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Abstract

This presentation treats duality in Mixed Integer Programming (MIP in short). A dual
of a MIP problem includes a dual price function F , that plays the same role as the dual
variables in Linear Programming (LP in the following).

The price function is generated while solving the primal problem. However, different to the
LP dual variables, the characteristics of the dual price function depend on the algorithmic
approach used to solve the MIP problem. Thus, the cutting plane approach provides non-
decreasing and superadditive price functions while branch-and-bound algorithm generates
piecewise linear, nondecreasing and convex price functions.

Here a hybrid algorithm based on branch-and-cut is investigated, and a price function
for that algorithm is established. This price function presents a generalization of the dual
price functions obtained by either the cutting plane or the branch-and-bound method.

1 Introduction

Duality in mathematical programming is used in a variety of applications. Apart from con-
ceptual interest it provides interesting economic interpretations of the problem. Moreover,
using dual information usually improves the performance of an algorithm. Thus, there
exist many results on duality in linear programming (LP) (e.g. see Gass (1985)). Results
on duality in integer programming (IP) also exist (Wolsey (1981)). While algorithms for
LP produce unique dual programs (apart from degenerating programs), that are relatively
easy to obtain, IP algorithms generate a dual function whose characteristics depend on the
method used to solve the primal IP problem. Wolsey (1981) characterized this function for
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the branch-and-bound and the cutting plane methods.

Duality in mixed integer programming problems (MIPs), on the other hand, has only
a few results1. The formulation of a MIP dual also contains a dual price function as in the
case of IP problems. The aim of this paper is to give a characterization of this function
for the branch-and-cut method, a hybrid method, that uses the branch-and-bound and the
cutting plane approaches simultaneously.

2 MIP Problems

MIP deals with models, where a linear objective function has to be maximized (or mini-
mized) subject to a set of linear inequality or equality constraints, and where some of the
variables are integer.
A classical mixed integer program can be written as:

max cx + dy

(PMIP ) s.t. Ax + By ≤ b (1)

x ∈ Zn
+, y ∈ Rm

+

Here, x represents the integer variables while y represents the continuous variables. c ∈ Rn

and d ∈ Rm are the objective coefficients for x and y respectively. A ∈ Rk×n is a k × n
coefficient matrix for integer variables x and analogously B ∈ Rk×m is a k ×m coefficient
matrix for continuous variables y. b ∈ Rk is the right hand side vector of the constraints.
A review on MIP can be found in Nemhauser and Wolsey (1988).

3 Mixed Integer Duality

Consider the MIP problem (PMIP ) given by (1). The dual of the problem can be written
as

min F (b)

s.t. F (Ax + By) ≥ cx + dy ∀x ∈ Zn
+ & ∀y ∈ Rm

+ (2)

F ∈ F

1Nemhauser and Wolsey (1988) have stated the dual of MIP for superadditive dual function. Nemhauser
and Wolsey (1985) have investigated duality for 0-1 MIP problems.
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Here F is the dual function, or the so called price function. It plays the same role as
shadow prices2 in the LP dual. Let, e.g. b be the available resources, cx + dy be the
profit from a production and Ax + By be the production function. Then the original MIP
problem (PMIP ) given by (1) can be interpreted as maximizing profit from production,
given some constraints on available resources. One interpretation of the dual price func-
tion in the dual program (2) tells, how much extra resources are worth. In particular, if one
constraint in the primal problem (1) represents a constraint on one single resource, then
one extra unit of resource i is worth F (ei) units of payment, where ei is the i’th unit vector.

The structure of an optimal price function F and its properties depend on the algorithmic
approach used to solve the original MIP problem, and thus to generate F (if it is possible).
A review on the pure integer programming case can be found in L. A. Wolsey (1981).

The two most widespread algorithmic approaches to solve MIP problems are branch-and-
bound and cutting plane approaches. A cutting plane algorithm for MIP was first proposed
by Gomory (1960). However, the procedure appeared to be slow at first. Moreover, a finite
cutting plane algorithm for MIP is still not known. If the classical Gomory cuts are used,
Salkin (1989) mentions an example of a MIP problem by White (1961), that cannot be
solved using the cutting plane method. Therefore the research was more concentrated on
the branch-and-bound method proposed by Little (1963).

