

Cutting Plane Methods in Decision Analysis

Xiaosong Ding1 and Faiz Al-Khayyal

xiaosong.ding@gmail.com, Department of Information Technology and Media,
Mid-Sweden University, SE-851 70, Sundsvall, Sweden.

faiz.alkhayyal@isye.gatech.edu, School of Industrial and Systems Engineering,

Georgia Institute of Technology, Atlanta, GA 30332-0205, USA.

Abstract

Several computational decision analysis approaches have been developed
over a number of years for solving decision problems when vague and
numerically imprecise information prevails. However, the evaluation
phases in the DELTA method and similar methods often give rise to
special bilinear programming problems, which are time-consuming to
solve in an interactive environment with general nonlinear programming
solvers. This paper proposes a linear programming based global
optimization algorithm that combines the cutting plane method together
with the lower bound information for solving this type of problems. The
central theme is to identify the global optimum as early as possible in
order to save additional computational efforts.

1 Corresponding author

23

1 Introduction
With the rapid development of graphical user interfaces, it is possible to bring the
use of sophisticated computational techniques for decision analysis to a broader
group of users, and many decision analytic tools have emerged. However, most
of them consist of some straightforward set of rules applied to precise numerical
estimates of probabilities and values no matter how unsure a decision maker is of his
or her estimates. The requirement to provide numerically precise information in such
models has often been considered unrealistic in real-life decision situations. Besides,
sensitivity analysis is often not easy to carry out in more than a few dimensions at
a time because of precise figures. When a decision maker is faced with a decision
problem that could not be directly judged by his or her empirical experience, or
according to available historical data, a module allowing imprecision is obviously of
great value.

A number of techniques allowing imprecise statements have been suggested, but
they are concentrated more on representation and less on evaluation. In spite of
several years of intense activities, only a few decision analytic tools, for example,
ARIADNE, DecideIT and Winpre, can evaluate imprecise estimates. Among these
tools, the DELTA method for decision analysis, described in [4, 5, 6, 7, 11], is an
approach towards analyzing decision problems containing imprecise information,
represented by intervals and relations. It has been implemented in the Decision
Analysis System (DAS) DecideIT [8], and has been used in various real-life con-
texts; e.g., [12]. Due to the introduction of interval and qualitative estimates, the
relaxation of classical decision theory in this respect gives rise to special Bilinear
Programming (BLP) problems, whose study is a sub-field of Nonlinear Programming
(NLP).

In Fig. 1 below, a decision tree is presented,

Figure 1: A Decision Tree

where D1 is a decision node, E1 and E2 are probability nodes, representing inde-
terminism, with associated probability distributions. The leaves are consequence

24

nodes with convex sets of associated value or utility functions. In DELTA, a deci-
sion frame represents a decision problem of this type. The idea behind such a frame
is to collect all information necessary for the model in one structure. This struc-
ture is then filled in with user statements represented as linear inequalities. User
statements can be range constraints, core intervals, or comparative statements. In a
decision frame, a consequence ci is denoted by a variable vi and the user statements
can be of the following forms for the numbers a1, a2, b1, b2, d1, and d2.

• Range: vi is definitely between a1 and a2;

• Core interval: vi is likely to fall between b1 and b2; and

• Comparison: vi is larger than another variable, vj , by an amount between d1

and d2.

All value statements are translated and collected together in a value base (V-
base). On the other side, with the usual normalization constraints

∑
i∈I pi = 1

and
∑

j∈J pj = 1, where I and J are index sets labelling the consequences of two
alternatives, all probability statements in a decision problem are translated into a
probability base (P-base). The structure ≺ P,V Â is referred to as a decision frame.

Given a decision frame ≺ P,V Â, the primary evaluation rules in DELTA are
based on pair-wise comparisons using a generalization from the principle of maximiz-
ing the expected utility. A typical issue in this context is to maximize an expression,
such as max(

∑
i∈I pivi−

∑
j∈J pjvj), which is subject to a constraint set defined by

a decision frame. Similar evaluation rules apply in other analysis methods.
More generally, comparative decision rules in computational decision analysis

are variations of the following form:

1
2 [min(

∑
i∈I pivi −

∑
j∈J pjvj) + max(

∑
i∈I pivi −

∑
j∈J pjvj)] (1)

In a typical decision situation, imprecise estimates occur in both P- and V-
bases, which results in a special BLP problem. It should be noted that in (1), the
corresponding maximization problem is readily solved by minimizing the negation of
a minimization problem. Therefore, without losing any generality, throughout the
rest of this paper, the focus will be centered on developing a rapid BLP algorithm
for solving:

min f(p, v) =
∑

i∈I pivi −
∑

j∈J pjvj ,

s.t.

