
strip method are given in Figure 6 for comparison with the method
using one strip.

2.2 Fluctuating Fog

The second lighting effect that we would like to describe a simple
rendering technique for, is fog and similar semi-transparent phe-
nomena. One way to do fog is simply to have a texture with varying
shades and transparencies (alpha values). The texture is then spread
over the tiles that should be foggy. This is, however, expensive with
respect to memory storage and the result is a static fog which does
not give much feeling of realism.

Instead we suggest that a height field composed of a 16 × 16,
10×10, or an even smaller grid of height values should be sufficient
to generate an interesting fluctuating fog.

Suppose the fog is to be spread across a rectangular area in the
game specified by three 2D points: Q0, Qtop, andQright. Let `x and
`y denote the resolution of the height field grid. Then the vectors
used to step through the height field are

vx =
Qright −Q0

`x
and vy =

Qtop −Q0

`y
.

The 2D position of each vertex in the height field is then found
as

(xij , yij) = Q0 + ivy + j vx ,

where i = 0, . . . , `y − 1 and j = 0 . . . , `x − 1. This is combined
with the values hij available in the height field to obtain the 3D
positions Qij = (xij , yij , hij).

To have our fog change appearance depending on the viewpoint
of the player (that is, to create fluctuations), we need normal in-
formation as well as positions. For each vertex in the height field
we can calculate two basis vectors b1,ij and b2,ij using one neigh-
boring point in the x direction and one neighboring point in the y
direction. Normalized cross products of the two basis vectors at
each vertex then provides the normals:

nij =
b1,ij × b2,ij

‖b1,ij × b2,ij‖
.

Depending on the processing power available versus the mem-
ory available, normals or positions could be stored in memory or
recalculated as one thinks fit. If the fog is supposed to move around
in the game, the positions must, of course, be recalculated, but the
normals could still be kept static. Normals should be recalculated
if the height values change.

To render the fog, the position of the eye V must be available. In
our game, the eye is positioned directly above the controlled char-
acter which is always centered. Centering the character controlled
by the player is one of the good advises in [Nok 2003]. This gives
the player a better chance to follow the game on a small screen.

The angle θij between the direction towards the viewpoint, V ,
and the normal, nij , at each vertex is now used to attenuate the light

transmitted directly through the fog. The formula calculating atten-
uation of directly transmitted light is well known, see eg. [Chan-
drasekhar 1960]. Assuming that the fog medium has a constant
extinction coefficient σt throughout, and that the fog goes all the
way to the xy-plane, the attenuation computation is given as

αij = e−τij/| cos θij | , (6)

where τij = σthij is the optical depth of the fog below the ver-
tex. We do not have to worry too much about the exact meaning of
the extinction coefficient in this context. It suffices to think of σt
merely as a scale: When it increases the fog becomes more dense.
To calculate cos θij we have

cos θij =
V −Qij

‖V −Qij‖
· nij . (7)

Left to find is a shade for the fog at each vertex. In our opinion
the height values scaled such that they live in [0, 1] gives acceptable
grey shades for a fog in dark surroundings.

The fog is now ready to be rendered on top of the tiles it was
spread across. To do the blending of the fog with the scenery below
it, we call the grey shade, found for each fragment as an interpo-
lation of the scaled height values, the source and denote it Lsrc.
The destinations are the existing colors Ldst of the fragments. The
blending should be done such that

Lblend = Lsrc + αsrcLdst .

Some resulting images from our case study are presented in Fig-
ure 7. If we want a white fog, corresponding to a cloud cover lit
from above by the sun, we do not use grey shades, but set all color
values (except the alpha value, of course) to 1 and use the following
function for blending:

Lblend = (1− αsrc)Lsrc + αsrcLdst .

An example of the result is shown in Figure 2.

3 Dealing with Mobile Phone Limitations

Battery life is a main concern on all mobile devices. Floating point
processors consume more power than integer processors, therefore
most mobile devices (even high-end devices) have no floating point
processor [Astle and Durnil 2004, Chap. 6]. Instead floating point
calculations are simulated in software and that is too slow for game
programming. How can we implement the lighting effects de-
scribed in the previous section with no floating point operations?
The answer is to employ fixed point arithmetics. Michael Street
[2004] gives an excellent primer to fixed point arithmetics describ-
ing efficient implementations of all the basic math operations in-
cluding square roots, vector normalization, and trigonometric func-
tions (code is included).

The trigonometric functions are not really used in the calcula-
tions for our lighting effects, since cosine of an angle is found using
the dot product between two vectors as shown in (1) and (7). If a
game uses rotation of sprites as we do in our demo, it is necessary to
evaluate (2) where an arcus cosine (cos−1) is employed. Moreover
evaluation of the exponential function (e) is needed for calculation
of fog transparency in (6). We recommend that look-up tables are
used for fixed point evaluation of these two functions.

While it is straight forward to construct a look-up table for arcus
cosine, since cos−1(x) only takes values x ∈ [−1, 1] as argument,
it is not immediately obvious how to construct a look-up table for
the exponential function. In our implementation we chose a look-
up table with twenty entries for evaluation of e−x when x ∈ [0, 1),
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Figure 7: A few screen shots to illustrate that the fog changes ap-
pearance as the eye point moves around above it. The eye point is
always placed directly above the character.

we have ten entries for x ∈ [1, 2), and five entries for x ∈ [2, 3). If
x ∈ [3, 10), the function is approximated by a straight line:

f(x) =
e−3

7
(10− x) .

Finally, when x ∈ [10,+∞), the return value is set to zero.
To make sure that our demo can potentially run on a mobile de-

vice, we have made an implementation using the PowerVR MBX
OpenGL ES 1.1 SDK for desktop PCs5. PowerVR even supply a
look-up table for fixed point evaluation of arcus cosine as a part of
their OpenGL ES Tools library.

Both the shadow and fog described in the previous section can
and should be drawn using triangle strips. This is efficient and suit-
able for both OpenGL ES and the J2ME 3D graphics API.

5The SDK is available at http://www.pvrdev.com/Pub/MBX/OGLES/.

no shadow one strip two strips
w/o. fog 50.5 47.8 47.5
w. fog 30.1 29.0 28.9

Table 1: Frame rates (frames/sec) measured on an old laptop with
or without fog and with no shadow, shadow drawn using a single
triangle strip, or shadow drawn using two triangle strips. Please
note the differences between the frame rates rather than the frame
rates themselves.

4 Results and Discussion

While there, as indicated in the previous section, are many imple-
mentation constraints when games are written for mobile phones,
see also [Coulton et al. 2005], processing power is rarely an issue.
The reason is that smaller screen size means “fewer pixels to push
with each buffer flip” [Nok 2003]. Nokia also argues that the 104
MHz speed of the average mobile phone should be sufficient to sup-
port real-time rendered 3D graphics to a limited extent. This makes
us confident that at least the shadows we have described are very
well suited for mobile games. The fog may be slightly over the top.
On the other hand, we only need to recalculate the terms in the part
of the fog which is visible.

To give a feeling of the performance hit entailed by the described
methods, we have simulated our case study on a 400 MHz Pentium3
laptop. The simulations were run in a 250 × 250 resolution and
with a fog grid of 16 × 16 vertices. What is important is not the
frame rates themselves, but rather the difference between them. The
program could run much faster in a lower screen resolution and with
textures of a lower resolution, but then it would be difficult to tell
the difference in performance between eg. shadow and no shadow
since frame rates become quite unstable when they are high. The
frame rates from our experiments on the laptop are given in Table
1.

The performance hit of the fog is seemingly a little high. The
calculations described in the previous section are, however, not the
expensive part of the fog rendering. They reduce the frame rate
only by a frame or two. The expensive part is the Gouraud interpo-
lation of colors and alpha values across the triangles that are drawn.
Hence the larger the number of pixels which are covered by fog, the
larger the performance hit. The white fog shown in Figure 2 is, in
fact, less expensive to render than the fog with grey shades, since in
the second case, the color values have to be interpolated as well as
the alpha values. With the emergence of mobile GPUs (see some of
the possibilities they entail in [Macedonia 2004]) which all have a
hardware implementation of the Gouraud shading, the fog synthesis
we describe should become very feasible for mobile games.

Considering the images in Figure 6 more closely, we will dis-
cover that the described shadows have some limitations. While the
shadow outline is projected correctly onto the xy-plane, the method
does not account for eg. the gap between the legs of the character.
The gap is not captured by the shadow outline we can construct us-
ing a single height curve. To render such details, additional height
curves (below the existing ones) would have to be incorporated.

Another problem is that the shadows are always projected onto
the xy-plane. Suppose there is a wall next to the character, then
the shadow will end up on top of the wall. This is definitely not
desirable. A simple way to work around the problem is to draw the
walls (and rooms on the opposite side of the wall) after the shadow
has been rendered. This trick does not really fix the problem, the
shadow may still appear on the opposite site of a closet or some
other object close to the character. But then, on the other hand, the
shadow caused by the object close to the character would usually
cast a shadow itself on top of the shadow from the character. Hence,
the problem is not fatal.

Throughout the main part of this paper we have referred to tile-
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based games viewed from above as the type of games where the
described methods can be employed. There is, however, nothing to
prevent us from using the same methods in games which are not
tile-based or games which are not viewed directly from above. As
long as the objects are all rendered as sprites moving on the same
plane, the described shadow and fog techniques are applicable. It
so happens that tile-based games usually belong to the category of
games for which our techniques are useful. Therefore we describe
our methods as rendering methods suitable for tile-based games.

5 Conclusion

An efficient method for rendering of projection shadows in tile-
based 2D games has been presented in this paper. Shadows are
found through construction of two height curves above each sprite
describing a dynamic object or character in a game. The calcula-
tions needed for our shadows are sufficiently simple to allow for
implementation on mobile phones. The shadows are not exactly
physically correct, but they are a great improvement as compared
to no shadows or simple blobs beneath the characters.

Additionally we describe a method for creation of fluctuating
fog. The fog is described by a height field placed above a plane and
fluctuates as the eye point moves around in the scene. The changing
transparency of the fog is calculated according to physical consid-
erations in the theory of radiative transfer. The shade of the fog is,
however, simplified to limit the performance hit of the fog render-
ing. The OpenGL ES software simulation of Gouraud interpolation
across the triangles visualizing the fog has shown to be the limit-
ing factor with respect to processing power. With the emergence of
mobile GPUs, this problem will disappear. In our opinion, the fog
resulting from the rendering method we describe, is quite convinc-
ing. In particular we find that the fluctuations are an important part
of the conviction. If the fog is rendered as a static semi-transparent
layer, the gamer will hardly get any feeling of visual realism.

In light of recent development in and attention to the mobile
gaming market6, we believe that the time is right for incorporation
of more lighting effects in mobile games. Hopefully this paper will
help the gaming companies getting started on projection shadows
and fluctuating fog.
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Abstract1

Augmented Chemistry (AC) is an application that utilizes a 
tangible user interface (TUI) for organic chemistry education. 
Based on the outcome of an extensive evaluation, we are in the 
process of extending the AC system5. Firstly, for enhanced 
interaction, keyboard-free system configuration, and internal/ 
external database (DB) access, a graphic user interface (GUI) has 
been incorporated into the TUI. Three-dimensional (3D) 
rendering has also been improved using shadows and related 
effects, thereby enhancing depth perception. Secondly, AC has 
been ported to different operating systems and is now compatible 
with Linux-, Windows-, and Mac OS X based platforms. This 
enables the use of a wider range of hardware: USB and Firewire 
(IEEE1394) cameras are now supported. Finally, system capacity 
to import and visualize molecules from an extensive XML-based 
DB has been realized. This gives users the ability to download 
and interact with any molecule up to a certain complexity.  

Keywords 
Augmented Reality, Tangible User Interface, Education, Organic 
Chemistry, Octet Rule, GUI, TUI 

CCS 
Input devices; Three-dimensional displays; Display algorithms; 
Viewing algorithms; Virtual device interfaces; Curve, surface, 
solid, and object representations; Color, shading, shadowing, and 
texture; Virtual reality 

1. Introduction  

Augmented Chemistry (AC) was developed at HyperWerk 
FHBB6 [Voegtli, 2002; Fjeld and Voegtli, 2002]. It was extended 
with additional functionality and evaluated in a joint project 
which involved ETH7, HyperWerk FHBB, and the aprentas8 
school of chemistry [Fjeld et al., 2004]. As part of the project, an 
empirical evaluation of AC was conducted by Bötschi [Bötschi, 
2005], who studied how AC compares to the traditional ball-and-
stick method of learning organic chemistry. Subjective 
preferences of the two alternative systems was one of the many 
variables measured (Fig. 1). On the basis of the first version and 
Bötschi’s findings, we have further extended the AC system 

                                                                 
1 {vilgon, cri, erkkonen, jonafred, traco, tronic, osterber} 
 @dtek.chalmers.se 
2 kristina@gehring.biz  
3 b.voegtli@hyperwerk.ch  
4 morten@fjeld.ch 
5 Video: http://www.t2i.se/pub/video/AC_SIGRAD2005.avi
6 HyperWerk FHBB: http://www.hyperwerk.ch/  
7 Eidgenössische Technische Hochschule Zürich: http://www.ethz.ch/  
8 aprentas: http://www.aprentas.com/  

addressing three objectives:  
 

• improved visualization 
• extended portability  
• ability to import from public chemistry DBs  

All three objectives called for further implementation in the AC 
system. Aiming for improved comfort of use, ease of use, and 
ease of learning the system [Bötschi, 2005] (Fig. 1), we 
established a set of goals and informal requirements. Following 
these, visualization has been significantly improved utilizing 
shadows and luster to facilitate user comprehension of complex 
3D models and information. (See the included video 
documentation5). Secondly, to increase the potential software and 
hardware compatibility, portability was extended. The new import 
functionality from public chemistry DBs offers users an expanded 
library of molecules for viewing and manipulation. Finally, for 
enhanced interaction, keyboard-free system configuration, and 
internal/external DB access, a GUI was incorporated into the TUI.  

 

 
Figure 1: Test subjects’ mean preferences for AC (bottom), 

ball-and-stick (middle), or undecided (top). AC ranked 
higher in enjoyability, visualization, content availability, 

future use, and effectiveness of learning. AC ranked lower 
in comfort of use, user support, ease of use, and ease of 

learning the system [Bötschi, 2005].  

2. Tangible user interface (TUI) 

AC uses a TUI enabling its user to compose and directly interact 
with 3D molecular models. The system was designed to assist in 
teaching abstract organic chemistry concepts such as molecular 
forms, the octet rule, and bonding. Following the conventional 
implementation of the AR Toolkit [Kato et al., 2000], physical 
tools carry one or more fiducial markers, connecting each tool to 
an animated 3D model so that both the tool and the model can be 
seen in a composite image. 
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The system consists of the booklet, the gripper9, the cube, the 
platform, a camera, and software. The booklet contains one 
element per page, each with its name and relevant information 
(Fig. 2). By using the gripper, users can pick up elements from 
the booklet and add them to the molecule in construction on the 
platform (Figs. 3, 4). 

          

 
Figure 2: The booklet, the gripper, the cube, and the 

function cards (clockwise from top left). 
 

 
Figure 3: The AC system in use: The booklet, 

the gripper, the cube and the platform (left to right). 

By rotating the cube, the user rotates the molecule, which 
determines how and where the new element shall bond. The 
function cards represent specialized functions which are activated 
when drawn onto the platform. These include the browser, the 
tag-toggle, the cleaner, the benzene-template, and the dipole 
[Fjeld and Voegtli, 2002; Fjeld et al., 2004]. While optical 
tracking systems enabling smaller markers and function cards do 
exist and would free up tabletop real estate10, their source is not 
yet open. At the same time, we did not consider utilizing more 
cards for system configuration and internal/external DB access 
because of limited hardware real estate. Consequently, the limited 
physical space triggered the idea of integrating a GUI into the 
TUI. The idea of combining TUI with GUI has been explored in 
other projects [Ishii et al., 2002]. 

                                                                 
9 The gripper first consisted of a wireless mouse rebuilt into a cage with a 
marker. Now, the marker is simply fastened to a conventional wireless 
mouse. 
10 ARTag, http://www.cv.iit.nrc.ca/research/ar/artag/, is not available 
under a open/free license. 

 
Figure 4: The AC system running on a standard workstation 
with a frame grabbing camera. USB and FireWire cameras 

are equally supported. 

3. GUI and TUI, dual mode, 3D rendering  

Here, we present realizations where particular attention is paid to 
integration of a GUI into the existing TUI. Firstly, we will explain 
the benefits of a GUI to support system configuration and, 
internal/external DB access. Secondly, we will show how dual 
mode presentation of the learning content was realized. Finally, 
we will present the 3D display and rendering issues and then the 
consequential improvements. 

3.1. GUI and TUI: design issues 

User studies showed that a problem in using the AC system – as 
compared to a traditional ball-and-stick method – was that 
controlling system settings often obstructed the learning process 
[Bötschi, 2005]. Many configuration settings are more suited to a 
GUI such as molecule size, element labeling, and system 
parameters. Such settings were initially mapped onto keyboard 
function keys. However, many users had difficulty using function 
keys while keeping complex chemical models in mind. The 
importation of molecules from external DBs also made it 
necessary to visualize large DB lists of molecules. So, to simplify 
interaction with system configuration settings and the new DB 
functionality, a purely mouse-controlled GUI was integrated into 
the primary TUI. Consequently, the GUI allows for a much more 
user-friendly system. Plus, keyboard-free operation allows for 
more efficient use of tabletop real estate.  

In order to assure portability, the GUI was realized using 
OpenGL. To avoid a one-to-one reclaim of screen real estate, we 
designed a GUI with a permanent button in the corner that 
activates a pop-up menu with each alternative activating a graphic 
overlay dialogue box (Figs. 5-10). 

Since OpenGL was already being utilized in AC for video image 
display and molecule rendering, it was the only application 
programming interface (API) feasible for GUI drawing. OpenGL 
has an adequate capability for high-quality GUI drawing because 
of its fast hardware acceleration. It is significantly faster than X 
or Win32 GDI when running on 3D-capable hardware. Alpha-
blended texture mapping makes it possible to draw not only well 
designed 3D objects, but also smooth 2D windows and buttons. 
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And a normal painting program is all that is required to customize 
the appearance in detail.  

Alpha-blending also made it possible to easily implement the 
GUI’s unique fading feature. When users click on the AC 
background video image, the entire GUI fades, allowing for a 
better view (Fig. 8). Then, when clicking anywhere on the 
translucent GUI, it regains full visibility. This effect would have 
been practically impossible with most traditional windowing 
APIs. 

Since there was no suitable, light-weight GUI toolkit using 
OpenGL available under the GPL license, we implemented a 
toolkit designed in-house. We foresee to base future GUI 
development on the current achievements (Figs. 5-9). 

 

 
Figure 5: The GUI’s import function from an external DB. 

 

 
Figure 6: The GUI’s configuration menu. 

The GUI’s graphical overlay is utilized for the import function 
(Fig. 5), system configuration (Fig. 6), and as a browser for the 
internal molecule DB (Fig. 7). All the molecules loaded into the 
system, whether predefined or imported from external DBs, are 
indexed by their chemical name (Fig. 5). This allows users to 
quickly browse through the molecules and select one by clicking 

its name. The browser then displays the selected molecule as a 
simplified 3D representation (Fig. 7). 

 

 
Figure 7: The GUI’s molecule browser for the internal DB. 

 

 
Figure 8: The focus shift from the GUI to the TUI. 

3.2. Dual mode: textual and aural information 

Evaluations demonstrated that there was a need to improve the 
presentation of the educational texts. Students have different 
learning styles, some preferring aural methods and some visual 
[Bötschi, 2005]. The first versions of AC did not take this into 
account. In these versions, when a predefined molecule was 
loaded or a constructed molecule was recognized, audio 
information was output. One problem with this was the inability 
to rewind or replay the audio information. To enhance user 
control of the information flow we are developing a dual mode 
system which would include a graphical overlay with the 
information in textual form. This display of educational text has 
been partly realized (Fig. 9). The realization of a user option 
between textual display, audio output, and both is foreseen. 
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Figure 9: Educational text is displayed. 
 

 
Figure 10: Molecule shadow and luster rendering; the use of 

shadows may potentially be expanded for projecting 
information on multiple planes. 

3.3 Improved 3D visualization and rendering 

Molecule visualization is being iteratively improved and 
evaluated. The user study [Bötschi, 2005] showed that 
manipulating the structure of the molecules using the TUI was 
relatively difficult. Small mistakes, e.g. misplacement and 
accidental removal of atoms, disrupted the learning process. To 
increase the ease of learning and operating the system, we believe 
that the interface needs to feel more natural and more like the 
conventional ball-and-stick method, but with the benefits of a 
TUI. To enhance the appearance of the computer-generated 
molecules, shadow rendering was added to the graphics engine. 
The projection of shadows and information on different planes 
(Fig. 10), lends a sense of order and structure to the complex 
information. Shadows play an important role in visualizing 3D 
models by improving the user’s depth perception [Shon and 
McMains, 2004]. This allows users to manipulate the molecules 
with greater precision, enhancing the TUI experience. However, 
when viewing more complex molecules, the shadows have little 
or no added value [van Liere, 2005]. Addressing this issue, the 
system allows users to change the shadow darkness and turn it on 
or off easily. 

4. Portability  

The AC system’s portability has been extended, so it is now 
compatible with a wider range of software and hardware 
platforms, including laptops. Furthermore, new options and an 
easy-to-install CD-ROM enable user-friendly installation. Newly 
enabled for multilingual configuration, the AC system is now 
accessible to a potentially larger user community.  

4.1. Operating systems and cameras  

Originally, AC was developed for Linux and only supported 
video cameras connected through a frame grabber. We have 
recently ported it for use on Windows and Mac OS X and 
switched to a newer version of ARToolKit. This allows for 
operation with a much wider range of hardware, including 
standard, low-cost USB and Firewire (IEEE1394) cameras. The 
increased compatibility maximizes the number of potential users 
and simplifies the use of AC. 

4.2 Multilingual configuration  

The AC system’s first version presented language information 
exclusively in German. In order to make it accessible to more 
users, we have prepared it for translation into multiple languages. 
This required that molecule names, structure information, and 
educational text/audio be stored in the internal DB, enabling 
display in multiple languages. So far, the GUI has been translated 
into English and Swedish. Meanwhile, most of the educational 
information remains to be translated from German. 