However, the cutting planes algorithms have been reconsidered in the early 90’s with some
impressive results. Thus, a cutting plane based lift-and-project algorithm was proposed
(see Balas et al. (1993) and Lovasz and Schrijver (1991)). Moreover, one of the most
widespread algorithm, branch-and-cut3 is a mixture of both approaches where a cutting
plane approach is added to the branch-and-bound framework.

Two sets of functions will be useful when describing MIP problems. Let F be the set
of nondecreasing functions F : Rk → R. Thus

F = {(F : Rk → R) : F (a) ≤ F (b)∀a, b ∈ Rk, a 5 b}.

Finally let H be the set of nondecreasing and superadditive functions satisfying the follow-
ing conditions:

1. (F : Rk → R) ∈ H is superadditive, i.e. F (q1) + F (q2) ≤ F (q1 + q2),∀q1, q2 ∈ Rk,

2Dual variables
3Padberg and Rinaldi (1987) for pure integer programming and Crowder et al. (1983) for 0-1 MIP.
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2. F (0) = 0,

3. F ∈ H is nondecreasing, i.e. F ∈ F, and

4. F (q) = limε↘0
F (εq)

ε
exists and is finite for all q.

In the cutting plane approach we will deal with functions in H, while dual price functions
for branch-and-bound approach will be nondecreasing, polyhedral and convex.

3.1 Cutting Plane Framework

Algorithms based on the cutting plane setting are less common. This may be because no
cutting plane based finite algorithm is known for the general MIP problem. See Marchand
et al. (1999) for a review on cutting plane based algorithms for MIP problems. The orig-
inal Gomory’s cutting plane algorithm is sure to terminate only if the optimal objective
function is integer valued. Other MIP algorithms restrict the variables to the 0-1 case.

Again consider the MIP problem (PMIP ) given by (1). The Gomory’s strong cutting plane
algorithm for MIP problems solves a family of problems (P r):

max zr = cx + dy

s.t Ax + By ≤ b

Cx + Cy ≤ Cb

x, y ≥ 0

Here an element in the last set of constraints has the form
∑n

j=1 Gr(A.j)xj+∑m
j=1 Gr(B.j)yj ≤ Gr(b) where the function Gr(q) : Rk → R represents a Gomory cut. r is

the index representing the number of the cut in focus.

The form of the function Gr(q) can be obtained from results in Nemhauser and Wolsey
(1988). Let bac be the integral part, and fa be the fractional part of a ∈ R. That is,
a = bac+ fa and 0 ≤ fa ≤ 1. For an α, 0 ≤ α < 1, define Fα(a) : R→ R by

Fα(a) = bac+ max(0, fa−α
1−α

).

Let v be the row element of the inverse basis matrix corresponding to the source row in the
constructed simplex tableau. For simplicity consider the first cut. Then v = {v1, ..., vk},
since the dimension of the basis is k. Let V = {1, ..., k}, V + = {i ∈ V |vi ≥ 0} and
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V − = {i ∈ V |vi < 0}. Moreover, let α be the fractional part of the nonintegral value of
the basic variable in the source row.

Holm and Tind (1988)4 show that G(q) defined by

G(q) = Fα(vq)− 1

1− α

∑

i∈V −
viqi

is superadditive and nondecreasing and that

G(q) =
1

1− α
min(−

∑

i∈V −
viqi,

∑

i∈V +

viqi)

is concave and piecewise linear. Additionally G(q) generates cuts in the Gomory strong
MIP cutting plane algorithm.

The algorithm terminates if some problem (P r) is found to be infeasible, or if a mixed
integer solution is found. However, this Gomory cutting plane algorithm is finite for inte-
gral optimum objectives only. For a general MIP we are not sure to obtain a solution after
a finite number of cuts.