[
LP

LV

]
≤

[
CP 0
0 CV

]
·
[

P
V

]
≤

[
UP

UV

]
(2)

where LP , CP and UP represent the lower bounds, constraint coefficients and upper
bounds in the P-base, respectively; P t = (pt

I , p
t
J) represents the variables in the

P-base; and by analogy, these definitions also exist in the V-base.
The next section will describe the optimization background employed in our

procedure, which is followed by developing a BLP algorithm that combines a cutting
plane method in a local optimization phase with a lower bounding method in a
global optimization phase. Then a numerical example is solved to illustrate the

25

elements of the BLP algorithm. Computational results on more than four-hundred
randomly generated decision analysis problems indicate that the approach is very
effective for solving practical sized decision analysis problems in real time on a
laptop architecture computer. Two possible directions for future research on our
approach are suggested in the final section.

2 Optimization
Consider the standard disjoint BLP problem:

min f(x, y) = ctx + dty + xtCy,
s.t. x ∈ X0 = {x ∈ Rm : A1x ≤ b1, x ≥ 0},

y ∈ Y0 = {y ∈ Rn : A2y ≤ b2, x ≥ 0}
(3)

where c ∈ Rm and d ∈ Rn are linear parts for x and y, respectively, C ∈ Rm×n,
and X0 and Y0 are bounded polyhedral sets. In terms of (2), both c and d are zero
vectors, and C is always an indefinite square matrix with only +1 or −1 diagonal
elements. For example, in Fig. 1:

C =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1




The disjoint BLP (3) is one type of general Quadratic Programming (QP) prob-
lems with a symmetric indefinite quadratic form matrix. The special cases (2) that
arise in computational decision analysis have the added property that the bilinear
form matrix C is indefinite. In both cases, the problem is non-convex and global
optimization strategies are required to find the absolute minimum objective value,
which is called the global minimum, and its corresponding solution point, which is
called the global minimizer. It should be noted that we distinguish between the min-
imal objective function value and the corresponding point at which it is achieved
as minimum and minimizer, respectively. A general framework for many global
optimization strategies is summarized in [18] as:

“Actually all methods for global optimization consist of two phases: a
global phase, aimed at thorough exploration of the feasible region or
subsets of the feasible region where it is known the global optimum will
be found, and a local phase aimed at locally improving the approxima-
tion to some local optima. Often these two phases are blended into the
same algorithm, which automatically switches between exploration and
refinement.”

26

The procedure presented herein captures the spirit of this general framework by
proposing a refinement to an existing algorithm for the local phase blended with a
formulation for the global phase to produce a global optimization algorithm that
finds either an exact global minimizer or an epsilon-global minimizer with a specified
tolerance.

An important property of (3) to observe is that even though f(x, y) can be shown
to be not quasi-concave, an optimal solution (x∗, y∗) exists at an extreme point of
X0 × Y0, [2]; i.e., x∗ is an extreme point of X0 and y∗ is an extreme point of Y0.
However, this property is lost in the jointly constrained case such as:

min f(x, y) = ctx + dty + xtCy,
s.t. x, y ∈ {x ∈ rm, y ∈ rn : A1x + A2y ≤ b, x ≥ 0, y ≥ 0} (4)

To solve a jointly constrained BLP problem with a non-extremal boundary point
optimum poses the greatest computational difficulty. However, for those BLP prob-
lems exhibiting extreme point optimal solutions, it is relatively easy to solve. Some
computational results are reported in [20, 21].

The other important property of (3) is that any cuts involving variables associ-
ated with both X0 and Y0 sets will destroy their special structures. Problems do
exist where one of the sets has special structure that can be exploited by efficient
algorithms which can be used to solve sub-problems in the solution procedure, [23].
Accordingly, we prefer developing linear cuts within only one polyhedron.

3 Local Optimization
The local optimization phase aims at locating a local optimum. Any local opti-
mization technique for finding Karush-Kuhn-Tucker (KKT) solutions of quadratic
programs, such as Wolfe’s simplex method or an interior point method, can accom-
plish this task. Nevertheless, the structure of the disjoint BLP problem (3) itself
suggests a Linear Programming (LP) based vertex following algorithm, which is very
convenient and efficient, [16]. The approach consists in starting with an arbitrary
fixed x ∈ X0, and solving the related LP problem with y as the unknown. The
solution, y, is then used to solve another LP problem with x as the unknown. This
in turn yields a new solution for x. The procedure is repeated until a pair of values
(x, y) is found that solves both LP problems. It has been proved that the resulting
solution is a KKT point.

DEFINITION 1: Consider P : min f(x) subject to x ∈ S, where S is a com-
pact polyhedral set and f is non-convex. A local star minimizer of P is defined as a
point x such that f(x) ≤ f(x) for each x ∈ N(x), where N(x) denotes the adjacent
extreme points to x.

Extending the definition of N(x) into the disjoint BLP (3), an extreme point is

27

adjacent to (x, y) if and only if it is of the form (xi, y) or (x, yi) where xi ∈ N(x)
and yi ∈ N(y).

DEFINITION 2: An extreme point is called a pseudo-global minimizer if f(x, y) ≤
f(x, y) for each x ∈ Bδ(x) ∩X0 and for each y ∈ Y0, where Bδ is a δ neighborhood
around x.

Intuitively, a pseudo-global minimizer is an extreme point that satisfies the KKT
conditions, has no descent directions within its neighborhood, and acts as a local
minimizer in x-space and a global minimizer in y-space. In order to obtain a pseudo-
global minimizer, we closely follow the algorithm described in [26].