5. Ability to import from an external molecule DB 

By enabling users to construct and examine organic molecules in 
3D, a greater understanding of organic chemistry is expected. 
However, interviews with subject-matter experts revealed that 
there was a need to not only visualize and interact with user-
defined molecules, but also with predefined molecules.  

5.1. Advantages of an external DB  

A new system feature is the ability to visualize any pre-defined, 
existing molecule11. While manual assembly of a molecule, atom 
by atom, is an effective way of learning structural details, it can 
be wearisome for larger molecules. That is to say, the pedagogical 
benefits of the TUI may be lost when user attention is drawn more 
to interaction than learning. We wanted to avoid such undesirable 
effects and create a more versatile TUI, so access to an external 
DB of predefined molecules was viewed as advantageous. While 
the first version of the AC system used its own proprietary format 
for storing molecule definitions and information, we have newly 
enabled the system for standard molecule file formats.  

However, the import of molecules into the AC system from an 
external DB is limited to simpler molecules that conform to the 
octet rule and have a tetrahedron-based structure. In order to 
construct and visualize more complex organic and inorganic 
molecules, the current static composition model in AC would 
have to be replaced by a dynamic model based on molecular 
mechanics. 
                                                                 
11 There are still limitations in molecule complexity. For example, only 
one benzene  ring can be represented in a molecule. 
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5.2. Database format  

A variety of molecule DBs are available, including Beilstein12, 
ISIS13, and PubChem14, all of which are used by professionals for 
many purposes. These DBs differ in many ways, but most 
importantly in file format. After extensive research into molecule 
file formats and interviewing subject-matter experts, we chose an 
XML based format because it is a standard that is easily 
convertible to non-standard formats. PubChem is just one XML 
enabled DB containing a vast amount of molecule information, 
created by the National Center for Biotechnology Information14. 
And by having access to PubChem, users can easily choose to 
import a molecule of interest, visualize it in 3D, and interact with 
it through AC. 

5.3. Conversion from external to internal data 
structure 

While most standard data formats like PubChem include 
predefined, spatial offset coordinates for the positioning of the 
atoms in a molecular model, the AC internal data structure does 
not. Therefore, AC does not consider molecular structure 
separately from the positioning of single atoms. Rather, the 
placement of atoms in a molecule is determined by their 
composition following a tetrahedral pattern [Fjeld and Voegtli, 
2002]. 

When importing a PubChem molecule into AC, the data is 
converted into the internal data structure. Currently, the AC 
system can only process molecular model data that complies with 
its internal data structure. For example, only molecules with up to 
one benzene ring can be imported. 

6. Discussion and outlook  

Based on the AC system’s first version and the outcome of its 
comparative evaluation [Bötschi, 2005], we have implemented a 
new set of functions and features into the system, as described in 
this paper. First, we have integrated a GUI into the TUI and 
improved 3D visualization and rendering. Then, we have 
extended portability to Windows and Mac OS X, enabling the use 
of different camera types. Finally, we have made AC compatible 
with an external XML database. Currently, we are in the process 
of translating information into languages other than German, 
supporting the dual mode of aural and textual learning content, 
and capitalizing on multiple-plane shadow rendering.  

To evaluate our work we conducted a small, qualitative user study 
in which six secondary school students tested the system before 
and after our implementations. They constructed a set of 
molecules and then gave their subjective opinions about the 
system’s ease of use, ease of learning the system, and if they 
would be likely to use it in the future when learning organic 
chemistry. Most of their opinions of the earlier version coincided 
with those found in the major user study [Bötschi, 2005]. Their 
opinions of the later version indicated that we had successfully 
improved both the system’s ease of use and ease of learning the 
system. Their general opinion was that the additional 

                                                                 
12 MIMAS; http://www.mimas.ac.uk/crossfire/  
13 MDL; http://www.mdl.com/  
14 PubChem; http://pubchem.ncbi.nlm.nih.gov/  

functionality and added features had increased the probability of 
their using a similar system in an actual learning situation. We 
foresee a more extensive usability evaluation of the GUI/TUI 
integration and the GUI functionality in the future. 

A possible improvement for AC would be the implementation of 
an alternative viewing mode for externally created molecular 
models from PubChem that do not comply with the internal data 
structure. Structural comparisons as internally carried out when 
building new models would not be used in this alternative 
viewing mode. Hence, a conversion of the PubChem data to the 
AC internal data structure could be bypassed. We will consider 
this in the future. 

In a related project, researchers at The Scripps Research Institute 
have added markers to passive, ready-made ball-and-stick 
structures [Gillet, 2005]. Like in Fjeld et al. [Fjeld et al., 2004], 
they have visualized electrostatic fields and a local field vector. 
Going beyond the results of Gillet et al., we foresee the 
exploration of intelligent, physical balls and sticks. The imagined 
use would require spatial tracking of individual balls and sticks 
which would communicate the constructed molecule composition, 
position, and rotation. Hence, a one-to-one 3D virtual 
augmentation should become possible, enriching the physical 
ball-and-stick model with color-coding, atomic information 
(electrostatic fields, valence number, atom name), and other 
relevant information. 
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Automatic Conversion of Traffic Accident Reports into 3D Animations
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Abstract

This paper describes a system that automatically converts narratives
into 3D scenes. The texts, written in Swedish, describe roadacci-
dents. One of the key features of the program is that it animates the
generated scene using temporal relations between the events. We
believe that this system is the first text-to-scene converter that is not
restricted to invented narratives.

The system consists of three modules: natural language interpreta-
tion based on information extraction (IE) methods, a planning mod-
ule that produces a geometric description of the accident, and finally
a visualization module that uses Java3D to render the geometric de-
scription as animated graphics.

We performed a small user study to evaluate the quality of thevi-
sualization. The results validate our choice of methods, and since
this is the first evaluation of a text-to-scene conversion system, they
also provide a baseline for further studies.

CR Categories: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Animations; I.2.7 [Artificial In-
telligence]: Natural Language Processing—Text Analysis;I.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search—Plan execution, formation, and generation

Keywords: text-to-scene conversion, 3D graphics, natural lan-
guage processing

1 Introduction

Automatic text-to-scene conversion consists in synthesizing a 2D
or 3D geometric description from a text and in displaying it.The
scene can be static or animated. Animated 3D graphics have some
advantages for the visualization of information. They can repro-
duce a real scene more accurately and render a sequence of events.
In addition, when 3D graphics are coupled with virtual environ-
ments, they enable users to navigate in a 3D world and interact with
objects.

The conversion of natural language texts into graphics has been in-
vestigated in a few projects. NALIG [Adorni et al. 1984] is anearly
example of them that was aimed at recreating static 2D scenes. One
of the major goals of the project was to study relationships between
space and prepositions. NALIG considered simple phrases inItal-
ian of the type subject, preposition, object that in spite oftheir sim-
plicity can have ambiguous interpretations. From what is described

∗e-mail: richard@cs.lth.se
†e-mail:pierre@cs.lth.se

in the papers, NALIG has not been extended to process sentences
and even less to texts. WordsEye [Coyne and Sproat 2001] is a
more recent system that recreates 3D animated scenes from short
descriptions. The interpretation of a narrative is based onsemantic
frames and a good deal of inferences about the environment. Word-
sEye does not address real world stories. The narratives cited as
examples resemble imaginary fairy tales. In addition, all the cited
texts appear to have been invented by the authors and not collected
from kids, for instance. CogViSys is a last example that started
with the idea of generating texts from a sequence of video images.
The authors found that it could also be useful to reverse the process
and generate synthetic video sequences from texts. The system is
limited to the visualization of single vehicle maneuvers atan inter-
section as the one described in this two-sentence narrative: A car
came from Kriegstrasse. It turned left at the intersection[Arens
et al. 2002]. The authors give no further details on the results.

2 Overview of the Carsim System

The Carsim1 system [Johansson et al. 2005; Dupuy et al. 2001] is a
text-to-scene converter that handles real texts and that weevaluated
using quantitative methods. The program generates 3D graphics
from traffic accident reports generally collected from web sites of
Swedish newspapers. One of its key features is that it takes time
and temporal relations between events into account to animate the
synthesized scene.

Narratives of a car accidents often make use of space descriptions,
movements, and directions that are sometimes difficult to grasp for
readers. We believe that forming consistent mental images is nec-
essary to understand them properly. However, some people have
difficulties in imagining situations and may need visual aids pre-
designed by professional analysts.

Carsim tries to address this need. It is intended to be a helpful
tool that can enable people to imagine a traffic situation andun-
derstand the course of events properly. To generate a 3D scene,
Carsim combines natural language processing components and a
visualizer. The language processing module adopts an information
extraction (IE) strategy and includes machine learning methods to
solve coreference, classify predicate/argument structures, and order
events temporally.

However, as real texts suffer from underspecification and rarely
contain a detailed geometric description of the actions, informa-
tion extraction alone is insufficient to convert narrativesinto images
automatically. To handle this, Carsim infers implicit information
about the environment and the involved entities from key phrases
in the text, knowledge about typical traffic situations, andproper-
ties of the involved entities. The program uses a visualization plan-
ner that applies spatial and temporal reasoning to find the simplest
configuration that fits the description.

1An online demonstration of the system is available at
http://www.lucas.lth.se/lt.
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2.1 A Corpus of Traffic Accident Descriptions in

Swedish

Carsim has been developed using a corpus of reports written in
Swedish. As development set, we collected approximately 200 re-
ports of road accidents from various newspapers. The task ofana-
lyzing the news reports is made more complex by their variability
in style and length. The amount of details is overwhelming insome
reports, while in others most of the information is implicit. The
complexity of the accidents described ranges from simple accidents
with only one vehicle to multiple collisions with several participat-
ing vehicles.

Although our work has concentrated on the press clippings, we also
have a small set of accident reports extracted from the STRADA
database (Swedish TRaffic Accident Data Acquisition) of Vägver-
ket, the Swedish traffic authority.

The next text is an excerpt from our test corpus. This report is an
example of a press wire describing an accident.

Tre personer omkom när en buss och personbil på måndagen krock-

ade på väg 55 vid Fornebo i närheten av Flen. Det var ett barn och två

vuxna som färdades i personbilen som omkom i olyckan. Ytterligare ett

barn, en flicka, fanns i bilen, men kunde ta sig ut. - Hon fick hjälp av

en person att ta sig ut ur bilen, berättar Mats Elfwén, räddningsledare

vid räddningstjänsten i Flen, för TT. Han vet inte hur olyckan gick till. -

Av någon anledning kom personbilen över på fel sida med sladd. Buss-

föraren försökte undvika den, men det blev en frontalkollision, säger

Mats Elfwén. Vid krocken fattade personbilen eld. Flickan som räd-

dades ur bilen fördes till sjukhus med bland annat brännskador. Unge-

fär 15 personer från räddningstjänsterna i Flen och Malmköping deltog

i arbetet vid olyckan.

Svenska dagbladet, November 11, 2002
Three persons died when a bus and a passenger car collided on

Monday on road 55 near Fornebo in the vicinity of Flen. A childand two

adults, who traveled in the passenger car, died in the accident. Another

child, a girl, was in the car but was able to escape. -She was assisted by

a person to get out of the car, reported Mats Elfwén, head of the rescue

team in Flen, to the Swedish News Agency. He does not know how the

accident occurred. For some reason, the passenger car slid and came

over on the wrong side of the road. The bus driver tried to avoid it, but

ended in a frontal collision, said Mats Elfwén. During the collision, the

passenger car caught fire. The girl that could escape the car was sent to

hospital with burns. Approximately 15 persons from the rescue team in

Flen and Malmköping participated in the rescue.

The text above, our translation.

2.2 Carsim’s Architecture

Carsim’s architecture consists of a pipeline of three modules where
each module carries out one step of the conversion process (see
Figure 1).

• A natural language processingmodule interprets the text to
fill a template – an intermediate symbolic representation.

• A spatio-temporal planning and inferencemodule produces a
full geometric description given the symbolic representation.

• A graphical module renders the geometric description as
graphics using the Java3D library.

Carsim’s language processing module uses information extraction
techniques. It reduces the text content to a tabular structure – the
template – that outlines what happened. We use this templateas
an intermediate representation between texts and geometry. This is

Text Symbolic
repr.

knowledge
Geometric

description
Geometric

knowledge
Linguistic

Interpretation Planning Rendering

World
knowledge

Figure 1: System architecture.

made necessary because the information expressed by most reports
usually has little affinity with a geometric description. Exact and
explicit accounts of the world and its physical properties are rarely
present. In addition, our vocabulary is finite and discrete,while the
set of geometric descriptions is infinite and continuous.

Once the NLP module has interpreted and converted a text, the
planner maps the resulting symbolic representation of the world,
the entities, and behaviors, onto a complete and unambiguous geo-
metric description in a Euclidean space.

Certain facts are never explicitly stated, but are assumed by the au-
thor to be known to the reader. This includes linguistic knowledge,
world knowledge (such as traffic regulations and typical behaviors),
and geometric knowledge (such as typical sizes of vehicles). The
language processing and planning modules take this knowledge into
account in order to produce a credible geometric description that
can be visualized by the renderer.

2.3 Knowledge Representation

The knowledge representation contained in the template hasto
manage the following trade-off. In order to be able to describe a
scene, it must contain enough information to make it feasible to
produce a consistent geometric description, acceptable tothe user.
On the other hand, the representation has to be close to ways human
beings describe things to capture information in the texts.

We used four concept categories that we ordered in an inheri-
tance hierarchy. Each category is implemented as predefinedat-
tribute/values slots:

• Objects. These are typically the physical entities that are men-
tioned in the text, but we might also need to present abstract
entities as symbols in the scene. Each object has a type that is
selected from a predefined, finite set.Car andBus are exam-
ples of object types.

• Events. They correspond intuitively to an activity that goes
on during a period in time and here to the possible object be-
haviors. We represent events as entities with a type from a
predefined set.Impact andCatchFire are examples.

• Relations and Quantities. The objects and the events need
to be described and related to each other. The most obvious
examples of such information arespatial information about
objects andtemporalinformation about events. We should be
able to express not only exact quantities, but also qualitative
information (by which we mean that only certain fundamental
distinctions are made).Behind, FromLeft, andDuring are
examples of spatial and temporal relations.

• Environment. The environment of the accident is important
for the visualization to be understandable. Significant envi-
ronmental parameters include light, weather, road conditions,
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and type of environment (such as rural or urban). Another im-
portant parameter is topography, but we have set it aside since
we have no convenient way to express this qualitatively.

2.4 Natural Language Processing

The natural language processing module uses information extrac-
tion techniques. It consists of a sequence of components (Figure 2).
The first components carry out a shallow parse: part-of-speech tag-
ging, noun phrase chunking, complex word recognition, and clause
segmentation. This is followed by a cascade of semantic markup
components: named entity recognition, temporal expression detec-
tion, object markup and coreference, and predicate argument detec-
tion. A temporal component uses verb tenses and other information
to infer the temporal structure of the course of events. Finally, the
marked-up structures are interpreted, which results in a symbolic
representation of the accident.

The development of the IE module has been made more complex
by the fact that few tools or annotated corpora are availablefor
Swedish. The only significant external tool we have used is the
Granska part-of-speech tagger [Carlberger and Kann 1999].

3 The Planning and Graphical Modules

We use a planner to create the animation from the informationex-
tracted by the natural language processing module. It first deter-
mines a set of constraints that the animation needs to fulfill. Then,
it goes on to find the initial directions and positions. Finally, it uses
a search algorithm to find the trajectory layout. This separation
into steps does not allow backtracking and introduces a riskof bad
choices. However, it reduces the computation load and proved suffi-
cient for the texts we considered, enabling an interactive generation
of 3D scenes and a better user experience.

3.1 Setting Up the Constraints

The constraints on the animation are created using the detected
events and the spatial and temporal relations combined withthe
implicit knowledge about the world. The events are expressed as
conjunctions of primitive predicates about the objects andtheir be-
havior in time. For example, if we state that there is anOvertake

event whereO1 overtakesO2, this is translated into the following
proposition:

∃t1, t2.MovesSideways(O1,Le f t, t1)
∧Passes(O1,O2, t2)∧ t1 < t2

In addition, other constraints are implied by the events andour
knowledge of the world. For example, ifO1 overtakesO2, we add
the constraints thatO1 is initially positioned behindO2, and that
O1 has the same initial direction asO2. Other constraints are added
due to the non-presence of events, such as

NoCollide(O1,O2) ≡ ¬∃t.Collides(O1,O2, t)

if there is no mentioned collision betweenO1 andO2.

Turn

Bend

Stretch

Figure 3: The elementary movements.

3.2 Finding Initial Directions and Positions

We use constraint propagation techniques to infer initial directions
and positions for all the involved objects. We first set thosedirec-
tions and positions that are stated explicitly. Each time a direction
is uniquely determined, it is set and this change propagatesto the
sets of available choices of directions for other objects, whose di-
rections have been stated in relation to the first one. When the di-
rection can’t be determined uniquely for any object, we pickone
object and set its direction. This goes on until the initial directions
have been inferred for all objects.

3.3 Finding the Trajectories

After the constraints have been set up, we use the IDA* search
method to find a trajectory layout that is as simple as possible while
violating no constraints. The trajectories are initially straight, and
are modified incrementally until a solution is found. The three types
of modifications to the trajectories (i.e. the elementary movements
the vehicles can make) are shown in Figure 3. As a heuristic func-
tion to guide the search, we use the number of violated constraints
multiplied by a scaling constant in order to keep the heuristic ad-
missible.

The most complicated accident in our development corpus contains
8 events, which results in 15 constraints during search, andneeds 6
modifications of the trajectories to arrive at a trajectory layout that
violates no constraints. This solution is found in a few seconds.
Most accidents can be described using only a few constraints.

At times, no solution is found within reasonable time. This typi-
cally happens when the IE module has produced incorrect results.
In this case, the planner backs off. First, it relaxes some ofthe
temporal constraints (for example:Simultaneousconstraints are re-
placed byNearTime). Next, all temporal constraints are removed.

3.4 A Planning Example

To illustrate the planning problem, we give an example of a com-
mon kind of traffic accident:A overtakesB, forcingC (coming from
the opposite direction) off the road. We formalize this using the fol-
lowing constraints:

• ∃t1MovesSideways(A,Le f t, t1)

• ∃t2Passes(A,B, t2)

• ∃t3LeavesRoad(C, t3)
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Figure 2: Architecture of the language interpretation module.

• t2 > t1

• t3 > t2

• NoCollide(A,B)

• NoCollide(A,C)

• NoCollide(B,C)

We start from initial trajectories, and the search procedure modifies
them incrementally. A minimal solution isBend(A), Stretch(A),
Bend(C), meaning that vehiclesA andC perform sideways move-
ments, and that vehicleA accelerates (while overtaking).

3.5 Rendering the Geometric Description

We use the Java3D library to render the geometric description as
3D graphics. Java3D is a more or less platform-independent 3D
graphics library on top of platform-dependent low-level libraries
like OpenGL or DirectX.

Most objects are described using VRML models, although some
are implemented using procedural techniques (fires, for example).

Figures 4 and 5 show an example corresponding to the text from
Subsection 2.1.

4 Evaluation of the Visualization

To evaluate the system, we used 50 previously unseen texts, which
had been collected from newspaper sources on the web. The size of
the texts ranged from 36 to 541 tokens. Four users were shown the
animations of subsets of the 50 test texts.

The users graded the quality of animations using the following
scores: 0 for wrong, 1 for “more or less” correct, and 2 for per-
fect. The average score was 0.91. The number of texts that had
an average score of 2 was 14 (28 percent), and the number of texts
with an average score of at least 1 was 28 (56 percent). These fig-
ures demonstrate that the chosen strategy is viable, especially in
a restricted context like the traffic accident domain. However, in-
terpretation of the figures is difficult since there are no previously
published results. In any case, they provide a baseline for further
studies, possibly in another domain.

To determine whether the small size of our test group introduced a
risk of invalid results, we calculated the standard deviation of an-
notations2, and we obtained the value of 0.45. Replacing all anno-
tations with random values from the same probability distribution

2We calculated this using the formula

√

∑(xi j −ẋi)2

∑(ni−1)
, wherexi j is the score

assigned by annotatorj on text i, ẋi the average score on texti, andni the
number of annotators on texti.

resulted in a standard deviation of 0.83 on average. In addition,
the pairwise correlation of the annotations is 0.75. This suggests
that the agreement among annotators is enough for the figuresto be
relevant.

During discussions with users, we had a number of unexpected
opinions about the visualizations. One important example of this
is the implicit information they infer from reading the texts. For
example, given a short description of a crash in an urban environ-
ment, one user imagined a collision of two moving vehicles atan
intersection, while another user interpreted it as a collision between
a moving and a parked car.

This user response shows that the task of imagining a situation is
difficult for humans as well as for machines. Furthermore, while
some users have suggested that we improve the realism (for ex-
ample, the physical behavior of the objects), discussions generally
made it clear that the semi-realistic graphics that we use (see Fig-
ures 4 and 5) may suggest to the user that the system knows more
than it actually does. Since the system visualizes symbolicinfor-
mation, it may actually be more appropriate to present the graphics
in a more “abstract” manner that reflects this better, for example via
symbolic signs in the scene.

5 Conclusion and Perspectives

We have presented system based on information extraction tech-
niques and symbolic visualization that converts real textsinto 3D
scenes. It creates animated graphics by taking into accounttempo-
ral relations between events mentioned in a text and using a planner.

We have provided a quantitative evaluation of a text-to-scene con-
version system, which shows promising results that validate our
choice of methods and set a baseline for future improvements. As
far as we know, Carsim is the only text-to-scene conversion system
that has been developed and evaluated using noninvented narratives.

In the future, we would like to extend the system to deeper lev-
els of semantic processing. While the current prototype uses no
external knowledge, we would like to integrate additional knowl-
edge sources in order to make the visualization more realistic. An
important example of this is geographical and vehicle information,
which could be helpful in improving the realism and in creating
a more accurate reconstruction of the environment and animation.
Another topic we would like to address would be to merge a set
of narratives describing a same accident into a unique 3D scene as
the animations manually produced by the National Transportation
Safety Board (NTSB) in the United States3.

3See for instance www.ntsb.gov/events/2000/central_bridge/cb_video.htm
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Figure 4: Screenshots from the animation of the text above.

Figure 5: Points of view from the bus and the car.
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Figure 1: Connection breakage visualisation.