3.1.1 MIP duality in Cutting Plane Framework

Gomory’s strong mixed integer cutting plane algorithm generates nondecreasing superad-
ditive optimal dual price functions. Suppose that p Gomory cuts are needed to find the
optimal solution for the primal MIP problem. With the Gomory cuts given by the function
G(q) defined above, the optimal price function F (q) : Rk → R and its directional derivative
are given by

F (q) =
k∑

i=1

uiqi +

k+p∑

i=k+1

uiGi(q) (3)

and

F (q) =
k∑

i=1

uiqi +

k+p∑

i=k+1

uiGi(q)

respectively. Here u1, ..., uk, uk+1, ..., uk+p ≥ 0 represent the dual variables obtained at ter-
mination. The first k variables correspond to the original MIP constraints, while the last

4Based on Nemhauser and Wolsey (1988)
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p variables correspond to the additional Gomory cuts.

The superadditive dual of a MIP is then (see also Nemhauser and Wolsey (1988))

min
F∈H

F (b)

s.t. F (A.j) ≥ cj j = 1, ..., n

F (B.j) ≥ dj j = 1, ..., m

Here F (q) is nondecreasing and superadditive and F (q) is concave and piecewise linear.

3.2 Branch-and-Bound Framework

The LP based branch-and-bound approach produced some effective algorithms like branch-
and-price and branch-and-cut. A review on algorithms based on LP branch-and-bound
approach can be found in Johnson et al. (2000).

Consider the mixed integer problem (PMIP ) given by (1). The classical branch-and-bound
algorithm solves a family of subproblems (Pt), t = 1, ..., r:

max cx + dy

s.t. Ax + By ≤ b (4)

x ∈ Xt, y ∈ Rm
+

where Zn
+ ⊆ ⋃r

t=1 Xt. Assume in the following that Xt = {x ∈ Rn : gt
j ≤ xj ≤ ht

j, j =
1, ..., n, x ≥ 0} as it is done in Klamroth et al. (2002), where gt

j and ht
j are lower and upper

integer bounds respectively. This assumption is satisfied by LP based branch-and-bound
approaches and many other branch-and-bound algorithms. A branch-and-bound algorithm
terminates if one of the following is true:

• All the generated subproblems (Pt), t = 1, ..., r, are shown to be infeasible or,

• The optimal solution to some subproblem Pt∗ , (xt∗ , yt∗), is found, such that xt∗ is
integer valued, and for zt∗ = cxt∗ + dyt∗ we have that zt∗ ≥ zt for all t 6= t∗. Here zt

represents the objective value of the subproblem (Pt).
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3.2.1 MIP Duality in Branch-and-Bound Framework

Using branch-and-bound algorithms the generated optimal price function is not necessar-
ily superadditive. Although branch-and-bound algorithms have been widespread in solving
MIP problems, there are no results concerning generation of optimal price functions based
on branch-and-bound known to the author. A treatment for the pure integer programming
problem can be found in Wolsey (1981).

Consider the original MIP problem (PMIP ) given by (1) and the subproblems (Pt) given
by (4). The following lemma shows how to construct a dual feasible function for (PMIP )
given dual feasible functions for its subproblems.

Lemma 3.1: If Ft ∈ F, t = 1, ..., r, are dual feasible functions for the subproblems
(Pt), t = 1, ..., r in the sense that

Ft(Ax + By) ≥ cx + dy ∀x ∈ Xt, y ∈ Rm
+

then
F (q) := max

t=1,...,r
Ft(q)

is a dual feasible function for the original MIP problem (PMIP ) in (1).

Proof

Let x ∈ Zn
+, and y ∈ Rm

+ . Then because Zn
+ ⊆ ⋃r

t=1 Xt, x ∈ Xt for some t = 1, ..., r.
Hence, since Ft is feasible for (Pt), Ft(Ax + By) ≥ cx + dy. But due to the definition
of F , F (Ax + By) ≥ Ft(Ax + By) ≥ cx + dy. Moreover, F is nondecreasing since Ft is
nondecreasing for t = 1, ..., r. This implies that F ∈ F. Thus, all in all F is a dual feasible
function for the original MIP problem (PMIP ).

2

Next we show that a dual optimal function F for the original MIP problem in fact exists,
provided the problem has a finite optimal solution. This result together with a way to
construct F is established in the theorem below.

