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Abstract

We present a technique that can be used to obtain a series-of co
nected minimal bending trigonometric splines that willeirgtect
any number of predefined points in space. The minimal bending
property is obtained by a least square minimization of thekta-
tion. Each curve segment between two consecutive point®evi
trigonometric Hermite spline obtained from a Fourier sedad its
four first terms. The proposed method can be used for a nunfiber o
points and predefined tangents. The tangent length will ieeop-
timized to yield a minimal bending curve. We also show howhbot
the tangent direction and length can be optimized to giveraoth
curves as possible. Itis also possible to obtain a closqaddmin-

imal bending curves. These types of curves can be usefid fool

3D modelling, etc.

Keywords: Trigonometric curves, Hermite curves, least square
minimization

1 Introduction

This paper proposes a simple technique that will make itiplest
construct a minimal bending curve through a number of cartsec
points in space, using trigonometric splines [Schoenbe@$4]L
Thus, each curve consists of a number of connected trigotname
Hermite spline segments [Alba-Fernandez 2004]. Eachespliti
start in one predefined point and end in the consecutive ,panat
the next curve segment will start in that point and end in téet n
point, and so forth.

In [Barrera 2005] a similar technique is presented where ra-mi
mal bending cubic curve is obtained where both the pointstiaad
directions at these points are given. That algorithm withpoite
optimal tangent lengths. Bartels et al [Bartels 1998] show aA
minimal bending cubic curve can be obtained using the painks
as constraints for the curve. The resulting splines will keerhite
splines and should not be confused with Catmul-Rom spliGes-
mull 1974] which also intersect the given points. Howevbeyt
are constructed in a quite different way.

Figure 1 shows a trigonometric Hermite curve where four {s0in
and tangents are set as constraints. The left part of the has
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Figure 1: Multiple connected trigonometric curve with ngatimal
predefined tangents.

rather large tangents, which make the curve bend heavilynaro
the intersection points. On the right side the tangents atteer
short, which makes the curve bend rapidly around the intése
points. A minimal bending curve will have minimal acceléat
over the curve and this will make the curve smoother. Noté tha
the length of the tangents have been scaled down to 25% iheall t
figures so that the tangents will not be too large comparetido t
curve.

Several such curves will be presented in this paper. Firsivile
prove that a cubic curve that only has points as constraiitithave
this minimal acceleration property. The derivation wilhseas an
example when we proceed to discuss trigonometric curvésads
These curves have the advantage that they can define ewerythi
from straight lines to perfect circles. Next we will show haw
trigonometric curve using points as constraints can beimddaand
then we will show how a curve using both points and tangeeicdir
tions can be constructed. In the latter case the tangent te s@
optimal, while in the first case both tangent length and diimads
set to an optimal. Hence this type of curve will always be stheg
but we loose the possibility to determine direction in eacinfpy
which might be desirable for camera movements [Vlachos R001
etc.

2 Least Square Minimization of Cubic Her-
mite Curves

We will start by proving that a cubic Hermite curve [Hearn 2P0
that intersects a number of given points will actually haweermini-
mal acceleration property. This will serve as an exampleof the
minimal acceleration is obtained since the equations angeshand



easier to understand than for trigonometric curves. Thewilgo
on to give examples of how this works for trigonometric cisve

The total curvature of a curvi(t) in the parametric intervdD, 1]
of one single curve segment is defined by

1
PRI

Wherek (t) is the curvature of the curve &t This formula often
causes very complex expressions, so it is more common tdase t

integral
1
PRLCIRY @
0

This integral sums the acceleration, i.e. the square of ¢bersl
derivative over the curve. The acceleration is minimizeddidy
ferentiating on some variable and set the result to zero atothie
minimum is obtained. This is the essence of least squarenizat
tion [Burden 1989]. In our case we would like to find the optima
tangents that will give a minimal bending curve. If there krel
number of points, then there will Benumber of curve segments.
Hence we differentiate on the tangents and solve

1)

Vil -1
TTi/o IFT O+ IFF O + ...+ [fia OlPdt =0 (3)

wherei =1,2,...,k+ 1.