Abstract

Fibre networks are material with a structure consisting of fibres.
At Structural Mechanics simulation methods for studying the be-
haviour of such networks has been developed. Because the be-
haviour of these materials are depends on three-dimensional inter-
action between fibres in the network it can be difficult to interpret
the results without good visualisation tools and methods. The stan-
dard tools available are often designed with other materials and
structures. To enable effective visualisation of these simulations
custom tools and methods has been developed in parallel withthe
development of the simulation code, providing tools for better un-
derstanding the behavior of the simulations and to compare with
real experiments.

Keywords: fibre networks, real-time, visualisation, finite element
method

1 Introduction

Fibre network materials are materials with a structure consisting of
fibres. Examples of such materials can be found in insulationma-
terial, diapers and paper. Structural Mechanics has duringseveral
years developed methods for studying the behaviour of different fi-
bre network materials [Heyden 2000]. Visualising the results from
the simulations been difficult using commonly found visualization
software. This paper illustrates how visualisation can be used as an

∗e-mail: jonas.lindemann@byggmek.lth.se
†e-mail:goran.sandberg@byggmek.lth.se
‡e-mail:ola.dahlblom@byggmek.lth.se

integral part in the development process of a new simulationcode,
enabling better understanding of simulation results as well as eval-
uating initial network configurations compared to real materials.

In earlier work [Lindemann and Dahlblom 2002], a texture based
method was used to reduce the geometry complexity, enabling
larger fibre networks to be visualised in real-time. This method
is integrated in a fibre network post-processor, FibreScope.

2 Evaluation of simulation results

Results from a 3D fibre network simulation consist of ”snapshots”
of the fibre network at different time steps in the calculation. In ad-
dition to this information on each fibre-to-fibre connectionis also
stored, so that fibre breakage can be studied. A simulated fibre net-
work can consist of several thousand fibres and connection points.
To evaluate the simulation results the visualisation tool must be able
to visualise the deformation history of each fibre as well as high-
lighting connection point usage and breakage.

The common method of visualising fibres is to sweep a cross sec-
tion over a spine (extrusion). This method is good when detail
is needed, but generates a lot of geometry when the networks are
large.

2.1 Visualisation of fibre structure and deformation

When the networks become larger, the extrusion based methodbe-
come more and more costly in terms of real-time performance.To
overcome this, a texture based method was developed and imple-
mented in earlier work [Lindemann and Dahlblom 2002], reducing
the geometry demands when visualising large networks.

The method renders the fibre as a simple band consisting of view-
aligned quads (billboarding). A gradient texture is applied on the
band giving it the illusion of a rounded fibre. Using this technique
much larger networks can be visualised using similar hardware.
Figure 2 shows the extrusion based fibre compared to the banded
extruded fibre.
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Figure 2: Fibres rendered with the extrusion based (left) and the
texture based method (right)

2.2 Visualising connection point usage and breakage

An essential part in the simulation model is the connection point
between fibres in the network. When the network is subjected to
loading, these connection points will become stressed and eventu-
ally break. The simulation model [Heyden 2000] provides infor-
mation about connection point usage. To be able to study how the
behaviour of fibre network it important that the connection point
usage is visualised in an intuitive way.

In a real fibre network, the connection point is very small, soit is
not possible visualise the actual connection point. In the previous
work [Lindemann and Dahlblom 2002] colored spheres where used
to indicate the connection points. Using a colour scale the sphere
is coloured to indicate the connection point usage. When thecon-
nection point usage is over a certain value, it will break. Toindi-
cate breakage the sphere is scaled to produce a ”popping” effect, to
make the user aware of breaking connection points. When evalu-
ating this method proved less effective, because the scaledspheres
where obscured by the fibre network and other spheres.

To enable the user to be aware of connection point breakage inthe
entire fibre network a different approach is taken. Instead of scaling
the connection point representation an additional ”highlight sphere”
is rendered on top of the connection point. To be able to see the
highlight sphere even if the connection point is obscured byother
spheres and geometry, it is rendered without depth buffer turned on
(glDisable(GL_DEPTH_BUFFER)). To retain the visibility of the
actual connection point indicator the sphere is also rendered using
additive blending (glBlendFunc(GL_ONE,GL_ONE)).

Because breakage occurs at discrete moment in the simulation, and
the behavior just before and after the breakage is importantthe de-
veloped highlighting method highlights the connection points when
the exceed 95% usage or a user defined value. This enables the user
to zoom-in on interesting events and see the breakage occuring, as
seen in Figure 3.

Figure 3: High usage, enlarged sphere, after break

Using this techniques the highlight for the connection point break-
age will be visible at all viewpoints even if the real connection point
is obscured by other geometry, as seen in Figure 4.

Figure 4: 3 connection breaks viewed from different viewpoints.

2.3 The tool: FibreScope

The methods described in the previous sections are all implemented
in the post processing application FibreScope, see Figure 5, which
initial development was done in previous work [Lindemann and
Dahlblom 2002].

Figure 5: FibreScope post processor user interface

The main design concept of FibreScope is to implement a ”virtual”
microscope that can be used to analyse the simulation results pro-
duced with the simulation code. The user can easily browse and
animate the simulation time steps and in the same time rotate, pan
and zoom. The user interface of is also designed to provide asmuch
control as possible for the user, directly in the main window, elim-
inating the need for dialog windows. The user is encouraged to
experiment with the different parameters for the visualization meth-
ods implemented. FibreScope has also been extended, so thatactive
stereo equipment can be used, providing true depth perception.

FibreScope is a platform independent C++ application that can be
run on Microsoft Windows, Mac OS X and Linux. 3D rendering
is implemented using Ivf++ [Lindemann ] a thin object-oriented
library on top of OpenGL [Ope 2005]. The User interface is im-
plemented using the Fast Light Toolkit (FLTK) [Spitzak 2005], to
provide the necessary platform independence.

3 Evaluation of generated networks

Initially the focus of this work was on visualising the results from
fibre network simulations. Later on it was clear that the visualisa-
tion tools could also provide valuable feedback in the process of
generating the initial fibre network configurations. That isto gener-
ate fibre networks resembling real fibre networks. A master thesis
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work [Edlind 2003] studied methods for generating fibre networks
with specific properties, such as certain distribution of fibre orien-
tations or fibre curvatures.

To compare the generated fibre networks with images of real fibre
networks, 3D Studio MAX and FibreScope was used. FibreScope
was used to quickly view a generated network, 3D Studio MAX
was used to generate high resolution images for direct comparison
with real images. Figure 6 shows a real fibre material compared to
one generated material.

Figure 6: Real fibre material (left), Generated material rendered
with 3D Studio MAX (right)

Because these generated networks have different properties in dif-
ferent directions, a special mode in FibreScope has been added to
enable the user to study the depth complexity. This mode is imple-
mented using a standard technique employed in many other visual-
isation applications. The basic idea is to render all objects with the
depth buffer disabled and blending all objects using an adding func-
tion. By specifying colour components in a special way (red=0.2,
green=0.1, blue=0.0), a colour scale will be produced wheredark
red represent low depth complexity and yellow colour represents
high depth complexity. The colours must be calibrated for a specific
depth complexity. Figure 7 shows a network with low complexity
and figure 8 the same network from another angle now having a
higher depth complexity.

Figure 7: Network viewed in a direction having low depth com-
plexity

To aid in the process of developing the generation methods Fi-
breScope has been enhanced with routines for reading these gen-
erated networks. A full screen viewer was also implemented that
could be used with the visualisation equipment and the ReflexRe-
alityCenter at Lund University.

4 Conclusion

Fibre network simulations can consist of several thousandsof fibres
with snapshots of the simulation state stored at each time step. This

Figure 8: Network viewed in a direction having high depth com-
plexity

produces a lot of data to analyse. Effective visualisation methods
and tools are very important in this task. To aid in this task abanded
texture approach was developed in previous work [Lindemannand
Dahlblom 2002], to aid in the visualisation of large fibre networks.

Another important aspect in fibre network simulations is thecon-
nection point between fibres and how these break during load.This
paper describes a enchanced method for highlighting connection
point breakage, enabling the user to see connection point breakage
even if the connection point is obscured by other geometry.

The tools developed has also been used to study methods for gen-
erating the initial fibre geometry, providing a rapid visualisation
before more photo-realistic renderings are done in more advanced
rendering packages, such as 3D Studio MAX.

This paper gives an overview how visualisation can be used asan
integrated tool in the process of developing a simulation code. Dur-
ing the development of the simulation code developed by [Heyden
2000], tools for fibre network visualisation has been developed in
parallel, providing important information about the behavior of the
simulated networks. The FibreScope application is continually de-
veloped to integrate the developed methods into a easy to useuser
interface enabling the user to experiment with many parameters to
achieve the desired results or findings.
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Figure 1: Three examples of Augmented Reality applications running on a mobile phone. The left image shows visualization of a static object.
The center image shows a face-to-face collaborative game. The right image shows an object manipulation and scene assembly application.

Abstract

Mobile phones have reached a level where it is possible to run self-
contained Augmented Reality applications using the built-in cam-
era for optical tracking. In this paper we present some of our work
in this area. We have created a custom port of the ARToolKit li-
brary to the Symbian mobile phone operating system and then de-
veloped sample applications which have been evaluated. These in-
clude a face-to-face collaborative AR game where we conducted
a user study to evaluate multi-modal feedback. We also examined
user interface issues where an AR enabled mobile phone acts as an
interaction device. Additionally, we discuss how traditional 3D ma-
nipulation techniques apply to this new platform. We also describe
a mobile phone based Augmented Reality application for 3D scene
assembly, which adds a 6 DOF isomorphic interaction technique
for manipulating 3D content.

1 Introduction

With the integration of cameras and full color displays, mobile
phones have developed into an ideal platform for Augmented Re-
ality (AR). Now that it is technically possible, it is important to
conduct research on the types of AR applications that are ideally
suited to mobile phones and user interface guidelines for develop-
ing these applications. This is significant because the widespread
adoption of mobile phones means that this platform could be one of
the dominant platforms for AR applications in the near future.
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AR is a technology that allows a user to see virtual imagery overlaid
and registered with the real world. Traditionally the AR content was
viewed through a head mounted display (HMD). Wearing a HMD
leaves the users hands free to interact with the virtual content, either
directly or using an input device such as a mouse or digital glove.

For handheld and mobile phone based AR the user looks through
the screen of the device to view the AR scene and needs at least
one hand to hold the device. The user interface for these applica-
tions is very different than those for HMD based AR applications.
Thus there is a need to conduct research on interaction techniques
for handheld AR displays, and to produce formal user studies to
evaluate these techniques.

New opportunities in mobile phone interaction have emerged with
the integration of cameras into the phones. By analyzing the video
stream captured by the camera, using simple image processing on
the phone, it is possible to estimate the movement of the device.
Such estimation is the essential component in a Augmented Reality
setup.

In this paper we present the implementation of several possible ma-
nipulation techniques and the results of a user study conducted to
identify which of these techniques is the most usable. These tech-
niques can be used to provide a 6 DOF interface. We show how
different strategies can be combined for manipulation of a general
3D scene using a standard mobile phone. We describe the first ex-
ample of using phone motion to manipulate graphical objects in 6
DOF to create virtual scenes.

Another interesting area for mobile phone based AR is for support-
ing collaborative AR applications. Mobile phones are already de-
signed to support local and remote communication and so provide
a natural platform for collaborative AR. For example a Bluetooth
enabled mobile phone can be used for face-to-face gaming or mes-
saging, while the cellular network supports voice and video calls.

In the next section we review related work in the area of mobile
AR, collaborative AR and virtual object manipulation on a hand-
held platform. Next we talk about user interface aspects of mobile
phone AR and the software platform we have developed to support
phone based AR applications. We then describe our work in dif-
ferent areas of mobile phone AR, especially virtual object manip-

35



ulation, scene assembly and collaborative AR. Finally we provide
some directions for future research.

2 Related Work

Our work draws on a rich legacy of previous work in handheld
augmented reality, collaborative augmented reality, AR interaction
techniques and mobile phone gaming.

The first mobile AR set-ups such as Feiners Touring Machine
[1997] featured a backpack computer and an HMD. From these
days it was obvious that what was carried in a backpack would one
day be held in the palm of the hand. Unlike the backpack systems,
handheld collaborative AR interfaces are unencumbering and ideal
for lightweight social interactions.

Rekimotos Transvision system explored how a tethered handheld
display could provide shared object viewing in an AR setting
[1996]. Transvision consists of a small LCD display and a cam-
era. These are connected by a cable to a computer that performs
the augmentation. Two users sit across the table and see shared AR
content shown on the displays. They can select objects by ray cast-
ing and once selected objects are fixed related to the LCD and can
be moved. The AR-PAD interface [Mogilev et al. 2002] is simi-
lar, but it adds a handheld controller to the LCD panel. AR-PAD
decouples translation and rotation. A selected object is fixed in
space relative to the LCD panel and can be moved by moving the
panel. Rotation is performed using a trackball input device. These
custom configurations show that if the AR display is handheld the
orientation and position of the display can be used as an important
interaction tool.

The first commercially available handheld platform to be used for
AR applications was the PDA. First there was work such as the
AR-PDA project [2001] in which the PDA was used as a thin client
for showing AR content generated on a remote server. This was
necessary as the early PDAs did not have enough capability for
stand-alone AR applications. Then in 2003 Wagner [2003] ported
ARToolKit [ART ] to the PocketPC and developed the first self con-
tained PDA AR application. Handheld AR applications such as the
Invisible Train [Wagner et al. 2005] also show an interesting com-
bination of interacting with the AR content by interacting in the
world and with the device itself.

Mobile phone based AR has followed a similar development path.
Early phones did not have enough processing power so researchers
also explored thin client approaches. For example, the AR-Phone
project [Cutting et al. 2003] used Bluetooth to send phone cam-
era images to a remote sever for processing and graphics overlay,
taking several seconds per image. However, Henrysson recently
ported ARToolKit over to the Symbian phone platform [2004],
while Moehring developed an alternative custom computer vision
and tracking library [2004]. This work enables simple AR appli-
cations to be developed which run at 7-14 frames per second, but
requires a 3D marker.

By visually tracking real objects, the camera phone can be used
for 6 DOF input. Hachet [2005] has developed a 3 DOF bimanual
camera based interface for interaction both on the device itself and
for using a PDA as a 3D mouse. The approach is similar to ours
in that it establishes the position and orientation of the device by
analyzing the video stream captured by the camera. Rohs Visual
Codes [2004] is an example of mobile phone barcode reading. By
recognizing and tracking a pattern, the phone movements can be
estimated and used as input. The pattern can also be associated with
phone functions and act as a menu item. Hansens Mixed Interaction

Spaces [2005] uses a similar approach by tracking a circle. Non of
these works have proven to be sufficient for 3D AR applications.

Finally, work in mobile phone gaming has been used to inform our
AR application design. There are several examples of 3D graphics
applications on mobile phones. The vast majority are games that
provide joystick type control of vehicles and objects in 3D environ-
ments. Larsen [2002] describe one of the first 3D applications for
the mobile phone with more complex object manipulation. This is a
client server setup where the rendering of the bricks is made on the
server in addition to collision detection. There is no mentioning of
interactive change of the view. Transformation is restricted to 2D
translation. Although there are thousands of games available for
mobile phones, there is only a handful that use camera input. Two
of the best known are Mosquito Hunt and Marble Revolution. Nei-
ther of these games are collaborative or true AR applications, but
they do show that camera and phone motion can be used to create
compelling game experiences.

The application most related to our work in collaborative AR is
Hakkarainens Symball game [2005]. This is a two person collab-
orative table tennis game which uses camera phones that are Blue-
tooth equipped. The user control a virtual paddle by moving the
phone relative to a colour that is tracked. Once again this is not
a true AR experience, but it is the first example of a compelling
collaborative game on phone that user camera input.

3 Interaction

There have been several interface metaphors developed for desktop
based 3D virtual object manipulation. However these may not be
appropriate for handheld phone based systems because of impor-
tant differences between using a mobile phone 3D interface and a
traditional desktop interface, including:

• Limited input options (no mouse/keyboard)

• Limited screen resolution

• Little graphics support

• Reduced processing power

There are also several key differences between using a mobile
phone AR interface compared to a traditional head mounted dis-
play (HMD) based AR system, including:

• The display is handheld rather than headworn

• The phone affords a greater peripheral view

• The display and input device are connected

There are also some key differences between a mobile phone and
a PDA. Mobile phones are operated using a one-handed button in-
terface in contrast to the two-hand stylus interaction of the PDA.
Due to the easy one-handed maneuvering it is possible to use the
mobile phone as a tangible input object itself. In order to interact
we can move the device relative to the world instead of moving the
stylus relative a fairly static screen. Having one hand free allows
the utilization of bimanual interaction techniques.

We assume that the phone is like a handheld AR lens giving a small
view into the AR scene. We also assume that the user will be more
likely move the phone-display than change their viewpoint relative
to the phone. Thus the small form factor of the mobile phone lets us
go beyond the looking-glass metaphor to an object-based approach.
This metaphor can be applied to other AR applications that do not
use a HMD, such as applications developed for projection screens,
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tablet-PC and PDAs. Our input techniques are largely going to be
based around motion of the phone itself, rather than keypad input
into the phone.

4 Platform

In order to develop AR applications for Symbian based mobile
phones there were several key steps we needed to perform:

• Port the ARToolKit tracking library to the Symbian operating
system

• Develop a peer to peer communications layer

• Build a game application using 3D graphics

• Provide support for audio and haptic feedback

Henrysson was the first to implement ARToolKit for Symbian
[2004]. To do this he wrote a C++ wrapper class in order to get
rid of global variables, which are prohibited by Symbian. How-
ever, both the mobile phones we are targeting and the PDA used by
Wagner lack a floating point unit, making floating-point arithmetic
orders of magnitude slower than integer arithmetic. To overcome
this, we wrote our own fixed-point library featuring variable preci-
sion. We did extensive performance tests to select the algorithms
that ran fastest on the mobile phone. The average speed-up com-
pared to corresponding floating-point functions was about 20 times.
We started out by porting the functions rewritten by Wagner and
continued backwards to cover most of functions needed for camera
pose estimation. The resulting port runs several times faster than
the original port. Some accuracy was lost when converting to fixed
point but was perceived as acceptable.

Our graphics application was developed using OpenGL ES. In com-
parison to desktop OpenGL, memory and processor demanding
functions such as 3D texturing and double precision floating point
values have been removed along with GLU. A 16:16 fixed-point
data type has been added to increase performance while retain some
of the floating-point precision. The most noticeable difference is
the removal of the immediate mode in favor of vertex arrays. Since
Symbian does not permit any global variables the vertex and normal
arrays must be declared constant, which limits the dynamic proper-
ties of objects.

The phone we were developing for, the Nokia 6630, ships with a
software implementation of OpenGL ES. While this takes care of
the low level rendering there is still need for a higher-level game
engine with ability to import models created with 3D animation
software and organize the content into a scene graph. Though M3G
(JSR 184) provides model loading features it does not allow us to
invoke the ARToolKit tracking library written in C++ since there is
no equivalent to Java Native Interfaces (JNI) for J2ME. There are
a few commercial game engines written in C++ but they are not
suited for AR research applications that use calibration data and a
tracking library to set the camera parameters.

To be able to import textured models from a 3D animation pack-
age we used a 3D converter application to exported the model to
C++ code with OpenGL floating-point vertex arrays and then wrote
a simple program that converted this into OpenGL ES compatible
fixed point vertex arrays.

For our experiments in collaborative mobile phone AR we needed a
way to transfer data between phones. We wrote a simple Bluetooth
peer-to-peer communications layer. Our collaborative set-up con-
sists of two mobile phones where one is a server that announces the
game as a service and provides a channel for the client to connect

to. The client makes an active search for the device and the service.
There is thus no need for IP configuration.

Finally, we added support for audio and tactile feedback to our plat-
form by using vibration and the media server from the Symbian
API.

5 Featured Work 1: Object Manipulation
and Scene Assembly

We need to develop input techniques that can be used one handed
and only rely on a joypad and keypad input. Since the phone is
handheld we can use the motion of the phone itself to interact with
the virtual object. For example, as in AR-PAD, we can fix the vir-
tual object relative to the phone and then position objects by moving
the phone relative to the real world. Two handed interaction tech-
niques can also be explored; one hand holding the phone and the
second a the marker paper on which AR graphics are overlaid. This
approach assumes that phone is like a handheld lens giving a small
view into the AR scene. The small form factor of the phone lets us
explore more object-based interaction techniques based around mo-
tion of the phone itself. Given these requirements there are several
possible manipulation methods that could be tried. The following
table shows the techniques we have implemented.

Positioning Rotation
A Tangible 1: The object is
fixed relative to the phone
and moves when the user
moves the phone. When re-
leased the object position is
set to the final translated po-
sition while its orientation
is reset to its original orien-
tation.

A ArcBall: When the
phone moves the relative
motion of the phone is used
as input into the arcball
technique to rotate the cur-
rently selected object.

B Keypad/Joypad: The se-
lected object is continu-
ously translated in the X,
Y or Z directions depend-
ing on the buttons currently
held down.

B Keypad/Joypad: The ob-
ject rotates about its own
axis according to joypad
and keypad input. Left and
right joypad input causes
rotation left and right about
the vertical axis etc.

C Tangible 2: The same as
Tangible 1, but the user can
use bimanual input, mov-
ing both the phone and the
object that the phone is
tracked relative to.

C Tangible 1: The object is
fixed relative to the phone
and moves when the user
moves the phone. When
released the object orienta-
tion is set to the final phone
orientation and position re-
set to its original position.
D Tangible 2: The same as
tangible 1, but the user can
use bimanual input, moving
both the phone and the ob-
ject that the phone is being
tracked relative to.

A user study with these techniques showed that the tangible trans-
lation was faster than the button interface, but most people felt that
the keypad provided higher accuracy. For rotation the arcball and
keypad interfaces were the fastest ones but there was no difference
between the techniques when it came to perceived accuracy. For
implementation details and the complete user study see the original
paper [Henrysson et al. 2005a].
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Based on these results we developed scene assembly application
for the purpose of exploring how translation and rotation can be
combined using both tangible and keypad interfaces. The appli-
cation consists of a minimal scene with two boxes and a ground
plane (see Figure 2). The boxes can be moved freely above the
ground plane. In the center of the image plane are virtual cross
hairs that are used for selection. Selection is made by pressing the
joypad button when the box is in the cross hairs. The selection
is based on a unique alpha value for each object and the selection
is accomplished by sampling the alpha value of the central pixel,
indicated by a crosshair. To indicate which object is selected, a yel-
low wireframe box is drawn around the object. When the joypad
key is pressed the object is locked to the phone and highlighted in
white. The virtual model is fixed in space relative to the phone and
so can be rotated and translated at the same time. When the button
is released the new transformation in the global (marker) space is
calculated. The ambition for the keypad interface is for it to allow
modification of all six degrees of freedom.

