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Abstract

We present a technique that can be used to obtain a series of con-
nected minimal bending trigonometric splines that will intersect
any number of predefined points in space. The minimal bending
property is obtained by a least square minimization of the accelera-
tion. Each curve segment between two consecutive points will be a
trigonometric Hermite spline obtained from a Fourier series and its
four first terms. The proposed method can be used for a number of
points and predefined tangents. The tangent length will thenbe op-
timized to yield a minimal bending curve. We also show how both
the tangent direction and length can be optimized to give as smooth
curves as possible. It is also possible to obtain a closed loop of min-
imal bending curves. These types of curves can be useful tools for
3D modelling, etc.

Keywords: Trigonometric curves, Hermite curves, least square
minimization

1 Introduction

This paper proposes a simple technique that will make it possible to
construct a minimal bending curve through a number of consecutive
points in space, using trigonometric splines [Schoenberg 1964].
Thus, each curve consists of a number of connected trigonometric
Hermite spline segments [Alba-Fernandez 2004]. Each spline will
start in one predefined point and end in the consecutive point, and
the next curve segment will start in that point and end in the next
point, and so forth.

In [Barrera 2005] a similar technique is presented where a mini-
mal bending cubic curve is obtained where both the points andthe
directions at these points are given. That algorithm will compute
optimal tangent lengths. Bartels et al [Bartels 1998] show how a
minimal bending cubic curve can be obtained using the pointsonly
as constraints for the curve. The resulting splines will be Hermite
splines and should not be confused with Catmul-Rom splines [Cat-
mull 1974] which also intersect the given points. However, they
are constructed in a quite different way.

Figure 1 shows a trigonometric Hermite curve where four points
and tangents are set as constraints. The left part of the curve has
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Figure 1: Multiple connected trigonometric curve with non optimal
predefined tangents.

rather large tangents, which make the curve bend heavily around
the intersection points. On the right side the tangents are rather
short, which makes the curve bend rapidly around the intersection
points. A minimal bending curve will have minimal acceleration
over the curve and this will make the curve smoother. Note that
the length of the tangents have been scaled down to 25% in all the
figures so that the tangents will not be too large compared to the
curve.

Several such curves will be presented in this paper. First wewill
prove that a cubic curve that only has points as constraints will have
this minimal acceleration property. The derivation will serve as an
example when we proceed to discuss trigonometric curves instead.
These curves have the advantage that they can define everything
from straight lines to perfect circles. Next we will show howa
trigonometric curve using points as constraints can be obtained and
then we will show how a curve using both points and tangent direc-
tions can be constructed. In the latter case the tangent is set to an
optimal, while in the first case both tangent length and direction is
set to an optimal. Hence this type of curve will always be smoother,
but we loose the possibility to determine direction in each point,
which might be desirable for camera movements [Vlachos 2001]
etc.

2 Least Square Minimization of Cubic Her-

mite Curves

We will start by proving that a cubic Hermite curve [Hearn 2004]
that intersects a number of given points will actually have the mini-
mal acceleration property. This will serve as an example of how the
minimal acceleration is obtained since the equations are shorter and
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easier to understand than for trigonometric curves. Then wewill go
on to give examples of how this works for trigonometric curves.

The total curvature of a curvef (t) in the parametric interval[0,1]
of one single curve segment is defined by

∫ 1

0
‖κ(t)‖dt (1)

Whereκ(t) is the curvature of the curve att. This formula often
causes very complex expressions, so it is more common to use the
integral

∫ 1

0
‖f′′(t)‖2dt (2)

This integral sums the acceleration, i.e. the square of the second
derivative over the curve. The acceleration is minimized bydif-
ferentiating on some variable and set the result to zero so that the
minimum is obtained. This is the essence of least square minimiza-
tion [Burden 1989]. In our case we would like to find the optimal
tangents that will give a minimal bending curve. If there arek +1
number of points, then there will bek number of curve segments.
Hence we differentiate on the tangents and solve

∂
∂Ti

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k+1(t)‖

2dt = 0 (3)

wherei = 1,2, ...,k +1.

In order to be able to derive the curve we must first compute the
second derivatives of the Hermite curve. A general cubic curve is
defined by

f(t) = At3 +Bt2 +Ct +D (4)

and a Hermite curve has the initial conditions

f(0) = Pi (5)

f(1) = Pi+1 (6)

f′(0) = Ti (7)

f′(1) = Ti+1 (8)

WhereTi and Ti+1 are two tangent vectors to be determined for
minimum acceleration. The Hermite [Hearn 2004] curve is defined
by solving the system







0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0













A
B
C
D






=







Pi
Pi+1
Ti

Ti+1






(9)

The solution of this system is

A = Ti +Ti+1−2Pi,i+1 (10)

B = 3Pi,i+1−2Ti −Ti+1 (11)

C = Ti (12)

D = Pi (13)

wherePi,i+1 = Pi+1−Pi.