In order to be able to derive the curve we must first compute the
second derivatives of the Hermite curve. A general cubiveis
defined by

f(t) = A3 +Bt> + Ct+D ()
and a Hermite curve has the initial conditions
f(0) = P; (5)
f(1) =Piy1 (6)
f(0) =T, )
(1) =Tin ®)

WhereT; andTj 1 are two tangent vectors to be determined for
minimum acceleration. The Hermite [Hearn 2004] curve isreefi
by solving the system

0 0 0 1 A P;
111 1 B | | Pus
ooz1o0llc|T| T ©)
3 210 D Tiit
The solution of this system is
A=Ti+Tiy1—2Pij1 (10)
B=3Pjit1—2Ti—Tis1 (11)
C=T, (12)
D=PF; (13)
whereP; 11 = Pi;1—Pi.
Hence
’(t) = 6At +2B (14)
and
[[f(t)]|? = 36A%t2 + 24A - Bt + 4B2 (15)

where we use the notatioh? = A - A and so forth. Substituting
equations (10) through (13) into equation (15) and difféedimg
onT; as in equation (3) gives

(9 1
TTl/o I[F(t) |2t = 8T 1 + 4T, — 12P1, (16)

Moreover we have
J /! 2

T, /0 I (t)||°dt = 4T { +16T5 +4T3—12P1, —12Po3 (17)
2
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F/ If”(t)||°dt = 4T+ 16T 3 +4T4— 12Pp3 — 12P3, (18)
3Jo

and finally

17}
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1
/o [[f”(t)]|?dt = 8Tk + 4Tk i1 — 12Pc k1 (19)

Next we set each equation equal to zero and solve for each tan-
gent. After dividing each equation by four this yields a eystof
equations

2 1.0 0 .. 0 0 O Ty 3Py,
1 4 1 0 .. 0 0 O T, 3(P12+ P23)
01 4 1 .. 0 0 O T3 3(P23+Ps4)

- (20)
00 0 0 .. 0 1 2 Tkt 3Pyki1

A system involving a matrix of this form is calledteidiagonal
system and can be solved efficiently using a specialized algorithm
[Lengyel 2004]. This is the same system, which is derivedir{

tels 1998]. However, they derive it in a different way wereyth
set up a system requirir@glcontinuity at the intersection points.
Nevertheless, our derivation proves that this type of chiaree the
minimal acceleration property.

3 Trigonometric Hermite splines

Trigonometric splines (or trigonometric polynomials) wentro-
duced by Schoenberg [Schoenberg 1964] and have been investi
gated extensively in math and computer aided geometryatites,
[Walz 1997], [Lyche 1979], [Han 2003], just to mention a few.
However, they have not gained much interest in computerhigap
One reason is probably that it involves the computationigbtro-
metric functions and those have been computationally estpen
With faster hardware they may gain the interest from the ademp
graphics community as a modelling tool, since it is possibleon-
struct everything from straight lines to perfect circlesarthe latter

is impossible with cubic curves.

A trigonometric spline can be constructed from a truncatearier
series [Schoenberg 1964], [Walz 1997]. An Hermite spline is
defined by two points and the tangents in these points andftirer
we have four constraints and thus we need four terms in thedfou
series. The trigonometric curve is therefore defined as

f(8) =a+bcosf+csinb +dcos D (21)

Using the conditions in (5) through (8), the curve is foundsbiv-
ing

1 1 0 17ra P,
1 0 1 -1||b| _|P
00 1 0 c|=| T (@2)
0 -1 0 0]]d T,



The solution is

a:%(P1+Pg—T1+T2) (23)

b=-T, (24)

c=T1 (25)

d=2(P1—PpT14T) (26)
By forcing d to be equal to zero in equation (21) we get

f(8) =a+bcosb +csinf 27)

This is obviously the equation for a circle and this proves this
possible to construct a perfect circle arc using these sur8ace
the curve is parametric it is easy to see that it is possibtenstruct
straight lines using the trigonometric splines. The coieffits are
vectors and the function produces a point in space and eaxh co
dinate has its own expression and the only thing that diffetke
coefficients, and therefore it is no problem to constructraigiit
line even though trigonometric functions are involved.

4 Least Square Minimization of Trigono-
metric Hermite Splines

Once again we use equation (3) in order to optimize both ta@nge
length and direction for the Trigonometric Hermite splirefided

in equation (21). This will yield a system of equations thaistrbe
solved.