Figure 2: Ground plane and two boxes.

To switch between rotation and translation mode using the keypad
interface, we have implemented a semi-transparent menu activated
by pressing the standard menu button to the left of the joypad. By
making the menu semi-transparent we allow the user to see the
object to be transformed in the background. This will reduce the
risk of forgetting which transformation to apply when browsing the
menu. Since the selection is based on the alpha value of the central
pixel, no selection can be made in menu mode and no object may
have the same alpha value as the menu.

The menu layout consists of a 3 by 3 grid of icons that are mapped
to the keypad buttons 1 to 9. (See Figure 3). The chosen transfor-
mation will by applied to the object highlighted by a yellow wire-
frame.

To translate the object in the x-z plane we use the four directions of
the joypad and complement it with the 2 and 5 keys for translation
along the y-axis. For rotation using the keypad we use the joypad
to rotate around the x and z-axis, while the 2 and 5 buttons rotate
the object around the y-axis.

5.1 Case study: Virtual Lego

So far we have only considered a minimal but general application
allowing virtual block manipulation on a mobile phone. It can be
used as a base for any 3D application where altering of the spatial
relationship between objects are of interest. To demonstrate this we

Figure 3: The semi-transparent menu for selecting transformation
mode

have implemented a simple virtual LEGO application (see Figure
4).

In this application the user can build structures by attaching vir-
tual LEGO bricks to each other in any configuration that would be
possible with the physical counterpart. The virtual bricks form sub-
structures when attached to each other. These sub-structures can
be treated as a group by selecting the bottom brick. The transfor-
mation made to this brick is propagated to the other brick in the
sub-structure. This grouping into sub-structures is limited by the
fact that a top brick cannot be attached to more than one bottom
brick in the current implementation. However, one bottom brick
can be the base for two or more top bricks. There is no restriction
on how the number of bricks attached to each other.

When selected, the brick is detached from the brick below and can
be moved freely. If other bricks are attached directly or indirectly
to the selected brick, they will remain fixed in the local coordinate
system of the selected brick.

Figure 4: Virtual LEGO bricks

Once released the application checks if the released piece is posi-
tioned within the margin of error to be attached to another piece. A
grid restricts the transformations, making it easy to attach one piece
on top of another as expected from the physical equivalent. We have
not implemented any proper collision detection at this stage and the
attachment is not checked continuously.
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The phone vibrates when bricks are joined or pulled apart to give
tactile feedback on detachment and attachment events.

The keypad interface works as before, but the transformation incre-
ments and decrements are adapted to the grid.

For further implementation details see the original paper [Henrys-
son et al. 2005c].

6 Featured Work 2: Collaborative AR

We have developed a simple tennis game to explore face-to-face
collaborative AR on mobile phones. Tennis was chosen because
it could be played in either a competitive or cooperative fashion,
awareness of the other player is helpful, it requires only simple
graphics and it is a game that most people are familiar with.

Our tennis application uses a set of three ARToolKit markers
arranged in a line. These are printed on a piece of paper that is
placed between the players. When the player points the camera
phone at the markers they see a virtual tennis court model superim-
posed over the real world (see Figure 5). As long as one or more of
these markers are in the field of view then the virtual tennis court
will appear. This marker set is used to establish a global coordinate
frame and both of the phones are tracked in this coordinate frame.

To serve the ball the player points their phone at the court and hits
the 2 key on the keypad. Once the ball is in play there is no need
to use the keypad any more. A simple physics engine is used to
bounce the ball off the court and respond to when the player hits
the ball with their camera phones

The simulation takes place in marker space. To check for possible
collision with the racket, the position of the ball is transformed into
camera space. This transformation is given by the ARToolKit track-
ing. The racket is defined as a circle centered on the z-axis in the
xy-plane of the camera space. If there is an intersection between the
racket plane and the ball, the direction of the z-axis is transformed
into marker space and used to initialize the simulation.

By sending the direction and position vectors of the ball, the sim-
ulations will be synchronized each round. Both devices check for
collision with the net and if the ball is bounced outside the court.
If an incoming ball is missed the user gets to serve since the other
devices Bluetooth is in listening mode. The simulation will always
be restarted when data is sent and received. Each time the ball is hit
there is a small sound played and the phone of the person that hits
the ball vibrates, providing multi-sensory cues to help the players.
We have not implemented score keeping yet, relying on players to
keep score themselves. However this could be added in the future.

In order to evaluate the usability of mobile phones for collaborative
AR we conducted a small pilot user study. We were particularly
interested in two questions:

1 Does having an AR interface enhance the face to face
gaming experience?

2 Is multi-sensory feedback useful for the game playing
experience?

To explore these questions we conducted two experiments, both us-
ing the AR tennis game we have developed.

The user study showed that the AR was useful even though it was
not necessary for the game to be playable. The users appreciated
the multi-sensor feedback. However, sound turned out to be much
more important than haptic feedback. For the complete user study
see the original paper [Henrysson et al. 2005b].

Figure 5: View of the tennis court.

7 Discussion

Even though AR is not essential for any of the presented applica-
tions we believe that using the video as background helps the users
navigate in 3D. It also gives valuable feedback about the tracking.
If the markers are lost the user can use the video feed to quickly
maneuver the phone so that a marker becomes visible.

Tracking is the main limitation as the square must be visible at all
times. We use multiple markers to extend the tracking range. This
adds complexity to the calculations but we have managed to solve
the associated problems. We have also experimented with motion
flow tracking to allow one corner of the square marker to be outside
the image, but this needs more work in order to be an enhancement.
Possibly other sensors such as accelerometers or digital compasses
could assist the tracking and together with a GPS module make
outdoor mobile phone AR possible.

Our initial user experiences indicate that our manipulation set-up
allows 6 DOF manipulation for scene assembly applications. By
using an easily accessible menu we can map keys to axis instead
of functions. Thus we can extend the interface to other operations
such as scaling, cloning and various object specific features.

We believe our sample application can serve as a base for tabletop
3D applications where the spatial relationship between the objects
is important. We assume most such applications will be games sim-
ilar to the described virtual LEGO example, but some Virtual Real-
ity applications that require 6 DOF could possibly be developed.

Our work in collaborative AR will be extended with such manip-
ulation techniques rather than being limited to simple object inter-
sections.

In developing a collaborative AR game for mobile phones we have
learned a little about design guidelines that can be applied to future
collaborative games:

• Face-to-face mobile games could benefit from adding AR in-
terface technology.

• The use of multi-sensory feedback, especially audio is impor-
tant for increasing game enjoyment.

• If visual tracking is used then the ideal games have a focus
on a single shared game space, such as with our tennis game.
This enables the players to easily see each other at the same
time as the virtual content.
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• Due to the slow tracking performance of the current genera-
tion of phones games should not rely on quick reflexes or fast
competition.

• The screens on mobile phones are very small so collaborative
AR games need only use a limited amount of graphics and
should mainly focus on enhancing the face to face interaction.

• The use of an appropriate tangible object metaphor is also
important for the usability of mobile phone AR applications.
Physical manipulation of a phone is very natural so provides
and intuitive interaction approach for collaborative AR games.

8 Conclusion and Future Work

In this paper we have presented some of our works in mobile phone
AR that are the first of their kind. We developed a basic interaction
application for 6DOF object manipulation and scene assembly on
mobile phones using AR technology. We have also presented the
first collaborative AR game for mobile phones and presented the
results of our user studies, which might serve as design recommen-
dations for others who want to develop 3D applications on mobile
phones or PDAs. The user studies show that our platform is enough
for creating an enjoyable multi-player game using only simple 3D
graphics.

We will continue to explore the field of mobile phone AR and in the
future we would like to employ the 6DOF manipulations in a col-
laborative set-up and conduct in-depth user studies. More applica-
tions will be developed to explore other aspects of mobile phone AR
such as content creation and interfacing intelligent environments.
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Abstract

This work-in-progress paper describes a synthetic content approach
for measuring OpenGL ES 3D graphics performance of mobile de-
vices. Our approach relies on a synthetic content tool that can create
different kinds of OpenGL ES graphics content according to a large
number of input parameters. The input parameters are obtained
by analyzing real OpenGL ES content with an OpenGL ES tracer.
The synthetic content is validated by comparing the performance of
the real and synthetic contents in the same platform. Although we
do not yet have all the required elements needed by our synthetic
benchmark approach, initial studies have produced promising re-
sults which demonstrate that the synthetic content can match quite
well the real content from the performance point of view.

1 Introduction

Being able to benchmark the OpenGL ES performance as early as
possible in the design cycle of a mobile device is important. For ex-
ample, the benchmark results can be used to guide performance op-
timization. Benchmarks can be used to understand the performance
of a particular mobile device and how the performance changes
with different content; this is especially important for understand-
ing the performance of an OpenGL ES solution obtained from an
outside supplier. We can also provide good estimates of the avail-
able graphics performance of an upcoming mobile device to content
developers so that they can start designing content before they have
seen the actual device.

However, benchmarking a device while it is still under development
can be challenging. The most obvious benchmarking approach
would be to use publicly available OpenGL ES games and other ap-
plications. Alternatively, we could use dedicated benchmark soft-
ware such as FutureMark’s SPMark04 or 3DMarkMobile06. These
approaches, however, have their shortcomings. Third-party bench-
mark applications usually require completely integrated operating
system with GUI support and such environments may not be avail-
able until quite late in the device development cycle. Software
binary breaks may make it impossible to run existing binaries in
new devices. The source code of benchmark applications may not
be available, or if it is, it typically requires continuous, non-trivial
porting efforts. Device manufacturers do not usually grant access
to software development environments to outside companies until
the product has been publicly launched, and some devices do not
even support third party native applications. Finally, the OpenGL
ES content in mobile devices ranges from simple 3D UI elements to

∗e-mail: kari.j.kangas@nokia.com
†e-mail: mika.qvist@nokia.com
‡e-mail: kari.pulli@nokia.com

Java M3G games to full-blown native OpenGL ES games. There-
fore, using only few benchmark applications does not cover the ex-
pected range of OpenGL ES use cases very well.

In order to avoid these problems, we have adopted a synthetic
benchmark content approach for measuring the OpenGL ES perfor-
mance of mobile devices. Our approach relies on a special synthetic
content tool that can create varying OpenGL ES graphics content
according to a large number of input parameters. For measuring
the OpenGL ES performance, the tool is executed on a target plat-
form with selected input parameters. When executed, the tool draws
the same synthetic content repeatedly and measures the steady-state
frames-per-second (FPS) performance of the particular platform we
are benchmarking.

The main input parameters for our synthetic content tool are trian-
gle count, triangle size, and overdraw factor (how many times each
pixel is written to, on the average). Triangles can be textured and
we can control, for example, the texture type and texture filtering
mode. The synthetic content tool has been written mostly using
platform-independent ANSI C, with a special emphasis on making
the software as easy to port as possible to different platforms. The
OpenGL ES content used in benchmarks is created completely dur-
ing run-time to keep the binary size small and to eliminate the need
for artistic work.

The main problem with synthetic benchmark content is the ques-
tion whether or not the synthetic content is similar enough (from
the performance point of view) to the real content to be usable for
benchmarking. The solution we present in this paper is that we
measure features such as triangle count, average triangle size, and
overdraw factor from real content, create synthetic benchmark con-
tent that has matching features, and then compare the performance
of the real content and the synthetic content on the same platform.
If the performance matches well enough, we conclude that we have
successfully synthesized the real content.

Characterizing real-world 3D graphics workload for benchmark-
ing purposes is described for example by Dunwoody and Linton
[1990], Mitra and Chiueh [1999], and more recently by Antochi et
al. [2004]. In our ongoing work, we are not focusing so much on
analyzing the workload features, but more on the question how the
analyzed workload features can be mapped into synthetic bench-
mark content so that the original workload and the synthetic work-
load are similar enough from the performance point of view. Our
work resembles also the work done in render-time estimation (see
for example [Funkhouser and Sequin 1993]) in a sense that we ap-
proximate real workload with a simplified synthetic workload (or
model).

Although we do not yet have all the required elements needed by
our synthetic benchmark approach, initial studies so far have pro-
duced promising results.

2 Creating synthetic benchmark content

The process of creating synthetic benchmark content is illustrated
in Figure 1. We begin the synthetic benchmark content creation by
running the OpenGL ES application we wish to synthesize on top
of an OpenGL ES tracer. The tracer is a special version of OpenGL

41



��������	


����

����

��������	

��

��
��

������

��

�

��
���

	�������


������������

��������	


�
�����

�������

��
�����

�������

��
�����

������� 
�
�

�
�


������� 
�
�

�
�


��

������

��

�

��
���
��

������

��� �
��

Figure 1: Synthetic benchmark content creation process.

ES library that captures the sequence of OpenGL ES calls, with the
corresponding input parameters, into a trace file and then forwards
the calls and parameters to the actual OpenGL ES library. To keep
the size of the trace reasonable, we can instruct the tracer to capture
only the OpenGL ES calls comprising the specific frames we are
interested in subsequent analysis. This also allows us to minimize
the delay caused by the trace capture as we can use a memory buffer
of limited size for trace storage instead of constantly writing the
trace into a memory card or similar mass storage.

The purpose of the tracer is to separate the OpenGL ES graphics
calls from the OpenGL ES application. We can use the OpenGL
ES trace player to replay the sequence of OpenGL ES calls, which
recreates the OpenGL ES graphics in a controlled environment. For
example, we can measure the performance of traced OpenGL ES
content potentially on any OpenGL ES platform.

To get the content features such as triangle count, average triangle
size, and overdraw factor for each frame in the traced OpenGL ES
content, we feed the trace to an OpenGL ES analyzer. The OpenGL
ES analyzer is a special version of the OpenGL ES library that
keeps track of various content features used during rendering. For
example, the analyzer records the number of incoming triangles,
the average size of triangles (in fragments), and the total number of
fragments written to the frame buffer for each OpenGL ES frame.

It is possible run the OpenGL ES application directly on top of the
OpenGL analyzer to get the content features immediately as the
application is run. However, the processing needed for the content
analysis may interfere with the rendering so that some applications
might, for example, skip frames to keep the rendering in sync with
the audio playback. Alternatively, the analyzer can be implemented
so that it analyzes the OpenGL ES calls directly without doing any
actual rendering.

After the content features are extracted from the trace, we create
synthetic benchmark content that has the matching content features.
We can either make a matching synthetic frame for each original
content frame, or we can make a single synthetic frame that repre-
sents a large combination of content frames. We can run the syn-
thetic content tool on top of our OpenGL ES analyzer to make sure
the content features are similar in both the original and synthetic
content. Synthetic content tool will not skip any frames even if the
rendering is very slow as the tool fully controls its own execution.

In order to verify and validate the synthetic benchmark content,
both the synthetic the actual OpenGL ES trace are rendered on the
same OpenGL ES platform. If the performance does not match
within desired limits, we can refine the models in which the syn-

thetic content tool creates OpenGL ES content from the input pa-
rameters. We can also modify the analyzer, if new types of input
parameters are needed. Once we have successfully synthesized the
content in one OpenGL ES platform, we can verify that the perfor-
mance matches also on different platforms.

Eventually, the performance of the synthetic benchmark content
should match the performance of the original OpenGL ES content
on all tested platforms. When this happens, we can use it for bench-
marking purposes instead of the original OpenGL ES content. We
can even extrapolate from existing content so that we can test sys-
tem responsiveness on content that has not been created yet.

3 Discussion and Future Work

We do not yet have a working OpenGL ES tracer, trace player,
or analyzer. Instead, we have these tools for (desktop) OpenGL,
and we have used them to analyze the content features of exist-
ing OpenGL games such as Quake and used the resulting features
to create synthetic OpenGL ES benchmark content. The synthetic
content tool works on top of both OpenGL (Win32) and OpenGL
ES (Win32, Symbian, and PocketPC).

To provide some evidence that our current synthetic content
tool can produce useful benchmark content, we have ana-
lyzed by hand the content features of one moderately complex
OpenGL ES application (Nokia E3 2005 demo, see http://web.n-
gage.com/e3/video/videos.html?ID=22). We created matching syn-
thetic benchmark content and compared the performance. The FPS
performance of the real application was around 20 FPS whereas the
FPS performance of the synthetic content was 24 FPS. This quick
comparison should be considered only as an early indication that
the performance of our synthetic benchmark content is roughly in
the same ballpark as the real OpenGL ES with the matching content
features.

During our work, we have found out that synthetic content tool is
a very handy tool for experimenting how a particular OpenGL ES
platform performs with different kinds of content. Our tool has
a large set of easily configurable input parameters so creating a
wide variety of synthetic content is easy. We have also developed
tools for rapid presentation and comparison of the benchmark re-
sults. Both the easy content configurability and the ability to rapidly
present the results have proved to be very valuable for understand-
ing and especially communicating the 3D performance issues. As
an example, if someone asks what happens to the performance once
we change the texture filtering mode from nearest to bilinear and
keep everything else as is, we can quickly measure it and present
the results in an easily understandable format.

We have also investigated the possibility of using the trace as bench-
mark content. The main problem with trace is that the benchmark
content (trace) cannot be modified very easily. For example we
cannot easily modify the triangle count per frame and see how that
affects the performance. However, once we analyze the content, we
can change some parameters to create speculative benchmark con-
tent estimating possible future OpenGL ES applications, which we
can use to see how the performance of a certain platform scales up.

Our future work comprises of developing the OpenGL ES tracer,
trace player, and analyzer. After these tools are in place, we
can properly analyze how well our synthetic benchmark content
matches the source OpenGL ES content using more applications
and different platforms. We are also studying different mechanisms
of how the analyzed content features are used best to create syn-
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thetic content with matching content features and similar perfor-
mance characteristics.

We are also extending our synthetic content tool so that it can sup-
port other types of workloads besides OpenGL ES. For example,
the synthetic content tool can generate synthetic CPU and memory
load, play audio, and do game physics engine calculations while
rendering OpenGL ES graphics. The synthetic content tool is de-
signed so that diverse workloads can be mixed and matched easily
within the same benchmark frame. Having this kind of mixture of
workloads allows us to analyze the total system performance for
complete and more realistic applications and use cases instead of
concentrating on unrealistic graphics-only applications. As an ex-
ample, we can easily test whether a particular phone model is ca-
pable of simultaneously transmitting and receiving wireless data at
certain rate, playing mp3 with certain bit rate, calculating collision
detection for three objects, and rendering graphics similar to Quake
at 20 frame-per-second. By using a current analyzer, we can also
easily measure how much power the phone consumes while doing
all this. We feel that this flexibility allows us to use the synthetic
content tool in scenarios that are not supported directly by other
synthetic benchmark systems that concentrate only on one specific
performance area such as 3D graphics performance.

We have also investigated the possibility of analyzing the high level
structure of real-world OpenGL ES frames from the OpenGL ES
trace. This structure could highlight for example how the appli-
cation first draws the background and the background objects, fol-
lowed by the foreground objects, followed by a special effects layer.
We think that this structural information will allow us to better un-
derstand the important features of real OpenGL ES content. We
also think that we could use the structural information to improve
the quality of our synthetic content, for example by compositing the
synthetic benchmark content frame from a set of synthetic content
objects which are structured within a frame in a similar way as their
counterparts in the OpenGL ES trace.

Finally, we are also extending our synthetic benchmark tool to sup-
port OpenVG benchmarking.

4 Conclusion

We have presented an approach and some preliminary results for
estimating 3D performance of mobile devices while they are still
under development and even when there is little existing 3D content
available. Such a system is valuable both for engineers optimizing
the design as well as for content creators preparing applications for
the device. In both cases, performance estimates for applications
could be made available even before hardware to run them exists.
The crux of our future work lies in transferring our analysis tools
from OpenGL to OpenGL ES, extending the analysis of content
features and validating them with more experiments, and including
other workloads such as the use of CPU for application logic and
audio.
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Abstract

Recently the constraint approach to proxy-based volume
haptics was introduced which provided a stable and effec-
tive means of conveying information about volumetric data
through a haptic instrument. In this paper we present
a proof that the approach is incapable of handling non-
orthogonal constraints and discuss the implications of this
restriction in detail. We also describe how full utilization of
haptics applications in which multiple properties are used to
enhance the understanding of complex data requires the use
of non-orthogonal constraints. We then show how proxy-
based volume haptics can be modified to allow for gen-
eral constraints through the introduction of haptic primi-
tives used to model the constraints. By balancing the forces
exerted by the primitives on the proxy continuously, non-
orthogonal constraints can be handled.

CR Categories: H.5.2 [Information Interfaces and
Presentation]: User Interfaces; I.3.6 [Computer Graph-
ics]: Methodology and Techniques—Interaction techniques;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism—Virtual reality

Keywords: Proxy-based volume haptics, orthogonal con-
straints, haptic primitives

1 Introduction

It has been shown that adding haptic feedback to an ap-
plication can significantly increase both precision and speed
of human-computer interaction. Scientific visualization and
data exploration are no exceptions. Most research on haptics
focuses on surfaces, so the lack of surfaces in volume data
demands alternative methods that do not require explicit
surface representations.

The first method available for interaction with volumet-
ric data was the force functions-based approach[Iwata and
Noma 1993; Mor et al. 1996; Avila and Sobierajski 1996;
Hashimoto and Iwata 1997; Infed et al. 1999; Lawrence et al.
2000]. With this method the force is expressed as a func-
tion of the data represented. It is easy to implement and
therefore quite popular, but suffers from instability. Also,
representing all features as simple forces of varying strength
and direction can, in some cases, be considered to be a too
simplistic approach.

As an alternative, the proxy-based approach to volume
haptics was introduced in [Lundin et al. 2002]. It is more
suitable for representing shapes in the volumetric data. The
method generates simple haptic constraints, described in de-
tail in section 2, that yield to a certain force. Using these

∗e-mail: karlu@itn.liu.se

constraints surface feedback can be generated from scalar
density data by using the gradient information in the data.
Since the constraints, and thus also the surfaces, yield to a
certain force this method avoids introducing haptic occlu-
sion; in other words it does not physically obstruct the ex-
ploration. The method has also been generalized[Ikits et al.
2003] to generate other shapes than surfaces and also include
vector and tensor fields.