Hence
f′′(t) = 6At +2B (14)

and
‖f′′(t)‖2 = 36A2t2 +24A ·Bt +4B2 (15)

where we use the notationA2 = A ·A and so forth. Substituting
equations (10) through (13) into equation (15) and differentiating
on T1 as in equation (3) gives

∂
∂T1

∫ 1

0
‖f′′(t)‖2dt = 8T1 +4T2 −12P12 (16)

Moreover we have

∂
∂T2

∫ 1

0
‖f′′(t)‖2dt = 4T1 +16T2 +4T3 −12P12 −12P23 (17)

∂
∂T3

∫ 1

0
‖f′′(t)‖2dt = 4T2 +16T3 +4T4 −12P23 −12P34 (18)

and finally

∂
∂Tk+1

∫ 1

0
‖f′′(t)‖2dt = 8Tk +4Tk+1 −12Pk,k+1 (19)

Next we set each equation equal to zero and solve for each tan-
gent. After dividing each equation by four this yields a system of
equations





















2 1 0 0 ... 0 0 0
1 4 1 0 ... 0 0 0
0 1 4 1 ... 0 0 0
. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

0 0 0 0 ... 0 1 2









































T1

T2

T3

.

.

.

Tk+1





















=





















3P12

3(P12+P23)

3(P23+P34)

.

.

.

3Pk,k+1





















(20)

A system involving a matrix of this form is called atridiagonal
system and can be solved efficiently using a specialized algorithm
[Lengyel 2004]. This is the same system, which is derived in [Bar-
tels 1998]. However, they derive it in a different way were they
set up a system requiringC2 continuity at the intersection points.
Nevertheless, our derivation proves that this type of curvehave the
minimal acceleration property.

3 Trigonometric Hermite splines

Trigonometric splines (or trigonometric polynomials) were intro-
duced by Schoenberg [Schoenberg 1964] and have been investi-
gated extensively in math and computer aided geometry literature,
[Walz 1997], [Lyche 1979], [Han 2003], just to mention a few.
However, they have not gained much interest in computer graphics.
One reason is probably that it involves the computation of trigono-
metric functions and those have been computationally expensive.
With faster hardware they may gain the interest from the computer
graphics community as a modelling tool, since it is possibleto con-
struct everything from straight lines to perfect circle arcs. The latter
is impossible with cubic curves.

A trigonometric spline can be constructed from a truncated Fourier
series [Schoenberg 1964], [Walz 1997]. An Hermite spline is
defined by two points and the tangents in these points and therefore
we have four constraints and thus we need four terms in the Fourier
series. The trigonometric curve is therefore defined as

f(θ ) = a+bcosθ +csinθ +dcos2θ (21)

Using the conditions in (5) through (8), the curve is found bysolv-
ing







1 1 0 1
1 0 1 −1
0 0 1 0
0 −1 0 0













a
b
c
d






=







P1
P2
T1
T2






(22)
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The solution is

a =
1
2
(P1 +P2−T1 +T2) (23)

b = −T2 (24)

c = T1 (25)

d =
1
2
(P1−P2 +T1 +T2) (26)

By forcing d to be equal to zero in equation (21) we get

f(θ ) = a+bcosθ +csinθ (27)

This is obviously the equation for a circle and this proves that it is
possible to construct a perfect circle arc using these curves. Since
the curve is parametric it is easy to see that it is possible toconstruct
straight lines using the trigonometric splines. The coefficients are
vectors and the function produces a point in space and each coor-
dinate has its own expression and the only thing that differsis the
coefficients, and therefore it is no problem to construct a straight
line even though trigonometric functions are involved.

4 Least Square Minimization of Trigono-

metric Hermite Splines

Once again we use equation (3) in order to optimize both tangent
length and direction for the Trigonometric Hermite spline defined
in equation (21). This will yield a system of equations that must be
solved.





















A 2B 0 0 ... 0 0 0
B A B 0 ... 0 0 0
0 B A B ... 0 0 0
. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

0 0 0 0 ... 0 2B A









































T1

T2

T3

.

.

.

Tk+1





















=





















2CP12

C(P12+P23)

C(P23+P34)

.