Theorem 3.1 If the original MIP program (PMIP ) in (1) has a final optimal solution,
and an LP based branch-and-bound algorithm terminates in a finite number of subproblems
(Pt), t = 1, ..., r, then there exists a dual optimal price function F ∈ F where

F (q) := max
t=1,...,r

(πtq + αt), αt ∈ R, πt ∈ Rk, πt ≥ 0. (5)
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Proof

Let z∗ be the optimum objective value of (PMIP ) and consider some arbitrarily chosen
terminating subproblem (Pt), t ∈ 1, ..., r. (Pt) is either infeasible or has an optimal solu-
tion where integer variables have integer values.

a) If the linear program (Pt) has an appropriate optimal solution with corresponding
optimal objective value zt, then its dual LP is feasible. Let (πt, πt, πt) ≥ 0 be the optimal
solution of the dual. Here, the variable πt corresponds to the initial constraints in (PMIP ),
while the variables πt and πt represent the extra integer ≥ and ≤ constraints respectively,
that are generated by the branch-and-bound algorithm. Since (πt, πt, πt) is feasible for the
dual LP

πtA.j −
n∑

j=1

πt
j +

n∑
j=1

πt
j ≥ cj j = 1, ..., n

and
πtB.i ≥ di i = 1, ...,m.

Define a nondecreasing function Ft as

Ft(q) := πtq + αt, where αt = −πtgt + πtht.

Ft satisfies

Ft(Ax + By) = πt(Ax + By) + αt = πt(Ax + By)− πtgt + πtht ≥
πt(Ax + By)− πtx + πtx = πtAx + πtBy − πtx + πtx ≥ cx + dy ∀x ∈ Xt, y ∈ Rm.

Thus, Ft represents a dual feasible function for (Pt) in the sense of lemma 3.1. More-
over, by linear programming duality, Ft(b) = πtb − πtgt + πtht = zt for terminating (Pt).
Here zt ≤ z∗.

b) If (Pt) on the other hand is infeasible, there exits a dual ray (ωt, ωt, ωt) ≥ 0, that
satisfies ωtA.j −

∑n
j=1 ωt

j +
∑n

j=1 ωt
j ≥ cj, j = 1, ..., n, ωtB.i ≥ di, i = 1, ..., m and

ωtb − ωtgt + ωtht < 0. The definitions of ω are analogous to the definitions of π above.
Consider some dual feasible solution (πp, πp, πp) ≥ 0 of the dual of (Pt). This may be
available from the parent node in the branch-and-bound tree. Combining it with the dual
ray we obtain a vector (πt, πt, πt) := (πp, πp, πp) + µ(ωt, ωt, ωt), where µ ∈ R+.

Define Ft ∈ F for (Pt) by Ft(q) = πtq + αt, αt := −πtgt + πtht. Then we have that:
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Ft(Ax + By) = πt(Ax + By)− πtgt + πtht =
(πp + µωt)(Ax + By)− (πp + µωt)gt + (πp + µωt)ht =
πp(Ax + By) + µωt(Ax + By)− πpgt − µωtgt + πpht + µωtht ≥ cx + dy, ∀x ∈ Xt, y ∈ Rm

+

Thus again we are dealing with a dual feasible function Ft for (Pt). Moreover, we see
that

lim
µ→∞

Ft(b) = lim
µ→∞

(πtb + αt) = lim
µ→∞

((πp + µωt)b− (πp + µωt)gt + (πp + µωt)ht) =

lim
µ→∞

(πpb− πpgt + πpht + µ(ωtb− ωtgt + ωtht)) = −∞.

Thus we always can choose µ so Ft(b) < z∗.

Summarizing, Ft(q) = πtq + αt is a dual feasible function for all terminating (Pt), t =
1, ..., r. Thus, using lemma 3.1, the price function F given by (5), is dual feasible for
(PMIP ). We assumed that (PMIP ) has an finite optimal mixed integer solution, let it be
(x∗, y∗). But then there exists a t∗ ∈ {1, ..., r} such that (x∗, y∗) is the optimum solu-
tion for (Pt∗) and hence z∗ = cx∗ + dy∗ = Ft∗(b). Since Ft(b) ≤ z∗ for all t = 1, ..., r,
F (b) = maxt=1,...,r Ft(b) = Ft∗(b) = z∗ and thus is dual optimal for (PMIP ). All in all, the
constructed optimal dual price function F exists and is dual optimal for (PMIP ).