The proxy-based approach complements the force
function-based methods by introducing “passive” interac-
tion, as opposed to the continuous force from a simple func-
tion. While a force function calculates the feedback solely
from the features found in the local data, a proxy-based
method has the ability to generate feedback in response to
user actions, so that if the user applies no force, no force is
fed back.

In this paper we present a proof that the proxy-based
approach breaks down if the constraints become non-
orthogonal. It is thus incapable of handling non-orthogonal
constraints without introducing severe haptic artifacts. We
also describe the need for support of non-orthogonal con-
straints in haptic interaction of volumetric data and what
limitations the lack of such support force on a haptic envi-
ronment.

In [Lundin et al. 2005] we introduced haptic primitives
as a way of modelling constraints from conceptually funda-
mental building blocks. By balancing the primitives it is
also possible to include non-orthogonal constraints. In the
second part of this paper we show how the use of haptic
primitives, together with a numerical solver, enables the in-
clusion of general constraints in the haptic feedback loop,
without the need for orthogonality.

2 Proxy-based Volume Haptics

In the proxy-based approach an internal proxy to the haptic
probe is introduced. With the proxy, three simple steps are
used in each time-frame of the haptic loop to produce the
desired haptic effect from the constraints. First local data
properties around the proxy point are determined. Then,
depending on the local data, the proxy is moved a certain
distance in local space. Finally the new proxy position is
used to calculate the force feedback for the haptic instru-
ment. These steps for proxy-based volume haptics are shown
in figure 1.

1) Properties The continuous property fields needed to
generate the haptic feedback are estimated from the discrete
volumetric data through interpolation at the proxy position,
see figure 1(a). For example the gradient vector field can be
estimated from scalar data and curl or divergence may, if
needed for generating the haptic effect, be extracted from
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Haptic
instrument

~∇V (~xproxy)

~xproxy(T − 1)

~xprobe(T )
~xprobe(T − 1)

(a) Step 1: Evaluate local data proper-
ties. In this example the gradient vector,
~∇V (~xproxy), is extracted at the proxy po-
sition, ~xproxy.

~xproxy(T )

~xproxy(T − 1)

~xprobe(T )

(b) Step 2: Move the proxy point accord-
ing to haptic constraints, in this case a to
simulate the feeling of a plane.

~xproxy(T )

~ffeedback

~xprobe(T )

(c) Step 3: Calculate feedback force by sim-
ulating spring-damper coupling.

Figure 1: Three steps for generating proxy-based haptic feedback, in this example from a virtual surface.

the vector data. These data are used in the second step
to control the constraints that define the haptic effect. To
produce more natural feedback from the volumetric data,
transfer functions can be used to provide estimates of ma-
terial properties directly from the data[Lundin et al. 2002;
Avila and Sobierajski 1996; Aviles and Ranta 1999]. Even
though using transfer functions for haptic feedback is not
as established and extensively tested as using transfer func-
tions for visual volume rendering, there is a close similarity
between how they are used to define visual colours and to
estimate material properties. Some examples of properties
that are estimated and affect the haptic feedback are viscos-
ity, friction, stiffness and flow strength.

2) Movements In the constraints approach simple one di-
mensional constraints, restricting the movement of the hap-
tic instrument, are defined as functions of the properties of
the local data. The strength of the constraint is controlled
through a transfer function, as described above, and the di-
rection of the constraint can be controlled by a vector prop-
erty to produce a haptic representation of that property, for
example the gradient. Each constraint controls the move-
ment of the proxy in a direction to simulate a constraint in
that direction. For a direction, represented by the unit vec-
tor q̂i, the equation that moves the proxy in the direction is
formulated as

~η = ~xprobe − ~xproxy (1)

~x′proxy = ~xproxy +


q̂i (~η · q̂i − si/k) , if si < k (~η · q̂i)

0, otherwise
(2)

where ~xproxy and ~xprobe are proxy and probe position, si is
the strength of the constraint and k is the current stiffness
used in the virtual coupling described below. By combining
three independent orthogonal constraints in a local frame of
reference a feeling of surfaces, friction, viscosity or transverse
damping can be generated. The proxy movement is calcu-
lated separately in each direction and combined linearly to
give the new proxy position, see figure 1(b).

3) Feedback After the new proxy position has been de-
termined, the force feedback is calculated from a virtual
spring-damper coupling the probe with the proxy point (see

figure 1(c)). Thus the force feedback, ~ffeedback, is evaluated

through

~ffeedback = k (~xproxy − ~xprobe) + D (~vproxy − ~vprobe) (3)

where ~xproxy and ~xprobe are proxy and probe position, ~vproxy

and ~vprobe are proxy and probe velocity and k and D are
stiffness and damper parameters, respectively.

3 Non-orthogonality Problem

As has already been mentioned, the above outlined con-
straint approach to proxy-based volume haptics is incapable
of handling non-orthogonal constraints correctly. In this sec-
tion we present a proof of this statement and discuss the
impact and consequences of this.

3.1 Current Limitations

The constraint approach to proxy-based volume haptics will
produce severe haptic artifacts when non-orthogonal fea-
tures are encountered. This can be easily proven using a
simple example with three constraints of zero strength. With
no strength on the constraints (and a non zero stiffness, k)
the proxy should end up at the probe position, so that the
feedback from equation 3 yield zero.

Orthogonality requirement. Here it is shown that this re-
quires orthogonality between the different constraints. From
equation 2, by setting the strength, si, to zero and applying
it three times, in different directions, we get

~η = ~xprobe − ~xproxy (4)

~x′proxy = ~xproxy + q̂1 (~η · q̂1) + q̂2 (~η · q̂2) + q̂3 (~η · q̂3) (5)

For the proxy, ~xproxy, to end up at the probe position, ~xprobe,
we see that

~x′proxy = ~xprobe

= ~xproxy + ~xprobe − ~xproxy

= ~xproxy + ~η (6)

By combining equations 5 and 6 we get

~η = q̂1 (~η · q̂1) + q̂2 (~η · q̂2) + q̂3 (~η · q̂3) (7)

which can only be true if the unit vectors, q̂, are orthogo-
nal. Thus, to get zero feedback from constraints with zero
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~xprobe

~xproxy

(a) Orthogonal constraints
move the proxy to the probe
position.

~xprobe

~xproxy

(b) Non-orthogonal con-
straints move the proxy to
an incorrect position.

Figure 2: Proxy movements with two constraints using
the constraint-based approach. Both constraints have zero
strength in this example and the proxy should be moved to
the probe position.

strength, each constraint has to be orthogonal to the other
constraints.

The individual movements due to non-orthogonal con-
straints will contribute to each other, which results in a
different movement than desired. This effect is shown in fig-
ure 2. All combinations of non-orthogonal constraints show
this behaviour and there is no simple way to circumvent this
problem.

3.2 Impact

In research on and applications of haptics in scientific visu-
alization, single properties have often been used to generate
feedback from a single dataset at a time. Interacting with
a single object at a time is common in visualization and
exploration applications, however, as we move closer to im-
mersive virtual reality environments this might change. In
virtual reality (VR) applications it is common that the user
interacts with multiple objects at a time. This has not been
identified as a problem, since multiple surface objects can be
easily handled by a user and it is the inter-object collision
handling that has been the most challenging problem. With
the constraint approach to volume haptics, however, inter-
action with volumetric data is restricted to single objects at
a time. Thus as volume visualization and haptic force feed-
back are combined in virtual environments, the constraint
approach will not suffice.

The biggest problem is, however, in the interaction with
single objects of more advanced nature. Scientific visualiza-
tion of multi-modal data is a growing area in which multi-
ple datasets of the same object but of different modalities
are co-located and co-registered to provide more information
about the object than is possible with a single modality. An
example is Computational Fluid Dynamics that produces
both vector data describing the flow and several extra scalar
datasets describing pressure, density, temperature, etc. The
features of the different modalities are not guaranteed to be
mutually orthogonal. Thus, the requirement of orthogonal
constraints in the haptic interaction makes feedback from
multi-modal data impossible.

Also in interaction and exploration of a single dataset
there may be multiple properties that can be used to pro-
duce simultaneous information feedback. One example of
this is the virtual wind-tunnel, where several properties of
the vector data alone are interesting, such as the path of the
flow, the strength of the flow and the vorticity. Since the
constraint approach is incapable of handling non-orthogonal

(a) Point primitive (b) Line primitive

(c) Plane primitive (d) Directed force

Figure 3: Forces from the haptic primitives.

constraints simultaneously, the user must select only a sin-
gle property to provide both information about the data and
guide the user through the exploration process.

4 Haptic Primitives

So far we have proved the existence of the orthogonality-
problem and discussed its impact. In this section we describe
our solution to the problem.

Using the single-dimensional constraints, more advanced
constraints and types of behaviour are generated by rotat-
ing the constraints with respect to the haptic instrument.
Our first step in the process of removing the orthogonality-
problem is, instead, to provide one type of constraint for
each desired type of haptic behaviour. The most basic way
to discriminate types of constraints is by their dimensional-
ity — constraints of one, two and three degrees of freedom.
We call these plane, line and point, respectively, from the
shape of their respective domain of constraint free motion.
By adding a fourth type of haptic effect, force, we have a
set of basic components that can be used to build any of the
previously encountered haptic effects. We call these base
components haptic primitives[Lundin et al. 2005].

The primitives provide a high level of abstraction that can
be used to model a wide range of haptic modes and combi-
nations of such, representing data from different scientific
disciplines. They are designed to pull and push the haptic
probe in well-defined directions to simulate features in the
volume, see figure 3. As we will show this is done by control-
ling the proxy point movements. The haptic primitives and
their properties are thus used to generate haptic feedback in
a manner similar to that of how the constraints are used.

The haptic primitives can be expressed as simple force
functions as shown below. It should be noted that the forces
originating from the primitives act only on the proxy and
are a means to find the new proxy position. This is done by
balancing the net force from the primitives against the force
feedback from equation 3 (see example in figure 4). This
is presented in detail in section 4.2. After the new proxy
position is found, the force feedback is calculated through
the virtual coupling, equation 3.
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~fplane~fpoint

~xprobe

~ffeedback~xproxy

Figure 4: Finding the proxy position that balances the force

between plane and point primitive (~fplane and ~fpoint, respec-

tively) and feedback force (~ffeedback).

4.1 Intermediate Force Representation

In this section we describe the haptic primitives and how
they, from their position and strength, define the force field
that affects the proxy. For primitive i at position ~xi having
a strength of si, if the primitive has a direction/orientation
then this is defined by a unit vector, q̂i. The proxy position
is, as before, denoted ~xproxy.

The directed force is the simplest primitive. It has no

position and generates a force ~fi defined by

~fi (~xproxy) = siq̂i (8)

This primitive can be used to simulate gravity or magnetic
attraction. It also provides a means for integrating force-
function feedback with the proxy-based approach.

The point primitive attracts the proxy towards the position
of the primitive. With the displacement of the proxy relative
to the primitive being ~xi − ~xproxy, we calculate the force by

~fi (~xproxy) =

(
~0, if |~xi − ~xproxy| = 0

si
~xi−~xproxy

|~xi−~xproxy| , if |~xi − ~xproxy| 6= 0 (9)

The uniform feedback from this primitive makes it suitable
for such effects as viscosity.

The line primitive has both position, strength and orienta-
tion. It attracts the proxy towards the closest point on the
line defined by the position and the direction vector q̂i. With
a vector ~m, pointing from the proxy to the closest point on
the line, being expressed by

~m = q̂i [q̂i · (~xproxy − ~xi)]− (~xproxy − ~xi) (10)

we calculate the force by

~fi (~xproxy) =


~0, if |~m| = 0

si
~m
|~m| , if |~m| 6= 0

(11)

The plane primitive is most similar to the simple constraint
in that it produces a yielding restraining force in one single
direction. To generate this effect it attracts the proxy in the
direction of the surface normal, q̂i, but only when the proxy
is on the negative side of the surface, i.e. when

(~xproxy − ~xi) · q̂i < 0 (12)

~ffeedback

position

~fplane si

~xi
~xprobe

fo
rc

e

Figure 5: Finding the static equilibrium with a plane prim-
itive — balance between the force feedback from equation 3
and the plane primitive at position xi, equation 13.

As long as equation 12 holds, the force from the plane prim-
itive is constant, so we define the force by

~fi (~xproxy) =


0, if (~xproxy − ~xi) · q̂i ≥ 0

siq̂i, if (~xproxy − ~xi) · q̂i < 0
(13)

4.2 Finding the new Proxy Position

To simulate the haptic feedback, the proxy is moved to a new
position in every time-frame. This new position is found
by balancing the force feedback from equation 3 with the
force from the haptic primitives involved, as is shown in
figure 4. In our work we disregard the damping term to
simplify the calculations, that is we set D = 0 in equation 3.
Suppose that we have sets of directed force, point, line and
plane primitives denoted Adirected, Apoint, Aline and Aplane,

respectively. We calculate the residual force, ~fres, from the
primitives and the force feedback by

~fres = −k (~xproxy − ~xprobe)

+
X

i∈Adirected

si q̂i

+
X

i∈Apoint

(
0, if |~xi − ~xproxy| = 0

si
~xi−~xproxy

|~xi−~xproxy| , if |~xi − ~xproxy| 6= 0

+
X

i∈Aline


0, if |~m| = 0

si
~m
|~m| , if |~m| 6= 0

+
X

i∈Aplane


0, if (~xproxy − ~xi) · q̂i ≥ 0

siq̂i, if (~xproxy − ~xi) · q̂i < 0
(14)

The new proxy position is then found by solving

~fres (~xproxy) = ~0 (15)

Equation 15 is solved using a numerical solver that
searches for a best match by minimizing the magnitude of
the function. The minimum magnitude of the residual force
will yield the same proxy position as an analytical solution
would (see figure 5).

As an example of the effects produced by our approach
consider only the plane primitive in balance with the force
feedback: the proxy will be positioned on the plane as long
as the force feedback projected on the plane normal is less
than or equal to the strength of the plane primitive. Then
the setup behaves just like surface haptics, see figure 6, steps
a to c. When the probe is moved further away from the
plane, the proxy will find an equilibrium below the plane,
giving the same effect as the constraints of earlier methods,
see figure 6, step d. A similar effect is also generated by the
point and the line primitive.
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(a) (b)
(c)

(d) ~xprobe

si/k

~xproxy

Figure 6: How the proxy is moved over a plane primitive
when the probe is moved. The maximum distance between
the proxy and probe positions induced by the haptic primi-
tive is given by the primitive strength divided by the stiffness
in equation 3, i.e. si/k.
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Figure 7: Number of iterations needed for our numerical
solver to converge during a haptic exploration. The velocity
of the probe is also presented.

4.3 The Numerical Solver

The solver we use to find the best match is a simple Euler
solver. The problem is a non-linear minimization problem
that can be solved using alternative iterative methods, such
as the Nelder-Mead Solver. We have, however, so far found
no analytical solution.

The precision and performance of the numerical solver is
of utmost importance since it is the part of the algorithm
that determines the proxy position for each time-frame and
is the most computationally intensive part of the system.
To speed up the convergence for the solver while maintain-
ing high precision for the result we deploy an adaptive step-
length approach. For two haptic primitives we find the so-
lution in, typically, 30–40 iterations which takes less than
100 µs on our current hardware. The time complexity of
the solver with respect to the number of haptic primitives
is O(N). A graph describing the solver behaviour over a
haptic exploration can be found in figure 7.

5 Conclusions

We have shown that the current constraint-oriented proxy-
based approach to volume haptics has a severe limitation:
all features represented by the haptic feedback must be or-
thogonal for the algorithm to work. A wide adoption of

haptics for scientific visualization needs a solution to this
problem. With this limitation haptic feedback can not be
generated from an interaction with multiple objects or with
multi-modal data.

To solve the problem, all constraints must be handled
concurrently. This is done in our new primitive-based algo-
rithm for volume haptics, introduced in [Lundin et al. 2005].
The method uses the notion of haptic primitives both as
a comprehensive abstraction layer for implementing haptic
schemes and as an effective means of calculating the haptic
force feedback. Our solution to the orthogonal constraints
problem allows for simultaneous feedback from multiple ob-
jects, haptic interaction with multi-modal data and simul-
taneous haptic interaction with multiple properties from a
single dataset.
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Figure 1: Three examples of generated images using 25 coefficients.

Abstract

In many applications it is important to perform image-based relight-
ing. That is, to synthesize a scene in various lighting conditions
without explicitely rerendering the image. This paper proposes an
efficient compression method, which after a precomputing step al-
lows an efficient re-rendering of the scene. The best results are
achieved on scenes with a limited number of materials, but it may
also be used on arbitrary scenes. In this work images of a static
scene are generated and the method is exemplified using a dataset
of ray-traced images.

CR Categories: I.3.3 [Computer graphics]: Picture/Image Gener-
ation; I.3.7 [Computer graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing and texture

Keywords: BRDF, PCA, image-based relighting

1 Introduction

Image-based relighting is important in many applications, for ex-
ample in the entertainment industry and in flight-simulators. This
technique is based on methods developed decades ago and the first
renderings with reflection mapping were performed by [Blinn and
Newell 1976]. In the years to follow the ideas were developed fur-
ther by many people and were formalized by [Greene 1986].

A very large amount of work has been performed in the field of re-
lighting. In [Kristensen et al. 2005] a general method for real-time
relighting of scenes was presented. This method used the concepts
of unstructered light clouds and clustered PCA to render scenes
with moving lights and dynamic cameras. Another example is the
method presented by [Wood et al. 2000], who used a surface light-
field to generate images of shiny objects at arbitrary lighting con-

∗email:BjornA Olsson@hotmail.com
†email:Anders.Hast@hig.se
‡email: andyn@itn.liu.se

ditions. Another method was presented by [Nimeroff et al. 1994],
who used basis images for efficient re-rendering of a scene.

The PCA method has previously been used to render transparent
objects (See [Matusik et al. 2002]). In contrast to earlier meth-
ods the approach presented in their paper computed the principal
components for global reflection maps. In [Matusik et al. 2002]
an approach similar to JPEG-compression was used. The reflec-
tion maps were divided into zones of 16x16 pixels and each zone
was compressed to a small number of coefficients. Another paper
by [Epstein et al. 1995] investigated the number of eigenimages re-
quired to generate the scene. In this case global eigencomponents
computed from a data set of variably lit images were used. A re-
lated approach, the eigentexture method, was described by [Nishino
et al. 1999].

Another approach, matrix radiance transfer, which also builds on
PCA compression of BRDFs was presented by [Lehtinen and Kautz
2003]. In [Ho et al. 2003] a related approach was described. The
PCA method was applied on a set of reference images with the
same view, but with different illumination conditions. However,
in contrast to the method presented in this paper PCA was applied
block-wise. In [Shim and Chen 2005] a statistical approach, which
can be used to compare various methods estimating surface reflec-
tion functions was described. A method related to the approach
presented in this paper was described in [Sloan et al. 2002]. In that
paper the reflection functions were represented using spherical har-
monics. CPCA (Clustered principal component analysis) is another
way to compress precomputed radiance transfer, which was used
in [Sloan et al. 2003]. The algorithm was implemented on graphics
hardware. An interesting method using CPCA can be found in [Liu
et al. 2004]. It was used to perform relighting on large models.

In this paper a new reconstruction technique applied on reflection
functions is described. The goal of this work has been to develop a
simple method, which is fast and efficient. This approach builds on
the PCA method and is especially efficient for scenes with a lim-
ited number of textures. For the method presented in this paper the
viewpoint is fixed relative to the object and a set of photographs is
captured while the light source is repositioned for each photograph.
In addition this representation allows a very efficient reconstruction
step due to the linear basis in the PCA method. After a precomputa-
tion step the scene can be relighted in arbitrary lighting conditions.

By using this method a reflection map can be characterized with a
small number of coefficients. In this paper the method is applied to
still images, but it would be very easy to generalize the method to
arbitrary views by predicting the image appearance for several di-
rections and interpolating the current view. The images used in this
work are ray-traced, but it would also be possible to use captured
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images. In the next section the method is described in detail. The
results and a discussion follows.

2 Method

The method proposed in this paper was applied to one data set
of ray-traced images. After the precomputation and configura-
tion phase it was possible to generate images of arbitrary lighting
conditions without explicitely resynthesizing the scene. The PCA-
method was used to compress the reflection functions to small co-
efficient vectors.

2.1 Principal Component Analysis

The principal component analysis method (PCA for short), also
named the Hotelling transform (See for example Joliffe [Joliffe
2002] or Haykin [Haykin 1999]) is a general method to compress
input data to smaller representations by computing the major com-
ponents of the input-data. This technique is common in statistics as
well as in image processing.

The PCA method is used to decompose images into a number of
basis components. The pixels in an image are rearranged into a
vector x̄ = [x1,x2, . . . ,xN ] of length N. We assume that we have
M such vectors. The transpose is denoted ¯xT . The mean vector
mx is defined asmx = E(x̄) and the covariance matrix isCxx =
E((x̄−mx) · (x̄−mx)

T ), whereE(.) means the expectation value
of a stochastic variable. The eigenvalue problem is then defined
CxxV = VD, whereV is a matrix with the eigenvectors as columns
andD a diagonal matrix with the eigenvalues along the main diag-
onal.

For the resolution needed the size of the covariance matrix becomes
impractical. The size of the matrix can be decreased by using di-
mensionality reduction [Haykin 1999]. LetY be the rectangular
data matrix of sizeMxN. The matrix has the same height as the
number of vectors (M). The eigenvalue problem,CxxV = VD, can
be written as

Cxx =
1

N2 YTY ⇒ 1
N2 YTYV = VD (1)

The size of the covariance matrix is reduced from a size ofNxN
elements to a size ofMxM elements by multiplying withY from
the left and changing variableW = YV.

1
N2 YYTYV = YVD ⇒ 1

N2 YYTW = WD. (2)

We have now computed the eigenvectors inW, which is a sub-space
of V. To transform them to the original systemW is multiplied with
YT.

W = YV ⇒ YTW = YTYV = CxxV ⇒ YTW = VD (3)

VD are the eigenvectors multiplied with the eigenvalues. This
scaling-factor does not alter the result since the principal compo-
nents are normalized before usage

φ(k) =
V(:,k)

√

V(:,k) ·V(:,k)T
. (4)

An image is transformed to a coefficient vector by

κ (k) = (x ·φ(k)
T
),k = 1, . . . ,N (5)

Figure 2: A number of original images for varying lighting condi-
tons are exemplified in this figure.