.

.

2CPk,k+1





















(28)

where we have

A = 15π −16 (29)

B = 6π −11 (30)

C = 6π −4 (31)

Figure 2 shows how the proposed approach will yield a curve that
is much smoother than the curve in figure 1, since both the tangent
direction and length are set to an optimal, giving a minimal bending
curve.

4.1 Optimal tangent length

If we want our curves to have the same direction as the tangents in
the intersection points, then we can change the computationso that
we solve for optimal tangent length only instead of solving for both
optimal tangent length and direction. In this case we introduceαi
as the length of each tangentTi.

The equation now becomes

∂
∂αi

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k+1(t)‖

2dt = 0 (32)

wherei = 1,2, ...,k +1.

Figure 2: Multiple connected minimal acceleration trigonometric
curves, with both optimal tangent direction and length.

The resulting coefficient matrix is





















AT2
1 2BT1 ·T2 0 0 ... 0 0 0

BT1 ·T3 AT2
2 BT2 ·T3 0 ... 0 0 0

0 T2 ·T3 AT2
3 BT3 ·T4 ... 0 0 0

. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

0 0 0 0 ... 0 2BTk ·Tk+1 AT2
k+1





















(33)

And the variables to solve for are


















α1
α2
α3
.

.

.

αk+1



















(34)

Finally the column of constants is



















2CT1 ·P12
CT2 · (P12+P23)
CT3 · (P23+P34)

.

.

.

2Ctk+1 ·Pk,k+1



















(35)

In figure 3 it is clear that the tangents have the same directions as in
figure 1. However, the tangents have optimal length and the curve
is thus smoother.

5 A Closed Loop

It is possible to connect any number of minimal acceleration
trigonometric curves together into a closed loop as shown infig-
ure 4. The end point for the last segment is set to be the same as
the start point for the first segment. Likewise, the tangentsat this
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Figure 3: Multiple connected minimal acceleration trigonometric
curve.

point is set in the same way. The equation to solve is now changed
so that we have

∂
∂Ti

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k (t)‖2dt = 0 (36)

wherei = 1,2, ...,k. Note that this time there arek number of points
andk number of curve segments.

This yields the following system





















A B 0 0 ... 0 0 B
B A B 0 ... 0 0 0
0 B A B ... 0 0 0
. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

B 0 0 0 ... 0 B A









































T1

T2

T3

.

.

.

Tk





















=





















C(Pk,1 +P12)

C(P12+P23)

C(P23+P34)

.

.

.

C(Pk−1,k +Pk,1)





















(37)

where we have

A = 15π −16 (38)

B = 6π −11 (39)

C = 6π −4 (40)

The presence of the nonzero entries in the lower-left and upper-right
corners make this system acyclic tridiagonal system. It can also be
solved efficiently [Press 1992].

5.1 Optimal Tangent Length

Now we proceed to show how a closed loop can be constructed
when we want a specific tangent direction in each point. The equa-
tion to solve is

∂
∂αi

∫ 1

0
‖f′′1(t)‖2 +‖f′′2(t)‖2 + ...+‖f′′k (t)‖2dt = 0 (41)

wherei = 1,2, ...,k.

Figure 4: A closed loop of a trigonometric curve with optimaltan-
gent length and direction

The coefficient matrix now becomes




















AT2
1 BT1 ·T2 0 0 ... 0 0 BT1 · tk

BT1 ·T3 AT2
2 BT2 ·T3 0 ... 0 0 0

0 T2 ·T3 AT2
3 BT3 ·T4 ... 0 0 0

. . . . ... . . .

. . . . ... . . .

. . . . ... . . .

BT1 ·Tk 0 0 0 ... 0 2BTk−1 ·Tk AT2
k





















(42)

And the variables to solve for are


















α1
α2
α3
.

.

.

αk



















(43)

Finally the column of constants is


















CT1 · (P12+Pk,1)
CT2 · (P12+P23)
CT3 · (P23+P34)

.

.

.

CTk · (Pk−1,k +Pk,1)



















(44)

In figure 5 the tangent directions have been predefined. The curve
is made smooth by the proposed minimal acceleration technique, so
that the tangent length is set to an optimal.

6 Conclusions

We have presented a method that can be used to obtain minimal
bending trigonometric Hermite curves, which can have a number
of different constraints, like intersection points and tangent direc-
tions. These curves can be used in a number of areas, such as 3D-
modeling and camera movements.
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Figure 5: A closed loop with optimal tangent length for predefined
tangent directions.
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