2

The theorem shows that a standard LP based branch-and-bound algorithm generates a
price function that is piecewise linear, nondecreasing and convex, as it was the case with
pure IP problems (see Wolsey (1981)). We also see that F in general is not superadditive.

There are several versions of the branch-and-bound algorithms, depending on which vari-
able to branch on, if several integer variables have non-integer values in an optimal solution
of a LP relaxation. Each version produces one optimal dual price function. Thus, the gen-
erated price function is only one possible solution out of many and depends on the version
of the algorithm.

For a special kind of MIP problems, however, an interpretation involving a superaddi-
tive price function can be obtained using branch-and-bound algorithms. An analogous
result for the pure integer programming case can be found in Wolsey (1981). Consider the
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following bounded MIP problem (P ):

max cx + dy

s.t. Ax + By ≤ b

−x ≤ −g

x ≤ h

x ∈ Zn
+, y ∈ Rm

+

Let again Xt = {x ∈ Rn : gt
j ≤ xj ≤ ht

j, j = 1, ..., n, x ≥ 0} and {x : 0 ≤ g ≤ x ≤ h, x ≥ 0

and integer} ⊆ ⋃r
t=1 Xt. The dual of (P ) is

min F (b,−g, h)

s.t. F (A.j,−ej, ej) ≥ cj

F (B.j, 0, 0) ≥ dj

F ∈ H

where ej is the j’th unit vector.

Theorem 3.2 If the bounded MIP program (P ) has a final optimal solution, and solving
(P ) with an LP based branch-and-bound algorithm results in a finite number of terminating
subproblems (Pt), t = 1, ..., r, then there exists a dual feasible price function F ∈ H of the
form

F (q) := min
t=1,...,r

utq, ut ∈ Rk+2n, ut ≥ 0.

Proof

Set ut = (πt, πt, πt), as in the proof of theorem 3.1. Thus, ut is the dual variables of some
subproblem (P t) in case a) and a combination of a feasible solution and a dual ray in case b).
Since πtA.j−πt

j+πt
j ≥ cj for all t = 1, ..., r, F (A.j,−ej, ej) = mint=1,...,r(π

tA.j−πt
j+πt

j) ≥ cj.

Moreover, since πtB.j ≥ dj for all t = 1, ..., r, F (B.j, 0, 0) = mint=1,...,r(π
tBj) ≥ dj.

F is clearly superadditive and nondecreasing and F (0) = 0. Finally finite F (q) exists
for all q. Thus, F ∈ H. All in all, F is dual feasible for (P ).

2

The generated price function is a weak dual function and serves as an upper bound for the
value function of the primal problem (P ).
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3.3 MIP Duality in Branch-and-Cut Framework

The branch-and-cut algorithm is a hybrid algorithm, that combines the branch-and-bound
and the cutting planes approaches. Thus, at each node we try to find a violated cut first.
If it is not available within a reasonable amount of time we branch. A description of the
algorithm can among others be found in Cordier et al. (1999). This algorithm turned out
to be quite effective for solving MIP problems.

The following theorem states a result about the dual optimal function of the MIP problem,
if an branch-and-cut algorithm is applied. Such a dual function exists provided that the
primal problem has a finite optimal solution, and the number of terminating subproblems
is finite. Moreover, the theorem shows a way to find an optimal dual price function.

Theorem 3.3 If the original MIP program (PMIP ) in (1) has a final optimal solution,
and solving (PMIP ) with a branch-and-cut algorithm results in a finite number of termi-
nating subproblems (P̃t), t = 1, ..., r, then there exists a dual optimal price function F ∈ F

where

F (q) := max
t=1,...,r

(πtq + αt +

δ(t)∑
s=1

π̃t
sG

t
s(q)), αt ∈ R, πt ∈ Rk

+, π̃t ∈ Rδ(t)
+ , Gt

s ∈ H.