This transformation is denotedx
PCA→ κ . The inverse transform

κ PCA−1→ x is defined by

x =
N

∑
k=1

κ (k) ·φ(k) (6)

In practical applications vectorκ is often truncated and only theP
most important coefficients are computed

κc(k),k = 1, . . . ,P (7)

In this case the inverse transform will be inexact

κc
PCA−1→ x̃. (8)

2.2 Precomputing and synthesizing

The method can be divided into the precomputing and synthesizing
phases:

Precomputing Reflection maps,Rxy, one for each pixel, are com-
puted from the input images. These reflection maps have size
QxQx3 elements. The PCA method is used to compress the
reflection maps to small coefficient vectors, one vector for
each pixel.

Synthesizing The scene is relighted for a specific lighting condi-
tion. This is performed by relighting each individual pixel by
using the corresponding reflection function and the lightmap.
By using the PCA approach it is possible to perform the com-
putation much more efficiently.

2.3 Precomputing

The initial configuration phase can be divided into a number of
steps:

Collect data set This method uses a database of images contain-
ing images of one identical scene lighted by a point source
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with varying direction. The database is used to construct a
method to relight the scene with arbitrary light sources. The
data set can contain either captured or ray-traced images, but
the best results are achieved for scenes with a limited number
of surface textures. Since this work has concerned synthetic
images, the colour channels are assumed to behave linearly.

Discretize the lighting directions Only the upper semi-sphere is
considered in this work. It is discretized in a limited number
of directions. A circular bitmap image with varying diameter
is used as a model of the reflection map. Each pixel is associ-
ated with a corresponding direction. By using this technique
interpolation artifacts are avoided. The directions are stored
separately to be used in the generating process.

Compute reflection maps Each generated image is associated
with a specific direction. For each pixel a separate reflection
map is computed. This is performed by picking one pixel
from each generated image and locating them in the asso-
ciated positions. The procedure is exemplified in Figure 3,
in which the pixel-information of the images is transformed
to the reflection functions. The reflection matrices are stored
in a 5D data structure (imagex, imagey, r mapx, r mapy,
{rgb}).

Rotation of reflection maps All reflection maps are rotated along
their major axes. The colour planes are not rotated individ-
ually, but instead the intensity of each pixel is computed by
I = R + G + B. The major axis of the corresponding binary
image is computed by thresholding the intensity levels. Pixels
with I(x,y) > threshold are included in the calculation.

The major axisθ is computed by the following method:

• fxx = 0, fyy = 0 and fxy = 0.

1. ∆x = x−mx, wherex is the currentx coordinate
andmx the meanx position.

2. ∆y = y−my, my is the meany position andy the
currenty coordinate.

3. fxx = fxx +∆x ·∆x

4. fyy = fyy +∆y ·∆y

5. fxy = fxy +∆x ·∆y

Then perform the following calculations:

• p = −( fyy + fxx)

• q = fxx · fyy − fxy · fxy

• f = − p
2 +
√

p·p
4 −q

• The mean axis will beθ = q
f

All reflection maps are rotated to have their major axes in the
same direction. The rotation angles are stored in a separate
matrix, which is used in the synthesizing phase.

Compute the eigencomponents In the next step the PCA method
is used to compute a number of the most important eigencom-
ponents,φ1, . . . ,φP from the reflection maps. A large number
of reflection maps is needed to compute sharp components.

Compute coefficients The reflection maps are projected one by
one onto the most important eigencomponents and the co-
efficients are stored. The result will be a coefficient ma-
trix with one coefficient vector for each pixel of the image,
κ (1, . . . ,P;1, . . . ,M), whereP is the number of coefficients
andM is the number of pixels.

Transform the lightmap to this specific representation The
original lightmap defining the lighting conditions is rescaled
to Lxy of sizeQxQ, whereQ is the size of the reflection map.

Precompute the rotated eigencomponents: φ(1, . . . ,N,1 : σ : 180)
To make the computations more efficient, rotated versions of
the eigencomponents are computed before the calculations.
The angle is discretized in steps of sizeσ . In the calculations
the eigencomponent closest to the angle is used. If the
reflection functions are of a small size the error introduced
will be limited.

Image representation The result will be a coefficient matrix with
P coefficients for each pixel and a data structure with the ro-
tated eigencomponents. In the beginning of the synthesizing
phase the eigen-numbers are computed by using the appropri-
ate lightmap.

2.4 Synthesizing

In the synthesizing phase the data volume in Figure 5 is used. One
column consisting of a coefficient vector and a rotation vector is
applied to construct one reflection function.

Collect lighting conditions Acquire an HDR-fisheye representa-
tion of the lighting conditions.

Rescaling Recompute the light representation to this specific dis-
cretization. The result will be a QxQx3 matrix,Lxy. In the
synthesizing phase the data volume in Figure 4 is used. One
column consisting of a coefficient vector and a rotation vector
is applied to construct one reflection function.

Algorithm In this section the principle behind the algorithm is pre-
sented. It is described in more detail in the upper row of Fig-
ure 4. One pixel of the resulting image is generated at a time:

1. Generate a reflection functionRxy from the correspond-
ing coefficient vectorκ for pixel ψ.

Rxy =
P

∑
k=1

κ (k) ·φ(k), (9)

P is the number of coefficients andφ(k) the eigenvec-
tors.

2. Rotate the reflection map angleθ.

Rθ
xy = rot(Rxy,θ) (10)

3. For each colour plane multiply the light representation
with the reflection map element by element and sum the
elements to three scalar values.

C(ψ) =
M

∑
x=1

M

∑
y=1

(Rθ
xy(:, :,ψ) ·Lxy(:, :,ψ)). (11)

Efficient algorithm The algorithm presented in the previous sec-
tion can be made more efficient by pre-computing the eigen-
numbers. This approach is described in more detail in the
second row of Figure 4. One pixel is generated at a time.

To simplify the calculations the eigen-numbers,χ(k,θ), are
introduced. These are precomputed summations of the multi-
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Figure 3: The scene is illuminated with a point light source located
in the direction defined by the lightmap. In this figure 11 images
with 6 pixels each are captured at varying locations of the lightmap.
The pixel-information is then transformed to the reflection func-
tions containing 11 pixels each, which characterize the reflection
properties for a specific pixel. In the synthesizing phase the reflec-
tion function for a specific pixel is multiplied element by element
with the lightmap. The resulting pixel value is equal to the sum of
all elements.
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Figure 4: This figure explains the method. The data is represented
in a volume, in which each column is used to construct one reflec-
tion function. In the first row the algorithm is explained and the
second row is a description of the optimized algorithm.
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Figure 5: These are the 25 most important eigencomponents for the
examined data set.

plications between the rotated eigen-components and the re-
flection functions

χ(k,θ) =
M

∑
x=1

M

∑
y=1

φ(k,θ) ·Rxy,k = 1 : 1 :n,θ = 0 : σ : 180.

(12)

• ψ is the pixel number.

Rxy(ψ) =
N

∑
k=1

κ (ψ,k) ·φ(k,θ) ⇒ (13)

C(ψ) = (Rxy ·Lxy) =

([κ (1,ψ) ·φ(1,θ)+ . . .+κ (P,ψ) ·φ(P,θ)] ·Lxy) =
(14)

κ (1,ψ) · [φ(1,θ)·Rxy]+ . . .+κ (P,ψ) · [φ(P,θ)·Lxy] =
(15)

κ (1,ψ) · χ(1,θ)+ . . .+κ (P,ψ) · χ(P,θ)

• To generate one pixel value (P-1) additions and P mul-
tiplications are needed. The resulting equation will for
each pixel and colour plane be:

C(ψ) =
P

∑
k=1

κ (k,ψ) · χ(k,θ) (16)

3 Implementation and results

There are two main components to the system, the pre-computing
phase, in which the data matrices are computed and the synthesiz-
ing, where images are generated using novel lighting conditions.

The first phase was implemented in Matlab and the second in C++.
An image data set containing 374 images was generated by us-
ing MegaPOV (A version of POVray [Povray ] allowing render-
ing of HDR images) and this data set was used to evaluate the
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[x,y]=[45,62] [x,y]=[45,124] [x,y]=[45,186] [x,y]=[45,248] [x,y]=[45,310]

[x,y]=[90,62] [x,y]=[90,124] [x,y]=[90,186] [x,y]=[90,248] [x,y]=[90,310]

[x,y]=[135,62] [x,y]=[135,124] [x,y]=[135,186] [x,y]=[135,248] [x,y]=[135,310]

[x,y]=[180,62] [x,y]=[180,124] [x,y]=[180,186] [x,y]=[180,248] [x,y]=[180,310]

[x,y]=[225,62] [x,y]=[225,124] [x,y]=[225,186] [x,y]=[225,248] [x,y]=[225,310]

Figure 6: These images are examples of original reflection maps for
the data set.

method. The data set contained images of a complicated scene,
with a large amount of shadows. In this initial setup small images
of size 320x240 pixels were used. Examples of input images can
be seen in Figure 2. This dataset was rearranged to reflection func-
tions ( See Figure 6) of size 21x21 pixels, which were rotated along
their major axes. The 25 most important eigencomponents (See
Figure 5) were computed from the rotated reflection functions. It
was chosen to compute the 25 most important eigencomponents
from the rotated reflection functions, since the use of additional
components resulted in little difference in the resulting images. All
rotated reflection functions were compressed using the eigencom-
ponents and the coefficients were stored in a data volume together
with the rotation angle. To speed up the computations rotated ver-
sions of the eigencomponents were precomputed for each of the 360
degrees. The synthesis of an image was divided into two phases.
In the first phase lighting coefficients were computed by multiply-
ing the lightmap with the eigencomponents. ( See the algorithm in
section 2.4). In the second phase the pixel values were computed
by using the lighting coefficients and the eigen coefficients. These
computations were repeated for every frame.

Resulting images were computed for three well-known HDR fish-
eye images (See [Debevec and Malik 1997] for more information ).
These HDR fisheye images were transformed to the same represen-
tation as the reflection functions (The upper semi-sphere was used
and this was rescaled to 21x21 pixels). For every lightprobe image
the corresponding scene was generated using 10 and 25 coefficients
and by using the corresponding uncompressed reflection functions
(Images generated using 25 coefficients can be seen in Figure 1
and images generated using 10 coefficients and by using the corre-
sponding original lightprobe images can be seen in Figure 7).

The frame-rate for varying numbers of coefficients can be seen in
Table 1. As a measure of the image quality the peak signal-to-noise
ratio was selected

PSNR = 20∗ log10(
MAXI√

MSE
), (17)

where

MSE =
1

m ·n
m−1

∑
i=0

n−1

∑
j=0

3

∑
k=1

||imorig(i, j,k)− imκ (i, j,k)||2 (18)

In these equationsm ·n is the size of the image. The reference image
generated using the original reflection functions isimorig and an

κ fps PSNRl p1 PSNRl p2 PSNRl p3
1 11.25 19.1 20.7 20.0
2 10 18.9 21.6 18.5
3 7.8 18.8 21.7 18.3
5 5.45 19.0 25.5 18.8
10 3.46 19.0 25.4 18.7
25 1.6 19.0 25.6 18.6

Table 1: A comparison of the resulting speed and image quality for
various selections of coefficient numbers. The first column is the
number of coefficients used, the second is the number of frames
per second for the corresponding number of coefficients and the
three following columns include the PSNR value for each of the
lightprobes.

image generated usingκ coefficients isimκ . MAXI is the maximum
intensity ofimorig.

The errors for different choices ofκ were computed for the selec-
tions of lightprobe images depicted in the third column of Figure 7.
In Table 1 it can be seen that the PSNR increases for increasing
numbers of coefficients for the second lightprobe, but for the others
the PSNR is approximately constant. The difference in PSNR for
10 and 25 coefficients is very small. However, when examining the
resulting images (Figure 1 and 7) it can be seen that the details of
some of the spheres become better, when using additional compo-
nents even if the PSNR value does not improve.

4 Discussion

In this paper we have presented a new approach for real-time re-
lighting of a static scene. This method is general and can be used to
relight a scene with arbitrary lightprobe images. It could for exam-
ple be used to visualize a scene at arbitrary weather conditions by
using synthetic sky images (See for example [Olsson et al. 2004]
or [Olsson 2005]). The approach could be advantageous for ex-
ample in scenes with a limited number of materials. The results
show that it is feasible to represent BRDFs using principal compo-
nents. For the data set used in this work 25 coefficients are suffi-
cient. This can be seen by comparing the images in Figures 1 and 7.
The images in Figure 1 are very similar to the images in the mid-
dle column in Figure 7, which were computed using uncompressed
reflection functions. The major limitation is that semi-shadows are
not always rendered correctly. The relatively small reflection func-
tions of 21x21 pixels limit the possible shadows, but the limitation
can be removed by using larger matrices to represent the reflection
functions. A limitation of the method is that it demands detailed
reflection functions to compute sharp components. The reflection
functions are rotated along their major axes in order to to take the
correlation between reflection functions into account.

This is a simple approach and can not directly be compared with
more general, but also more complicated approaches as for exam-
ple the method presented in [Kristensen et al. 2005]. The goal of
this method is to relight a still image in novel lighting conditions,
while the goal in their paper is to relight an arbitrary scene with
unstructured light clouds using precomputed radiance transfer. The
major advantage of this method is that each pixel of the resulting
image can be computed with a fixed number of 25 multiplications
and 24 additions, while the more advanced algorithms need a much
larger number of operations in the generation process. On the other
hand, the largest drawback is the precomputing step and the rela-
tively large data matrices, which must be stored to be able to gen-
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Figure 7: Each row of images corresponds to a specific lighting
condition defined by an associated light probe image. The first im-
age was generated using 10 coefficients, the second was generated
using the original reflection functions and in the third image the
corresponding lightprobe image can be seen.

erate images. The memory usage is

xsize ∗ ysize ∗3∗ (Nbrcoe f f icients +1), (19)

which means that for an image of size 1024 x 1024 pixels, as much
as 76 megabytes is needed to store the information.

The memory demand increases for larger choices of reflection func-
tions, but the number of coefficients do not increase at the same rate,
which means that after the precomputing step it should be possible
to use much larger reflection functions and thus increase the image
quality, without severely increasing the memory usage of the data
matrices.

This method should be most appropriate for small images to make it
possible to easily generate an image for various lighting conditions,
for example the appearance of a car during the day.

5 Future Work

As a major limitation of this implementation is the computing time,
our major efforts will be directed in decreasing the execution time.
This can be performed by implementing parts of the algorithm in
hardware. See for example [Owens et al. ]. Another future work is
to generalize the algorithm to 3D, by generating multiple views.
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Abstract 
This paper addresses new techniques and challenges for user 
interface design for small-screen devices made possible by the 
recent availability of 3D graphics hardware. A survey of current 
research on the topic for desktop systems is presented and 
applications of these techniques for small screen devices are 
proposed. Also general differences in user interface design 
between large and small screen devices are highlighted. 
 
Keywords: Graphics hardware, user interfaces, mobile devices 
 

1. Introduction 
Supporting graphics hardware in the user interface is becoming 
increasingly more popular for desktop systems, latest versions of 
Mac OS X and Microsoft Windows will employ 3D hardware for 
a range of new user interface techniques and effects. Currently we 
are seeing an explosion in graphics performance for both 2D and 
3D on handheld devices made possible by the introduction of 
graphics hardware. This explosion is mainly driven by gaming but 
may be exploited for enabling a better user experience. Designing 
user interfaces for small screen devices is a tedious task mainly 
focused at organizing screen content such that large data sets can 
be presented in an intuitive way and to provide an interaction 
hierarchy that is easy to understand and use. The introduction of 
3D graphics hardware makes a new range of techniques available 
and feasible on mobile devices that may help with providing more 
appealing, enjoyable and intuitive user interfaces. This paper aims 
to present previously described technical solutions for 
accelerating the user interface with graphics hardware on desktop 
systems and describe what challenges that must be overcome in 
order to realize these techniques on mobile devices with current 
and future graphics hardware. We also intend to highlight some 

interesting user interface design techniques found in the desktop 
space that may be applicable to mobile devices with graphics 
hardware. 
 
In section 2 a survey of how 3D acceleration is currently being 
used in user interfaces as well as an overview on current research 
on the topic for desktop systems is presented. Section 3 contains a 
summary of technical limitations and challenges encountered 
when attempting to implement similar systems on mobile 
platforms. Finally in section 4 we outline aspects of user interface 
design for small screen devices related to the techniques described 
in section 2 as well as suggestions for new research. 
 

2. Survey of 3D acceleration in desktop UIs 
The dominant user interface model for desktop systems is window 
management. In [Myers 1988], Myers defines a window manager 
as “a software package that helps the user monitor and control 
different contexts by separating them physically onto different 
parts of one or more display screens”. He adds: “Before window 
managers, people had to remember their various activities and 
how to switch back and forth”. Generally speaking the window 
manager controls the physical display area and manages the 
different user interface components and applications that aspire on 
drawing graphics. Tasks that fall on the window manager are 
typically overdraw management, moving and resizing windows 
and controls as well as managing pointer devices such as a mouse. 
Some current systems [Graffagnino 2002; McCartney 2002] target 
this piece of software for 3D acceleration. 
Traditionally user interface graphics systems draw directly to the 
display frame buffer via the window manager. The window 
manager controls which areas of the display are owned by a given 
application. If a certain area of the display need to be updated the 
window manager orders the application to draw its content 
directly to the display in the given area. Exploiting graphics 

Figure 1. A common approach to accelerating a traditional window manager is the 
compositing approach, illustrated above. 

Application Texture 
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acceleration without breaking compatibility with existing 
applications is generally achieved by introducing a compositor 
that manages the display instead of the individual application via 
the window manager, see figure 1. This is a common approach 
that is available in current generation Apple OS [Graffagnino 
2002] and will be available in next generation of Microsoft OS 
[McCartney 2002]. In this approach the application draws its user 
interface to a texture accessible by the graphics hardware using 
existing methods. The different textures containing the application 
UIs are composited using the graphics hardware. Furthermore the 
compositor may use the graphics hardware to apply a wide range 
of effects during compositing, such as per-pixel transparency, pre-
window fade and transform control, independent of the original 
application user interface code. In conjunction applications 
specifically written for the compositing pipeline may use the 
graphics hardware directly to further enhance the user interface. 
The compositor generally access the graphics hardware via an 
open API such as OpenGL [Graffagnino 2002; Kawahara and 
Byrne 2005] or a proprietary such as DirectX [McCartney 2002]. 
 
With a system as described above, a range of different new user 
interface concepts become available. A popular use case is 
organising windows on the desktop. In [Kawahara and Byrne 
2005; Robertson et al. 2000; Rousel 2003] windows may be 
stacked at the side of the screen by rotating them in 3D, see figure 
2. This gives the user overview of the content of the windows 
while freeing up space for more applications. Given a high 
performance multi-tasking system the content of the windows 
may be updated continuously such that the user can monitor any 
activity while enjoying the space for other applications. Other 
solutions to this problem include the exposé feature of Mac OS X 
Tiger. Instead of stacking the windows using perspective 
transforms the exposé feature tiles all of the open windows - 
scales them down and arranges them, so that all are completely 
visible. This allows the user to get an overview of all open 
windows. It also allows the user to select one of the miniature 
windows which will bring that window to front, this feature 
makes exposé useful both to get an overview of current running 
applications as well as application switching. Both features would 
not be possible without seriously draining system resources if not 
graphics hardware were employed. 
 
Some researchers propose designs based on a compositor WM 
approach that are more decoupled from the traditional desktop 
metaphor UIs. G. Robertson et al. have presented a solution called 
The Task Gallery [Robertson et al. 2000] where user tasks (i.e. 
applications windows) appear as artwork hung on the walls of a 
virtual art gallery. The Task Gallery aim to exploit the spatial 
cognition and memory inherit in humans and is based on the 
theory that if presented with a virtual environment that is more 
like the 3D environment that we live in new and old users will 
find interaction more intuitive and enjoyable. According to the 
authors user studies have shown that the Task Gallery helps with 
task management in the way that users easier remember where 
they “put” their windows in the 3D metaphor. Although this 
concept is far away from the traditional desktop metaphor many 
designs that have found their way into current commercial 
systems such as stacking windows with perspective transforms are 
presented in this paper. 
 
Interesting research projects are Project Looking Glass [Kawahara 
and Byrne 2005] and Ametista [Rousel 2003] two open source 
window mangers that are based on the 3D interaction metaphor. 
These projects aim to provide a platform for research on 3D user 
interfaces in a real working window environment. Perhaps the 
most interesting project is [Kawahara and Byrne 2005] where 

Figure 2. Project Looking Glass among others uses 3D 
perspective transformations to stack windows at the side 

of the screen to free up space for other applications. 
(Image courtesy of Project Looking Glass.) 

Figure 3. Project Looking Glass includes a media player 
with a free form 3D user interface. Using 3D many new 

and interesting UI techniques become available. 
(Image courtesy of Project Looking Glass.) 

Figure 4. Project Looking Glass also includes a photo 
browser with a free form 3D user interface. 
(Image courtesy of Project Looking Glass.) 
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Java is used as the platform for building applications that expose 
3D user interfaces. The window manager has a number of built in 
interaction paradigms such as stacking windows, task bars and 
how navigation is performed in the 3D space that the applications 
occupy. Besides from that novel interaction methods may be 
introduced by the individual projects. Some interesting 
applications have been developed as part of the project, most 
notably a media player and a photo browser. These applications 
have free form 3D user interface floating in the application space 
as oppose to traditional applications that are contained within their 
windows, see Figure 3 and Figure 4. 
 