A 26 0 O 0 0 O Ty 2CP;,
B A B O 0O 0 O T, C(P12+Pa23)
0 B A B 0 0 O T3 C(P23+ P34)
0 0 0 0 .. 028 Al T 2P
(28)
where we have
A=15m—-16 (29)
B=6mr—-11 (30)
C=6mrm-4 (31)

Figure 2 shows how the proposed approach will yield a curge th
is much smoother than the curve in figure 1, since both thestating
direction and length are set to an optimal, giving a minineiding
curve.

4.1 Optimal tangent length

If we want our curves to have the same direction as the tasgent
the intersection points, then we can change the computstidat
we solve for optimal tangent length only instead of solviaglfoth
optimal tangent length and direction. In this case we intoedy;
as the length of each tangent

The equation now becomes
d ! 1 2 7 2 1 2
d_ai/o IFL O+ 1201+ + [fi 2Ot =0 (32)

wherei =1,2,....k+ 1.

Figure 2: Multiple connected minimal acceleration trigoreiric
curves, with both optimal tangent direction and length.

The resulting coefficient matrix is

ATZ  2BT;-T, 0 0 .. 0 0 0
BT Ts AT2 BT, T3 0 .0 0 0
0 To-Ta AT2  BT3-T4 .. O 0 0
0 0 0 0 w0 BT-Ten AT,
(33)
And the variables to solve for are
az
az
as
(34)
k41
Finally the column of constants is
2CT1-P12
CT2- (P12+P23)
CT3-(P23+P3g)
. (35)

2Ct1 1 Pyt

In figure 3 itis clear that the tangents have the same direzts in
figure 1. However, the tangents have optimal length and theecu
is thus smoother.

5 A Closed Loop

It is possible to connect any number of minimal acceleration
trigonometric curves together into a closed loop as showfigin

ure 4. The end point for the last segment is set to be the same as
the start point for the first segment. Likewise, the tanganthis
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Figure 3: Multiple connected minimal acceleration trigoredric Figure 4: A closed loop of a trigonometric curve with optirteh-
curve. gent length and direction

point is set in the same way. The equation to solve is now ating  The coefficient matrix now becomes
so that we have

ATZ  BT;-T» 0 0 . 0 0 BT:-t
9 L BT1-Ts  AT3 BT, T3 0 . 0 0 0
o1 [ IHOP+ 15O+ 4 0P =0 (36) 0 TeTs  ATE BTeT. . 00 0
i Jo . . : . - . .
wherei = 1,2, ..., k. Note that this time there akenumber of points . . . . . . -,
andk number of curve segments. BT1 Tk 0 0 0 .. 0 BTk AT;(<42)
This yields the following system And the variables to solve for are
a
A B 0 O 0 0 B T C(Py1+Pi2) al
B A B 0 0 0 0 T2 C(P12+P23) ag
B A B T C(Pa3+P:
0 0 0 O 3 _ (23.+ 34) . (43)
B o oo .. o8 AllT C(Pe1+Pra) ax
@7
where we have Finally the column of constants is
A=151-16 (38) (é-_ll—_l : ((';12+ |;kﬁ1))
. +P23
B=6m—11 39 2o
(39) CT3- (P23 +P3a)
C=6m-4 (40) ] (44)

The presence of the nonzero entries in the lower-left anduipght .
corners make this systencyclic tridiagonal system. It can also be CTy- (Pk—1k+Pk1)
solved efficiently [Press 1992].

In figure 5 the tangent directions have been predefined. Tive cu
is made smooth by the proposed minimal acceleration teabn&p

5.1 Optimal Tangent Length that the tangent length is set to an optimal.

Now we proceed to show how a closed loop can be constructed
when we want a specific tangent direction in each point. Theeq
tion to solve is

6 Conclusions

- We have presented a method that can be used to obtain minimal
o 12 4 17012 .+ 18 (1) I12dt = O 41 bengﬂng trigonometric H.erm.lte curves, WhI.Ch can have a rermb
aa; /o IFLOI"+ 21+ + [ O (41) of different constraints, like intersection points andgant direc-
tions. These curves can be used in a number of areas, such as 3D
wherei =1,2,....k. modeling and camera movements.
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Figure 5: A closed loop with optimal tangent length for prigued
tangent directions.
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