Here δ(t) ≥ 0 is the number of Gomory cuts Gt
s in subproblem (P̃t).

Proof

As in the proof of theorem 3.1 let z∗ be the optimum objective value of (PMIP ). Con-
sider some arbitrarily chosen terminating subproblem (P̃t):

max cx + dy
s.t. Ax + By ≤ b

Cx + Cy ≤ Cb

x ∈ Xt, y ∈ Rm
+

where an element in the last constraints has the form
∑n

j=1 Gt
s(A.j)xj+

∑m
j=1 G

t

s(B.j)yj ≤
Gt

s(b), and Gt
s(q) represents the s’th Gomory cut in problem (P̃t). If some cuts are present

in a parent node subproblem, then these cuts will also be present in its child node sub-
problem, if such a child node exists.
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case a) Suppose that the LP relaxation of (P̃t) has an optimal mixed integer solution
with objective value zt. Let (πt, πt, πt, π̃t) ≥ 0 be the optimal dual solution. πt, πt, πt are
as defined in proof for theorem 3.1, and π̃t corresponds to the Gomory cuts constraints.
Since we have δ(t) cuts in problem (P̃t), π̃t has dimension δ(t). We see that

πtA.j −
n∑

j=1

πt
j +

n∑
j=1

πt
j +

δ(t)∑
s=1

Gt
s(A.j)π̃

t
s ≥ cj j = 1, ..., n

and

πtB.i +

δ(t)∑
s=1

G
t

s(B.i)π̃
t
s ≥ di i = 1, ...,m.

Define the nondecreasing function Ft by

Ft(q) := πtq + αt +
∑δ(t)

s=1 Gt
s(q)π̃

t
s with αt = −πtgt + πtht, t = 1, ..., r.

Since Gt
s is a Gomory cut it is superadditive. But then

∑δ(t)
s=1 Gt

s(Ax + By)π̃t
s ≥∑δ(t)

s=1 Gt
s(Ax)π̃t

s +
∑δ(t)

s=1 Gt
s(By)π̃t

s. Moreover,this also implies that
∑δ(t)

s=1 Gt
s(Ax)π̃t

s ≥∑δ(t)
s=1 Gt

s(A)xπ̃t
s, and analogously

∑δ(t)
s=1 Gt

s(By)π̃t
s ≥

∑δ(t)
s=1 Gt

s(B)yπ̃t
s. Due to the defini-

tion of Gt
s given in section 3.1 Gt

s(B) ≥ G
t

s(B), s = 1, ..., δ(t). Finally, since Gt
s is a

Gomory cut Gt
s(0) = 0.

All this implies that, for all t = 1, ..., r, Ft satisfies

Ft(Ax + By) = πt(Ax + By) + πtht − πtgt +
∑δ(t)

s=1 Gt
s(Ax + By)π̃t

s ≥
πtAx + πtBy + πtx− πtx +

∑δ(t)
s=1 Gt

s(Ax)π̃t
s +

∑δ(t)
s=1 Gt

s(By)π̃t
s ≥

πtAx + πtBy + πtx− πtx +
∑δ(t)

s=1 Gt
s(A)xπ̃t

s +
∑δ(t)

s=1 Gt
s(B)yπ̃t

s ≥
πtAx + πtBy + πtx− πtx +

∑δ(t)
s=1 Gt

s(A)xπ̃t
s +

∑δ(t)
s=1 G

t

s(B)yπ̃t
s ≥

cx + dy ∀x ∈ Xt, y ∈ Rm.

Thus, the function Ft represents a dual feasible function for (P̃t). Moreover, by linear

programming duality, Ft(b) = πtb − πtgt + πtht +
∑δ(t)

s=1 Gt
s(b)π̃

t
s = zt for terminating (P̃t)

and zt ≤ z∗.

case b) If (P̃t) is infeasible then there exists a dual ray (ωt, ωt, ωt, ω̃t) ≥ 0, such that

ωtA.j −
∑n

j=1 ωt
j +

∑n
j=1 ωt

j +
∑δ(t)

s=1 Gt
s(A.j)ω̃

t
s ≥ cj, j = 1, ..., n, πtB.i +

∑δ(t)
s=1 G

t

s(B.i)ω̃
t
s ≥

di, i = 1, ..., m, and ωtb − ωtgt + ωtht +
∑δ(t)

s=1 Gt
s(b)ω̃

t
s < 0. Analogous to the proof for
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theorem 3.1 define

(πt, πt, πt, π̃t) := (πp, πp, πp, π̃p) + µ(ωt, ωt, ωt, ω̃t), where µ ∈ R+.