Another popular field of user interface research that doesn’t 
require hardware acceleration but that definitely benefits from it is 
zoomable user interfaces or ZUI. Both OpenGL [Blythe and 
Munshi 2004] and the emerging standard OpenVG [Rice 2005] 
are based on hierarchical transformations which combined with 
more graphics performance via hardware acceleration makes a 
great platform for ZUI. The goals of ZUI is to better visualize 
large data sets on small display areas. The capability and 
performance to seamlessly change level of zoom enables a range 
of interesting user interface techniques. Photomesa [Graffagnino 
2002] is an example of a browser that uses novel layout 
mechanisms (quantum treemaps and bubble maps) that allows 
users to see as many photos as possible and maintain context. It 
allows users to group photographs by date, filename and directory 
as well as employ zooming techniques to display the photographs. 
The basic concept is fairly simple, photos are clustered with 
regard to a number of parameters such as data, texture, color etc 
and ZUI is used to let the user seamlessly navigate the collection 
of images. The user directly control the level of zoom and the 
software attempts to always present the level of information that is 
suitable for the given level of zoom. It has been shown [Cockburn 
and Savage 2003] that techniques where the user directly controls 
the degree of zoom does not aid in searching for images, generally 
when a new degree of freedom for navigation is introduced the 
learning curve for the UI is steeper. An interesting extension of 
ZUI to remedy this problem is speed dependent automatic zoom 
(SDAZ). This concept is based on the fairly simple assumption 
that when the user is actively searching for an image a thumbnail 
overview is more suitable and when the user settles down on a 
given image a more zoomed in view is wanted. A photo browser 
based on the SDAZ concept is described in [Igarashi and Hinckley 
2000; Cockburn and Savage 2003], and according to the authors 
user studies show that this technique aid some users in searching 
for photos. 
 

3. Technical limitations and challenges 
The introduction of graphics hardware for mobile devices presents 
great opportunities for building more intuitive and overall better 
user interfaces. However, when attempting to facilitate the 
research presented in section 2 for mobile devices a number of 
challenges arise, some of these challenges and limitations are 
covered in this section.  
 
Lately, good standards for accessing the hardware such as 
OpenGL|ES and OpenVG have emerged. OpenVG is a much 
newer standard, and there are no hardware implementations yet. 
This section will focus on limitations of OpenGL|ES 1.x as this 
has been tried in the industry. Most OpenGL|ES graphics 
accelerators for the mobile market today offer quite good raw 
rendering performance and give major speed improvements on 
pure blitting and alpha blending. OpenGL|ES provides a 
convenient and standardized way of performing controlled 
composition of bitmaps and is capable of supporting at least half 

of the Porter-Duff blending operations [Porter and Duff 1984]. 
Details on blending limitation follow below. Current graphics 
hardware is capable of performing full screen bitmap composition 
at rather impressive frame rates as would be expected since the 
most important target software is games. Using the hardware 
graphics accelerator in a window system would mean enabling 
many of the features of a compositing based window system as 
described in section 2 without putting much load on the CPU. 
When using OpenGL|ES for this purpose, window content needs 
to be accessed as texture data. Most of today’s OpenGL|ES 
implementations require textures to be uploaded to dedicated 
memory which presents a number of technical challenges that 
must be addressed: 
 
Small texture memory 
The typical OpenGL|ES accelerator on the market today targeting 
QVGA displays has about 1MB of VRAM (video ram) to be 
shared by frame buffer and textures. This clearly indicates that the 
window system must contain some sort of VRAM virtualization 
approach in order to fit all windows in “virtual VRAM”. This is a 
problem that is common with desktop solutions [Graffagnino 
2002; McCartney 2002]. By treating the VRAM as an on chip 
“L1” cache, it is possible to page in textures from a system RAM 
“L2” cache. Another issue is if the device has enough RAM to 
hold the “L2” cache. If not, the window system must resort to 
issuing a repaint command to the client in order to get the bitmap 
data. If this happens for every frame, we will not gain any 
performance boost from using the hardware graphics accelerator. 
More likely, the added overhead will in fact make the UI slower 
than if not using any hardware acceleration. 
 
Slow texture transfer 
In order to save power, all bus widths and -speeds are generally 
kept thin and slow on mobile devices. Also, graphics hardware 
manufacturers do not typically prioritize optimizations of the 
particular data path for transferring texture data since most games 
and benchmarks focus on fill rate and polygon count. This 
definitely has an impact on the VRAM virtualization mentioned 
above since it relies on being able to quickly swap in textures 
from RAM. The general solution to this problem is texture 
compression which lowers the impact on narrow busses but we 
will see below that this is not always feasible for user interfaces. 
The best workaround for the slow texture transfer is to reduce the 
number of client side updates and instead rely on effects and 
animations that are possible to perform on the graphics 
accelerator. Examples of this are scaling, moving, and opacity 
changes. 
 
UI graphics is not suitable for texture compression 
User interface graphics such as text and fine lines are very 
sensitive to compression artifacts. This effectively rules out 
texture compression for these tasks. Also, since applications and 
window content is rendered on the device in real time, texture 
compression times would pose a problem since it further delays 
the uploading of the texture data. Not being able to use texture 
compression further increases the texture memory problems (size 
and speed) mentioned above. 
 
Texture size 
OpenGL|ES 1.x supports neither texture sizes larger than 256x256 
nor sizes other than powers of two. This means that texture RAM 
can not be utilized to 100% efficiency since windows rarely have 
sizes that are powers of two. It is possible to use tiling to work 
around this problem, in which case source bitmaps are broken 
down into small tiles that can be allocated from larger textures. 
The main problem with this is the vastly increased complexity of 
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the drawing operations while maintaining good performace. There 
is also a significant increase in the geometry complexity which 
may also cause performance degradations. 
 
Blending limitations on OpenGL|ES 1.x 
As mentioned above, only half of the 12 Porter-Duff blending 
modes are supported by OpenGL|ES 1.x. The reason for this is 
that in OpenGL|ES1.x there is no support for destination alpha. 
The ones that remain are “Clear”, “Src”, “SrcOver”, “DstIn”, 
“DstOut” and “Dst”. However, there is support for additional 
blending modes, for instance a version of “SrcOver” without the 
requirement of RGB being premultiplied with alpha 
 
OpenGL|ES and other concurrent hardware 
On a mobile device there is likely to be special hardware for 
decoding video and, if applicable, displaying a camera viewfinder. 
This can conflict with OpenGL|ES operation. Normally 
OpenGL|ES would not be running when using these special 
hardware features but with a hardware accelerated window 
system, OpenGL|ES is running all the time. Note that this differs 
very much between different OpenGL|ES implementations and 
integration decisions. For instance, an OpenGL|ES accelerator 
may include an interface for a camera and require that viewfinder- 
and snapshot data is stored in the chip’s embedded memory. This 
may end up consuming most of the accelerator’s RAM, not 
leaving any room for the window “L1” cache mentioned above, 
thus forcing the window system to revert to non-accelerated 
mode. Another example could be a graphics accelerator that 
actually does not at all support running the OpenGL|ES core when 
the camera viewfinder is active even if the RAM issue was solved. 
 

4. UI design challenges and possibilities 
In general when working with small-screen devices only one 
window/application may be simultaneously visible which has 
brought us back to the point where it is difficult to remember and 
organize activities. Generally for small-screen devices as opposed 
to desktop systems the concept window is analogous with screen, 
i.e. the window occupies the entire screen. User interaction is 
layed out in a hierarchical fashion, selecting an option on one 
screen generally presents another screen with more options, 
pressing the back key returns to the first screen. In these systems 
user interface designers often struggle with keeping the context 
such that the user is always aware of where a certain choice will 
take him/her and where the back key will lead at any given time, 
which as the complexity of the system grows becomes an 
enormous task. 
 
Another major challenge and difference when designing user 
interfaces for mobile devices versus desktop systems is that on a 
mobile device you are most likely targeting first time users. On a 
desktop system you are designing a tool and optimizing it for 
maximum efficiency, on a mobile device on the other hand you 
are designing a system that has to be intuitive enough to be usable 
by first time users. Generally mobile devices do not come with a 
thick user manual and anyway you are expected to be able to use 
the device without reading any more instructions than what is 
presented on the display in the user interface. 
 
Mobile 3D graphics presents many interesting opportunities for 
improving the problem with context shifts and its implications on 
usability as outlined above. Different kinds of transitions are very 
effective in helping the user to remember which context is 
currently active.  
With the performance of graphics hardware and 3D a wide range 
of new transitions are available and a lot of research is required to 

evaluate these transitions and how they may aid the user. One 
example of new transitions that may help the user is presented in 
figure 5, by connecting context menus associated with an object in 
a visually appealing way the human sense for spatial context may 
make these transitions more intuitive. 
 
Both graphics and general processing performance is increasing at 
a rapid rate however display sizes are still limited by physical 
constraints such as the fact that the device must be able to fit in 
the pocket or in the palm of your hand. The introduction of high 
performance 3D graphics may be exploited to virtually extend the 
size of the screen by introducing new techniques for better 
organizing screen content. Section 2 discussed some concepts on 
desktop systems that attempt to solve this problem. This section 
will further discuss these topics in the context of mobile devices. 
 
Stacking is a very common user interface technique used to 
display a set of components, icons, windows or pages in a 
compact manner. The components appear to be stacked or piled 
on top of each other with only a portion or tab visible. This tab is 
used to switch between the current active component and the 
component indicated by the tab, this is commonly referred to as 
tabbed windows introduced in [Beaudouin-Lafon 2000] and 
extended in [Beaudouin-Lafon 2001]. Stacking is especially 
attractive for small screen devices since the technique allows for 
quick navigation among pages on a limited space, where 
otherwise each page had to be its own window. However, a 
common problem of packing information tightly is that it will 
most likely be less intuitive. In such cases, visual perception will 
become critical for the user to understand what is displayed. 
A user study [Kjelldahl 2003] has shown that the visual cues 
perspective and shadow have a substantial positive effect on 
perceiving position. Figure 6 shows two examples of stacking 
images (for instance in a photo viewer application): One without 
the perspective and shadow and one where the two visual cues 
have been used to help the user perceive the scene. 
With the use of modern graphics hardware and the compositor 
approach, effects such as perspective transforms (texture 
mapping) and shadow techniques may be used on arbitrary user 
interface components to achieve the right visual cues and thus 
reduce the risk of the user misinterpreting the intended use.  
As described in section 2 recent products and research on desktop 
systems that employ graphics hardware in the user interface 

Figure 5. By connecting context menus associated 
with an object in a visually appealing way the 

human sense for spatial context may make these 
transitions more intuitive. 
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attempt to achieve better organization of screen content by 
stacking windows at the side of the screen with perspective 
transformations thus exploiting these visual cues. Although 
stacking windows by the side of the display would be feasible on 
a mobile device, the small screen size would most likely render 
the window content impossible to see. The same unfortunately 
apply for the exposé feature. Unless only two or three applications 
are running, scaling down all open windows such that they all fit 
the display is not feasible for most mobile devices due to the small 
screen. Instead stacking combined with the visual cues 
perspective and shadow may be used to give an intuitive overview 
on the limited display space, see figure 7. This effect may be 
useful for more intuitive application switching or simply to get an 
overview of currently open windows. 
 
Improving screen content organization and virtually extending the 
display on small screen devices is one of the biggest challenges 
for user interfaces designers and much research is needed. The 
recent introductions of OpenGL|ES and OpenVG plus hardware 
acceleration will, as mentioned in section 2, provide an excellent 
platform for zoomable user interfaces. Zoomable user interfaces is 
a popular research field for both mobile and desktop systems with 
the goal of better visualizing large data sets on small displays. As 
storage capabilities of mobile devices and available information 
via network connections increase rapidly, the need for new and 
better ways to visualize this data on small screen devices are 
imperative. ZUI have great potential for improving screen content 
organization in a natural way. The PhotoMesa [Bederson 2001], 
also mentioned in section 2, has also been developed in a version 
for PocketPC [Khella and Bederson 2003]. As mentioned in 
section 2, problems were encountered when introducing new 
navigation methods, i.e. direct controls for zooming. The lack of 
sophisticated input devices such as a mouse/point on many mobile 
devices is likely to make it even less attractive to introduce new 
navigational degrees of freedom. This makes methods such as 
SDAZ very interesting. Interesting research would be to extend 
the concept of SDAZ to work well with navigation keys and other 
systems that do not have pointer devices. 
 

5. Conclusions 
High performance 3D graphics hardware will enter the mobile 
arena driven by the gaming industry and thus it is very likely that 
the mobile user interface will evolve in the same direction as the 
desktop systems. Some of the new user interface techniques 
developed for these systems may provide great solutions for 
problems inherited in mobile devices such as better screen content 
organization on small screens via zoomable user interfaces or 
more intuitive interaction flows via transitions. More research is 
needed to adapt, evolve and evaluate these techniques for small 
screen limited mobile devices. 
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Abstract

This paper explores the distributed generation of fractal images on
mobile phones using Bluetooth (JSR-82) as the inter-device com-
munications mechanism. Mobile phones inherently have limited
resources (such as memory and processing power). The aim of this
paper is to demonstrate a technique, where the resources of several
mobile devices can be used in conjunction. This will allow for the
computation of a processor intensive task in a short period of time.

CR Categories: I3.5 [Computer Graphics]: Computational
Geometry and Object Modelling—Geometric algorithms, lan-
guages and systems.; D1.7 [Programming Techniques]: Visual Pro-
gramming; C2.4 [Computer Communication Networks]: Distrib-
uted Systems—Client/Server.

Keywords: Fractal Image Generation, Distributed Computing,
Bluetooth, Piconet

1 Introduction

Fractals have been a classical topic ever since what is considered to
be the discovery of the first fractal in 1872 by Georg Cantor, (typi-
cally called “Cantor Dust”). The present interest in Fractal geome-
try is mainly due to the work of Benoit Mandelbrot, who in the mid
1970’s was successful in the creation of the an index (Mandelbrot
Set) for all the possible Julia Sets. Since then their have been many
further developments such as Fractal Terrain Generation [Meyer
1982] [Lucas and Marquand 1983], Fractal Image Compression [Lu
1997], Fractal Encryption and Fractal Music. However, the process
of generating such images requires significant computational re-
sources [Doolan and Tabirca 2005]. In this paper we present a
study parallelizing the generation of Mandelbrot images on mobile
phones using Bluetooth as the communication mechanism.

Over the past couple of years both Sony-Ericsson and Nokia De-
veloper websites have published invaluable training material on the
development of J2ME applications with Bluetooth technology.

Some interesting literature has been published of late, dealing with
Bluetooth technology. One thesis [Long 2004] “A Study of Java
Games in Bluetooth Wireless Networks” gives an overview of the
Bluetooth API and shows how such technology can be employed
in the development of wireless networked games. The thesis gives
a simple example of a game designed in a Point to Point Piconet
Configuration (Figure 1). It also includes some useful references
to various sources dealing with both game programming and net-
worked communications.

∗e-mail:{d.doolan, tabirca}@cs.ucc.ie

Figure 1: Simple Point to Point Piconet Configuration.

A far more in-depth look at Bluetooth technology with J2ME may
be found in the MSc thesis of [Klingsheim 2004]. The thesis cen-
tered around the development of two Bluetooth applications and the
testing of same on several devices, namely Nokia 6600 to Nokia
6600, Sony Ericsson P900 and PC to Nokia 6600. The applications
dealt with device discovery and bench-marking data transfer.

The generation of the Mandelbrot Set is often referred to as an “em-
barrassingly parallel computation”. It can be easily divided into a
number of completely independent parts, each of which can be ex-
ecuted by a separate processor. The parallel computation of the
Mandelbrot Set usually relies on the C based Message Passing In-
terface (MPI) library [MPI ][Book ][O’Mahony 2004].

More and more mobile devices are shipping with Bluetooth tech-
nology as standard. Typically all Smartphones fall within this remit,
examples include the Nokia Series 60 2nd and 3rd Edition phones.
Sony-Ericsson so too have a significant number of Bluetooth en-
abled devices (K750, D750, W800, K608). The Java capabilities
of these devices are that of levels 5 and 6 of Sony-Ericssons Java
Platforms [Sony-Ericsson 2005].

2 Fractal Generation

The generation algorithms for the Mandelbrot Set are quite simple,
but as the generating function is iterated repeatedly this gives rise
to complexity and results in a highly complex fractal image. Frac-
tals are usually obtained when the generating functionf (z) is non
linear. For f (z) = z2 + c the classical Mandelbrot Set is obtained.
Mandelbrot-like sets are also obtained when the generating function
has the form off (z) = Zu +Cv.

The area of the Fractal image that is displayed is dependent on the
xmin,ymin, xmax,ymax values. Figure 2 shows a typical Mandel-
brot Image and the corresponding coordinates for it.
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Figure 2: Typical Mandelbrot Image for xmin,ymin = -2.0,
xmax,ymax = 2.0.

A Code sample (Listing 1) of the Mandelbrot Set generation func-
tion shows a direct relationship with the Mandelbrot Set Algorithm.
One can clearly see that if the absolute value of the complex number
lies outside the threshold R, that the pixel at the current coordinates
of the iteration through the image will be drawn in a specific colour.

1 for(int i=0;i<SIZEX;i++)for(int j=0;j<SIZEY;j++){

2 Complex c = new Complex((XMIN+i*STEPX),(YMIN+j*STEPY));

3 Complex z = new Complex();

4 for (k=0;k<NR_ITER;k++){

5 z=f(z,c);

6 if(z.getAbs()>R){

7 r = c[k%l][0]; g = c[k%l][1]; b = c[k%l][2];

8 color = b + (g<<8) + (r<<16) + alpha;

9 pixels[(j*SIZEX) + i] = color;

10 break;

11 }

12 }

13 }

Listing 1: Code listing of Mandelbrot Set Function

The execution times for generating a fractal image on a mobile
phone are quite long (Table 1), especially as the number of iter-
ations required increases. Execution on a Nokia 6630 Phone re-
quires 55,657ms to generate a 200 x 200 pixel image using 500
iterations, running at 1000 iterations the processing time increases
to 98,250ms (almost double). Similar tests using Sun’s WTK emu-
lator yields results far in excess of the execution times for the Nokia
6630 Phone. The Sony-Ericsson Emulator demonstrated the fastest
computation.

Device 500 750 1000
SE WTK 2.2 30,079 ms 42,516 ms 56,141 ms
Nokia 6630 55,657 ms 75,266 ms 98,250 ms
Sun WTK 2.2 140,875 ms 205,078 ms 269,734 ms

Table 1: Image Generation Times for the Mandelbrot Set (Image
Size 200x200 pixels, xmin,ymin -2.0, xmax,ymax 2.0) at varying
number of iterations.

3 Distributed Fractal Generation

The application was developed using Sun Java Studio Mobility
6 2004Q3 [Sun-Microsystems a] and the J2ME Wireless Toolkit
(WTK) Emulators [Sun-Microsystems b].

The application has been designed to work with several fractal for-
mulas and not just fractals of the formf (z) = Zu +Cv. The other
implemented forms includef (z) = Zu−Cv and f (z) = Zu+Cv+Z.
A more comprehensive Math’s Class would allow for a wider di-
versity of possible fractal formulas. The MathFP class is a efficient
integer based alternative to this.

The design of the system is that of a Point to Multi-Point configu-
ration (Figure 3). The Point to Multi-Point configuration is signifi-
cantly more complex than the simpler Point to Point configuration.
For the Point to Multi-Point Configuration to work the Master De-
vice must keep a list of all clients connected to it.

Figure 3: Point to Multi-Point Piconet Configuration.

3.1 User Interface

One of the most important parts of the Server Program is the User
Interface for modifying the Fractal Image settings. The most impor-
tant options include the Image Size, Number of Iterations, Fractal
Co-ordinates and Fractal Equation Type (Figure 4). The Client Ap-
plication has a simple interface that displays whether an image is
currently being generated or not, the processing time for the gen-
eration of an image and the Image Settings the Client is currently
using to generate the image (Figure 4).

Figure 4: Fractal Image Settings Form, (Server). Client Info Form.
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3.2 Work Load Balancing

There are several ways in which the image can be divided among
the client’s nodes for processing. These include Uniform Block,
Cyclic and Dynamic Load Balancing.

3.2.1 Uniform Block Balancing

This method of load balancing was the first scheme to be imple-
mented in the application. In this implementation the image is
divided intonrClientsvertical (or horizontal) strips of equal size
(Figure 5). The clienti receives for computations the image chunk
with the consecutive columnsi ×w/nrClients, i ×w/nrClients+
1, ...,(i + 1)×w/nrClients− 1. This division of the image into
similar vertical strips would yield to similar computation on each
client. It is a simple scheme where a single message is sent to each
client which results in a corresponding message being returned to
the master with the results of the computation. A similar method
[Murty 2004] where the image is divided into a grid was used for
the generation of Fractal Images using .NET Web Services.

Figure 5: Division of Image into Vertical Strips.

For example dividing the image into four vertical strips yields a ma-
trix of coordinates that may be sent to the clients connected to the
Master. In the case of 4 vertical strips with xmin, ymin starting at
-2.0 and xmax, ymax starting at 2.0, the following matrix is gener-
ated (Table 2). In the case that 4 clients were used using a grid of
sub-squares the resulting matrix would center around the value 0.0
for a Mandelbrot Image where xmin, ymin = -2.0 and xmax, ymax
= 2.0.

xmin ymin xmax ymax
-2.0 -2.0 -1.0 2.0
-1.0 -2.0 0.0 2.0
0.0 -2.0 1.0 2.0
1.0 -2.0 2.0 2.0

Table 2: Co-ordinate Matrix for 4 Vertical Strips: xmin,ymin = -2.0,
xmax,ymax = 2.0

Several other elements are essential for the distributed processing
of the image. This size of the image each client is to generate.
An identifier for which section of the image was generated by each
client. This is necessary so the image can be reassembled on the
Server in the correct order. The order in which images are re-
turned to the Server is random as some sections will require greater

processing time than others. The other parameters include whether
the image should be inverted or not, the powers for Z and C, the
number of iterations to be executed and finally a flag for the type of
fractal formula to use.

3.2.2 Cyclic Load Balancing

This is a follow on approach from the Uniform Block Load Bal-
ancing example. The image is still divided into equal sized ver-
tical strips{S0,S1, ...,Sp−1} each of them containing only a few
columns. The partition of thisp strips onto the clients is performed
into a cyclic matter so that the clienti would receive the strips
{Si+ j×nrClients : j = 0,1, ..., p

nrClients−1}. Figure 6 shows an ex-
ample of this division. In this example each client will receive four
small sections of the image. The image sections a single client will
receive are evenly distributed through out the image to be gener-
ated (e.g. Figure 6 clearly shows that the first client will receive
grid sections 1,5, 9, 13). In this case the computation of the regions
with significant details is evenly distributed amongst processors.

Figure 6: Cyclic Division of Image Area.

3.2.3 Dynamic Load Balancing

The Server maintains a Work Pool of jobs that can be sent out to
clients (Figure 7). Initially every connected Client will receive a
work unit to process, as soon as a Client returns a result another
work unit is issued to the Client. This process is carried out until
all the jobs in the Servers Work Pool have been completed. For this
procedure the image area is typically divided into a grid structure.
There is of course a slight increase in communication costs com-
pared with that of the Uniform Block method, but the distribution
of processing should be far more even across all connected Clients.
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Figure 7: Dynamic Division of Image Area.

The division of the image into a grid (Figure 8) is carried out by
the user choosing a particular granularityg which is the width of
each grid block. Figure 8 is a 200 x 200 pixel image divided into 16
areas (Granularity of 50 pixels). The granularity by which the im-
age is divided greatly effects the number of messages that are sent
between Server and Clients (Figure 9). The area (in pixels) of each
grid block is given byg2 so that the number of grid blocks is given
by w×h

g2 . The total number of exchanges between Server and all the

Clients has the form 2
(

w×h
g2

)
as a request must be sent to the client

and a result returned. The total number of exchanges between the

Server and any connected Client is 2
(

w×h
g2×nrClients

)
. It is clear that

the granularity has an important effect on both computation and
communication. For computation the finer the granularity is the
better the computation load balance becomes amongst processors.
With a fine granularity the grid blocks have a small area so that the
clients compute them in short time. In the case that one client be-
comes idle (work pool is empty) this will wait only little time for
the other clients to finish the computation. Moreover, a fine granu-
larity will evenly distribute the regions of high details amongst all
the processors. However, fine granularity increases the amount of
communication between the Server and the Clients. This would im-
ply more overheads to start up the communications as well as more
information that is sent between the Server and the Clients.

Figure 8: Dynamic Division of Image Area.

Figure 9: Number of Exchanges Required as Granularity Varies

3.3 Client / Server Operations

Overall the general methodology of the system is quite simple (Fig-
ure 10). The initial stages of the process are carried out on the
Server. Firstly it is necessary to acquire the Input Settings for the
Fractal Image, a Graphical User Interface (GUI) (Figure 4) is pro-
vided for this. When the user issues a request to generate a Frac-
tal Image the parameters are gathered from the Fractal Image Set-
tings GUI. The next stage is to calculate the parameters necessary
for each client (this will depend on the number of clients currently
connected). This yields a unique set of parameters for each client.
Several other parameters are also passed which are the same for all
clients (for example: formula type, number of iterations).

Once all the parameters have been finalised the operation of send-
ing the Image Parameters to each connected client can commence.
The parameter data is passed in the form of a string. A typical ex-
ample of this string has the format of “width, height, xmin, ymin,
xmax, ymax, iterations, equation type, cPower, zPower, invert, im-
age segment number ”. An example of the output string would be:
“50, 200, -1.0, -2.0, 0.0, 2.0, 500, 0, 1, 2, 0, 1”. The previous
string would generate an image 50 x 200 pixels in size. The com-
plex plane coordinates are “-1.0, -2.0, 0.0, 2.0”. The client would
carry out 500 iterations at each point. The generated Image would
be the standard non inverted mandelbrot setZ2 +C. The final para-
meter “image segment number” allows for the correct ordering of
segments on the Server side.

The Client has in the meantime has been waiting for requests from
the Server. Once a Client receives a request it must first parse the
data to extract all of the required parameters necessary to generate
the image. The next and most important stage is the actual genera-
tion of the fractal image. Each client will generate a small section
of the image. The image section is then sent to the Server in the
form of a sequence of integers using a DataOutputStream Object.

On the server side once it has issued its requests to all clients, it
simply waits for incoming results. When a message is received
from a client, the server examines the “image segment number” so
the image will be placed in the correct order. Next it finds the length
on the remaining incoming data, and initialises an array to be able
to read all of the integer values representing the actual image. Once
all the integer values have been read an Image object is created
and positioned into is proper location based on the “image segment
number”. The process of waiting for client responses continues
until all Image Sections are Retrieved. When the final image section
is retrieved the Server displays the completed image on screen to the
user.
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Figure 10: Client / Server Operations.

3.4 Bluetooth Networking

Typically the first step in a Networked Bluetooth application is to
discover other Bluetooth Capable devices within the catchment area
(10 meters for a class 3 Bluetooth Device, 100 meters for a class 1
device). For a Bluetooth device to advertise itself as being available
it must be in “discoverable mode“. There are two differing forms
of this mode: General Unlimited Inquiry Access Code (GIAC) and
Limited Dedicated Inquiry Access Code (LIAC). If the device is to
be generally discoverable then it should be set to GIAC mode else it
may be set as discoverable in a “limited” manner by using the LIAC
mode. In this application the Client Devices are set to be generally
discoverable, and as such when the Server Device is started it’s first
task is to discover all local devices available within it’s catchment
area.

In many Client to Server Applications the client requests services
from the Server. In this case the Server usually starts running first
and begins a cycle of waiting to accept new client requests. This
application however the operation of the Client / Server system is
slightly different. As with most Bluetooth applications the Mas-
ter adds each client into the piconnet. The Master however issues
requests to all client on the piconet (for example generate a frac-
tal image) the client devices then carryout the actual processing
work and return results to the Master (Server). This is akin to
how SETI@Home [SETIatHome ] works where the clients carry
out the processing and return the results to the Server Application.
An invaluable aid in the development of this system came in the
form of a simple application from Nokia that demonstrated the use
of a Point-multi-Point configuration [Nokia 2004]. Sony-Ericsson
[Sony-Ericsson 2004] also have some very useful Developers Train-
ing Material dealing with Bluetooth Applications programming.

3.5 Execution Results

The experimental tests of this distributed fractal generating were
carried out using 4 of Nokia 6630 phones. The scheduling parti-
tions used in the experiment wereUniform Block, Cyclic, Dynamic
Scheduling with g= 50 and Dynamic Scheduling with g= 25. The
Mandelbrot fractal was generated into a 200 pixel square image to
cover the plane region[−2,2]× [−2,2] with 500, 750 and 1000 it-
erations. Recall that the generation of the fractal on a single Nokia

6630 devices at 500 iterations requires 55,657ms to process, a fig-
ure far in excess of the execution times that will be presented below.
Even when the Sony-Ericsson Wireless Toolkit (WTK) 2.2. emula-
tor (Sony-Ericsson P900 Mobile Phone) was used the overall results
showed a significant improvement in rendering time ( see Tables 3
and 1).

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 13,675 4,453 11,456 7,455 2,235
750 14,047 4,609 11,838 7,422 2,557

1,000 14,907 4,437 12,101 7,469 2,610

Table 3: Image Generation Times for the Mandelbrot Set using the
Sony-Ericsson WTK Emulator

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 25,878 8,246 20,457 13,379 4,217
750 26,051 8,230 21,064 13,277 4,542

1,000 26,442 8,311 21,418 12,945 4,547

Table 4: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Uniform Block Partition)

Table 4 presents the execution times for theUniform Blockschedul-
ing. One can see that the second and third clients will receive the
regions with more details so that they generate the highest compu-
tation times. While the forth client receives the region with lesser
details so that it has the smallest execution time. As consequence
those execution times show a huge load imbalance of the computa-
tion.

The use of theCyclic scheduling corrects this load imbalance. The
primary advantage with this scheme is that all areas of the image
are distributed uniformly onto all the connected clients. The result
of this is that areas where there is high computation cost are carried
out by all processors. This means that the Server no longer has to
wait for one or two nodes to finish the computation well after all
other nodes have completed their assigned tasks. Table 5 shows
the processing times for the cyclic scheduling scheme are very well
balanced.

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 18,734 14,038 14,740 13.734 14,251
750 19,042 14,734 15,183 14.361 14,793
1000 19,623 14,829 15,053 14.853 15,391

Table 5: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Cyclic Scheduling Algorithm)

TheDynamic Load Balancingmethod was tested for two granular-
ities. Wheng= 50 the fractal was splitted up into 16 grid blocks so
that each client gets 4 blocks to compute. The computation times
(see Table 6) show a very good load balance but they are bigger
than the those of theCyclic scheduling. In this case each client
has at least 3 idle periods waiting for the communication with the
Server to complete. Similarly, for granularityg= 25 each client has
16 grid blocks to compute so that it has 15 idle periods of waiting
for communication. This however increases the computation times
of each processor with around 8 seconds as Table Table 7 presents.
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Iter Total Time Node 0 Node 1 Node 2 Node 3
500 23,475 20.243, 20,048 21.482 21,729
750 23,739 21,473 21,762 21,906 21,845
1000 23,957 21,883 21,834 22.045 21,983

Table 6: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Dynamic Scheduling Algorithm with
granularityg = 50 pixels)

Iter Total Time Node 0 Node 1 Node 2 Node 3
500 30,754 28.393, 28,851 28.703 28,929
750 31083 30,710 29,675 29,496 30,025
1000 31,672 30,031 29,871 29.582 29,832

Table 7: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones (Dynamic Scheduling Algorithm with
granularityg = 25 pixels)

Certainly, these experimental tests showed that the distributed com-
putation over a piconet with Bluetooth reduces the generating time.
Table 8 shows the reduction of the execution times for 500 iterations
when the number of clients isnrClients= 1,2,3,4.

1 Client 2 Clients 3 Clients 4 Clients
Block 55,657 43,864 32,704 25,878
Cyclic 55,493 36,586 23,193 18,734

Dynamic 55,723 38,741 29,704 23,475

Table 8: Image Generation Times for the Mandelbrot Set using a
set of Nokia 6630 Phones fornrClients= 1,2,3,4.

3.6 Further Work

Many alternative possibilities exist in terms of load balancing, ex-
amination and implementation of other scheduling schemes could
provide noticeable improvement in the overall processing time. The
implementation of alternate schemes would result in higher com-
munication costs.

Another possibility is to make use of Scatternets. From the results
so far it is clear that sections of the fractal image that contain a
high level of detail require much more processing than areas of far
less detail. So for the areas that require significant processing those
sections could be distributed to a client that also acts as a server for
another piconet.

4 Conclusion

A method of carrying out distributed fractal image generation
across a piconet has been developed. This method of distributed
fractal image generation has shown that it is capable of increasing
the rate at which fractal images can be rendered on a mobile device.

Several methods of load balancing were implemented: Uniform
Block, Cyclic Load Balancing and Dynamic Load Balancing. The
Cyclic and Dynamic forms produce a far more even distribution of
the work among the connected clients. It is clear from Tables 4, 5,
6 that the processing times reduce dramatically compared with the
processing times with a single mobile device, for example 55,657
with a single Nokia 6630 (500 Iterations).

The method outlined for distributing the processing of a proces-
sor intensive task could be used in many other areas besides fractal
image generation. The continually increasing number of mobile
devices may prove to be a useful processing resource in the fu-
ture. In time mobile devices may contribute to projects such as
Seti@Home, DNA Analysis, Prime Number Search’s to name but
a few.
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Abstract 
This paper discusses in details how to apply the JSR 184 M3G 
API and the MIDP 2.0 Game API in the development of mobile 
3D immersive games based on two games developed by the 
author. The use of third party content creation software, the 
problems of importing .m3g format resource files and the 
solutions proposed by the author will also be addressed.  
 
As the processing power of mobile phones is still not up to the 
requirement of 3D immersive games, it is essential that the games 
are properly optimized to offer a satisfying gaming experience 
with reasonably fast frame rate. The optimization techniques 
which were employed to solve specific problems arising during 
the development of the sample games will be illustrated in detail. 
 

Keywords 
MIDP 2.0 Game API, Mobile Game Programming, Mobile 3D 
gaming, JSR 184 M3G API. 

 

1 Introduction 
 

The Java  Mobile 3D Graphics (M3G) API has the power to turn 
a good game into an outstanding mobile gaming experience and 
profoundly change the way of presenting information on mobile 
devices. As the standard implementation of JSR 184 matures and 
the Java 3D enabled devices become widely available, mobile 3D 
games are starting become common commercialized applications 
instead of just being research topics in the laboratories.  
 
Although proprietary 3D graphics software does exist in the 
current market, the trend among the mobile industry is to 
implement and support a common 3D graphics API that will 
facilitate portability of the applications and ease the process of 
development. For Java, the JSR 184 M3G API is considered the 
most suitable candidate. This paper discusses in details how this 
API combined with MIDP 2.0 Game API can be used not only to 
develop 3D immersive mobile games but also to improve the user 
interface of the game, while in some cases increasing the memory 
footprint of the application. 
 

Moreover, the limitations of memory and processing power still 
exist for mobile devices and must be properly addressed in order 
for computationally expensive applications such as 3D games to 
run. This paper will also discuss several optimization techniques 
which can be employed to improve the performance of the games. 

 

2 Exposition 
 
2.1 Building Lightweight GUIs with MIDP 2.0 

Game API 
Previously, the GUI of the mobile games for the control and game 
settings were written simply based on J2ME built-in container 
classes such as Form or List. However, this has become 
increasingly inadequate given the high demand from consumers 
for more visually appealing GUIs. Using proprietary software to 
create GUIs requires the developer to learn to program in their 
specific ways and may sometimes involve licensing problems.  

 

One way to solve this problem is to use the J2ME MIDP 2.0 
Game API to write GUIs tailored to the specific game. The Game 
API offers excellent support in manipulating graphics and 
animations. If implemented as a Runnable thread, it enables the 
use of polling technique to simulate key events. 

 

Even though the APIs allow porting applications to different 
devices, even across vendors, the size of the display varies from 
device to device. Therefore the UI elements should not be 
positioned using absolute coordinates, but in relative coordinates 
based on the screen size and the size of the content. For example, 

X =( (screen width) – (string width) )/2 
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Figure 1: User menu implemented with Game API 

 

The required information can be extracted from Font and 
GameCanvas classes. With each up or down key press, the 
indicator is moved by a predefined amount along the vertical axis 
to correspond to different choices. Internally, an index is updated 
to log the information of which option is currently highlighted. 
With the press of the select key, the current thread is terminated 
and the respective function handling the event is called. 

 

 
Figure 2: Flowchart of simulating key events using polling 

 

When large numbers of resource files are being loaded, the game 
may appear not responsive for a long time. Users may suspect 
their mobile devices are crashed by the program and undesirable 
actions such as shutting down the device may be taken. To add in 
more interactivity, a progress bar can be implemented using J2ME 
MIDP 2.0 Game API to show the progress of loading the game. In 
the loading function, set different points to update a global integer 

value which represents the percentage of the game loaded. Then 
in the second thread, keep reading this value and redraw the 
progress bar.  In this case, a separate thread is mandatory for the 
loading and drawing of the progress bar to be executed 
concurrently. 

 

 
Figure 3: Progress bar for loading the game 

 

2.2 Loading M3G Files 
M3G files are a specially defined group of files which caters 
specifically to the JSR 184 M3G API. Objects or even entire 
scenes created with content creation tools such as 3D Studio Max 
or Maya can be exported as .m3g files and used by mobile games. 
This enables the games to have fairly complex objects or scenes 
which, in turn, enhance the gaming experience of the players.   

 

However, loading a .m3g file may not be so straight forward as it 
seems to be. There is a discrepancy of implementation between 
the scene graph hierarchy of the .m3g file format and the JSR 184 
M3G API: in the API, the root of the scene graph is an object of 
class World and all other 3D objects are children of this World 
object. But in the .m3g exporter, the root of the scene is an 
instance of the class AnimationController. Because of this 
difference, the developer must do a manipulation in the program 
to extract the World object out. 

 

As each .m3g may have different indices for different objects, 
there is no way to be certain which index corresponds to the 
World object. In order to extract the desired object, the World 
object must be found first. Therefore, we use the following piece 
of code to locate the World object: 

 

    Object3D[] roots = Loader.load( filename ); 

    World world; 

    for( int i = 0; i < roots.length; i++ ){ 

if( roots[i] instanceof World ){ 

world = (World)roots[i]; 

break; 

} 

    } 
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Figure 4: Scene graph of a .m3g file 

 

Loop through the objects and find the only one which is of World 
type. As only one World object is allowed in each .m3g file, we 
can be certain that the World object is found when we first 
encounter it and exit the loop. 

 

Another problem associated with .m3g file arises from the fact 
that each 3D object can only be child of one World. When 
multiple instances of the same object need to be present in the 
same World, the resource file needs to be reloaded and the object 
re-extracted which takes considerable amount of time. This 
problem will be addressed in detail in the later optimization 
section. 

 

2.3  Perspective Distortion 
When using graphics primitives such as triangleStrip to construct 
planar surface, perspective distortion may occur during texture 
mapping 

 

Each planar face of the wall in Figure 5 consists of 2 triangles. 
When drawing the pixels of the texture, the positions of the ones 
near the upper edge are calculated with respect to the upper edge 
and the positions of the ones near to the lower edge are calculated 
with respect to the lower edge. Since these two edges appear to be 
not parallel from this perspective view, distortion occurs. The line 
separating the two triangles can be seen clearly in the figure 
below. 

 

.  

Figure 5: Perspective distortion 

 

To alleviate this problem, more triangles can be used to represent 
one planar surface. As more and more triangles are added in, the 
effect of perspective distortion appears to be less and less 
noticeable. However, this method not only consumes more 
memory to store the extra triangles, it is also tedious for 
programmers to implement. Instead, the M3G API provides a 
function called setPerspectiveCorrectionEnable( boolean 
enable ) in the PolygonMode class which eliminates the 
perspective distortion. However, the perspective correction flag is 
only a hint, so some implementations may not respect it. 

 

 
Figure 6: Perspective correction 

 

2.4       Collision Detection 
The JSR 184 M3G API provides a pick() function under the 
Group class for collision detection by ray intersection. An 
imaginary ray is cast from the center of the camera to infinity and 
the first mesh surface intersecting it at a predefined distance is 
considered causing a collision. This method is considered 
sufficient when navigating in a complex scene setting and there 
are too many objects to test for potential collisions by 
implementing bounding box or bounding sphere. However, the 
ray cast is only along the same direction as the camera. Therefore, 
when trying to detect collision during backward motions, the 
camera has to be temporarily reversed, test for collision, then 
reversed back.  
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Figure 7: Collision detection by ray casting for firing of 

ammunitions 

 

However, the pick() function may be implemented differently by 
some mobile phone manufacturers ( I have tried using the pick() 
function with SonyEricsson phones and the collision detection did 
not work ). Moreover, it is not suitable to use when the 
ammunitions are to be seen flying away (e.g. firing a missile). 
Therefore, in this case, bounding box or bounding sphere should 
be used. 

 

 
Figure 8: Bounding box collision detection 

 

For mobile devices with limited processing power, bounding box 
is a better choice since it requires less calculation to detect a 
collision: 

(X1-X2)² + (Z1-Z2)² + (Y1-Y2)² < distance² 

 

In the case when all the objects appear on roughly the same level, 
a bounding cylinder can further simplify the calculation and 
thereby improve the performance of the game: 

(X1-X2)² + (Z1-Z2)² < distance² 

 

In this case, a cylinder along y-axis with infinite height is used for 
collision detection. 

 

2.5 Optimization 
Due to the limitation of memory and processing power of mobile 
devices, the games should always be optimized in order to make 
efficient use of the resource and achieve better performance. This 
is especially the case for 3D games which generally require more 
expensive computations than 2D games when rendering the 
screen. 

 

First of all, not all the components have to be 3D. The graphics 
shown on the screen are basically a way of presenting the 
information and logic of the game, so whenever possible, 
developers should resort to 2D graphics which generally render 
faster. For example, in Figure 8, there is a jet fighter image 
attached to the camera. It banks to the left or right when the player 
presses the left or right key respectively as shown in Figure 10.  
To use a 3D model to accomplish this requires a lot of 
computations when rotating the plane and rotating the camera 
about the plane. Instead, we use a 2D image with the various 
positions of the plane pre-captured and place the corresponding 
image on the screen when necessary.  

 

 
Figure 9: 2D images of the plane  

 

 
Figure 10: Plane banking to the right 

 

Thread objects should not be used unless absolutely necessary. 
By creating too many processes running concurrently, the 
overhead of context switching can make a 3D mobile game run 
unbearably slowly. Therefore, sometimes it is a good idea to 
manage all the moving objects in several Vector objects and 
move all of them in the same Thread running the game loop. 

 

As mentioned in earlier section, the M3G API disallows one 
Object3D instance to be child of multiple Worlds. By default, 
there is a World object in every .m3g resource file and even if one 
only wants to export a 3D object, it is automatically attached to 
this default World.  
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The most intuitive way to solve this problem is to load the 
resource file each time one new instance of the object is needed, 
extract the object, remove it from the old World and attach it to 
the World in which the game is set. However, loading external 
resource files takes a long time and this can cause a significant 
delay during the game play, resulting in disruptive and unpleasant 
gaming experiences. 

 

To eliminate the delay, a concept similar to double buffering has 
been employed in one of my games. For each 3D object for which 
multiple instances might be needed, one copy of it is stored in the 
memory throughout the playing time of the game. Each time a 
new instance is required, the original copy is duplicated and the 
new copy is attached to the World. To do the duplication, the 
duplicate() function of Object3D class is used. It not only 
creates an exact replica of the original object but also set the 
parent to null if the object is a Node.  Then this new copy can be 
a child of the game World without causing any error. 

 

Although this method consumes more memory by saving one 
copy of each object regardless of whether it is being used, it 
eliminates the need to reload external resource files and thereby 
remove the long pauses during reloading. Overall, the 
performance of the game is improved.  

 

Alternatively, the components of the object like IndexBuffers and 
VertexBuffers of a mesh can be replicated and the mesh 
reconstructed later. However, to locate these pieces of information 
in the .m3g exporter file requires the knowledge of the indices of 
them. And more often then not, the sheer amount of IndexBuffers 
and VertexBuffers involved in complex models would make 
implementing this method a daunting task. 

 

3. Observation 
Although there have been significant improvements in the 
processing power, memory capacity and floating point support in 
the recently launched mobile phone models, the 3D graphics 
performance does not offer a very satisfying game play experience 
especially in the case of a first-person-view game.  

 
However, with the proper application of the optimization 
techniques mentioned above, an approximately 30% increase in 
frame rate has been achieved. 

Phone Model Frame rate before 
optimization /FPS 

Frame rate after 
optimization /FPS 

SonyEricsson K300 6.5 11 

SonyEricsson K500 7 10.7 

SonyEricsson K700 8.3 12.5 

SonyEricsson 
F500i 

7.6 11.5 

Table 1: Performance of the same game before and after 
optimization on various phone models 

 

The values shown above are average values for one complete 
game session on actual devices. With further refinement in 
optimization techniques and continued improvement in mobile 
phone hardware, the 3D immersive games developed with JSR 
184 M3G API will surely achieve a satisfying frame rate of 20~25 
FPS and offer a new outlook to the mobile gaming industry. 
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