Here, (πp, πp, πp, π̃p) represents a dual feasible solution for (P̃t). Then let Ft be defined by

Ft(q) := πtq + αt +
∑δ(t)

s=1 Gt
s(q)π̃

t
s, αt := −πtgt + πtht. Analogous to case a) Ft satisfies

Ft(Ax + By) ≥ cx + dy, ∀x ∈ Xt, y ∈ Rm
+ . Thus Ft represents a dual feasible function for

(P̃t).

Moreover, since

lim
µ→∞

Ft(b) = lim
µ→∞

(πtb + αt +

δ(t)∑
s=1

Gt
s(q)π̃

t
s) =

lim
µ→∞

(πpb− πpgt + πpht +

δ(t)∑
s=1

Gt
s(b)π̃

p
s + µ(ωtb− ωtgt + ωtht +

δ(t)∑
s=1

Gt
s(b)ω̃

t
s)) = −∞.

we always can choose µ so Ft(b) < z∗.

Summarizing, Ft(q) = πtq + αt +
∑δ(t)

s=1 Gt
s(q)π̃

t
s is a dual feasible function for all ter-

minating (P̃t), t = 1, ..., r. Thus, F (q) := maxt=1,...,r Ft(q) is a dual feasible function for
(PMIP ), if branch-and-cut algorithm is used due to lemma 3.1. Since we assumed that
there is a finite mixed integer solution (x∗, y∗) there exists t∗ ∈ {1, ..., r} such that (x∗, y∗)
is the optimal solution for (P̃t∗). Hence z∗ = cx∗ + dy∗ = Ft∗(b). Since Ft(b) ≤ z∗ for all
t = 1, ..., r, F (b) = Ft∗ = z∗ and this F (q) is optimal for (PMIP ).

2

The constructed function is not only the dual optimal function for the branch-and-cut
algorithm. It also represents a general form of such a dual optimal function if either
a cutting plane or branch-and-bound based algorithm is used. In case of a cutting plane
algorithm, we only deal with one node, the root node. Moreover, the variables αt disappear.
Thus we end up with the same formulation as (3). For a pure branch-and-bound algorithm,
we do not have any constraints representing Gomory cuts, δ(t) = 0, for all t = 1, ..., r. In
this case we are back to the same formulation of the dual price function (5) in theorem 3.1.
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4 Summary

The presented paper gave a short presentation of the MIP problem and three of its solution
methods. Additionally, some duality results were shown. In particular, the formulation
of a dual of a MIP problem contains a dual price function F . The characteristics of this
function, however, depend on the algorithm used to generate it. Applying the cutting plane
algorithm we obtain a nondecreasing and superadditive price function. Using a branch-and-
bound algorithm, on the other hand, provides a piecewise linear, nondecreasing and convex
price function, which in general is not superadditive. However, section 3.2.1 presented a
superadditive weak dual price function for the bounded MIP problem, if branch-and-bound
approach is applied.

Section 3.3 presents a general dual function for the branch-and-bound and the cutting
plane approach. This dual function is additionally the price function for the branch-and-
cut algorithm. The branch-and-cut algorithm is now very popular when solving MIP
problems. One important brick in the algorithm is the generation of cuts. In this chapter
we used the classical Gomory cut. However, there exist other cuts, e.g. the lift-and-project
cut (see Balas et al. (1993), Balas et al. (1996)) or the mixed integer rounding cut (see
Marchand and Wolsey (2001)). One idea for further research would be to show similar
duality results for these cuts.

Apart from the conceptual interest, the result can be useful in economic interpretations of
MIP models as well as sensitivity analysis.
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