ALGORITHM 1:

1. Find a feasible extreme point x1 in X0.

2. [a] Solve: min{f(x1, y)|y ∈ Y0}, to yield an optimal y1.
[b] Solve: min{f(x, y1)|x ∈ X0}, to yield an optimal x2.
Repeat until the procedure converges to a local star minimizer (x, y).

3. Let x1, . . . , xm be the adjacent extreme points of x.
Solve: min{f(xi, y)|y ∈ Y0}, to yield solutions y1, . . . , ym.

4. If f(x, y) ≤ f(xi, yi) for all i, terminate with (x, y) as a pseudo-global mini-
mizer.

5. Choose one f(xr, yr) ≤ f(x, y) and go back to 2[b] with y1 = yr.

The performance to locate a KKT point in the DELTAmethod has been reported
in [10]. Based on computational observations, a KKT point is found within four
iterations, on average. However, checking its adjacent extreme points is relatively
time-consuming, especially when we have to return to step 2[b] from step 5.

4 Global Optimization
Given a pseudo-global optimizer, a linear cut needs to be generated within only one
polyhedron. The cutting plane techniques for bilinear programs were inspired by
similar methods for concave problems, [19, 25]. One of the first such procedures was
proposed in [16] to delete local vertex solutions by using Ritter’s cut [19]. Another
cutting plane approach was developed in [13] by using Tuy’s cut [25]. The latter
used LP duality theory to reformulate the BLP problem as an equivalent concave
minimization problem with an implicitly defined objective function. The polar
cuts of [3] were applied in [26] to BLP, where it was proved that the polar cuts
uniformly dominate other similar cuts. This approach was further strengthened
in [22] by employing negative edge extension polar cuts and disjunctive face cuts,
whereupon finite convergence to an exact solution could be guaranteed. In [15], it
has been pointed out that [22] might be the most efficient approach for handling

28

BLP problems. Accordingly, in this paper, we employ polar cuts to cut off local
vertex solutions.

Let x be an extreme point of X0 and let pj , j ∈ J , be the m nonbasic variables at
x, where J is the index set for the nonbasic variables. Denoting by ej the columns
of the simplex tableau in extended form, the m-vector x can be written as:

x = x−∑
j∈J ejpj .

Barring the degenerate case, X0 has precisely m distinct edges incident to x and
each half line

ξj = {x : x = x− ejλj , λj ≥ 0}, j ∈ J (5)

contains exactly one such edge, [3].

DEFINITION 3: The generalized reverse polar of Y0 for a given scalar α is given
by Y0(α) = {x : f(x, y) ≥ α} for all y ∈ Y0.

Following [22, 26], let (x, y) be a pseudo-global minimizer, let the rays ξj be
defined as in (5), let α be the current best objective value of f(x, y), and let λj be
defined by:

λj =

{
max{λj : f(x− ejλj , y) ≥ α for all y ∈ Y0} if ξj 6⊂ Y0(α),

−max{λj : f(x + ejλj , y) ≥ α for some y ∈ Y0} if ξj ⊂ Y0(α)
(6)

Then the inequality ∑
j∈J pj/λj ≥ 1 (7)

is a valid cutting plane. The second line in (6) is referred to as the negative extension
polar cuts. Inequality (7) is a valid cut in the sense that firstly, it does not contain
the current pseudo-global optimum; and secondly, it contains all the candidates
x ∈ X0 for which min{f(x, y)|y ∈ Y0} < α.

The cutting plane method searches for the global optimum by exhausting all
possibilities within one of the two bounded polyhedra. Although ALGORITHM 1
always generates a feasible solution, we have no way of knowing if we have found the
global solution until we have cut off all of the pseudo-global optima. Consequently,
the key idea is to obtain some lower bound information concerning the global solu-
tion. Then at least we can tell how close the current best solution is to the global op-
timality before an exhaustive search. We employ the convex and concave envelopes
of xiyi developed in [1, 2] to obtain such a lower bound. Consider the inner product
xty over the compact hyper-rectangle Ω = {(x, y) : l ≤ x ≤ L,m ≤ y ≤ M}. Define
Ωi = {(xi, yi) : li ≤ xi ≤ Li,mi ≤ yi ≤ Mi} so that Ω = Ω1 × Ω2 × · · · × Ωn. The
convex and concave envelopes of xiyi over Ωi are defined as:

V exΩi [xiyi] = max{mixi + liyi − limi,Mixi + Liyi − LiMi},
CavΩi [xiyi] = min{Mixi + liyi − liMi,mixi + Liyi − Limi} (8)

29

Accordingly, in (2), we can calculate the convex envelopes for Cii = 1 and
concave envelopes for Cii = −1. Then we can say:

min f(p, v) =
∑

i∈{i:Cii=1} V exΩi [pivi]−
∑

i∈{i:Cii=−1}CavΩi [pivi],

s.t.

[
LP

LV

]
≤

[
CP 0
0 CV

]
·
[

P
V

]
≤

[
UP

UV

]
(9)

is an underestimating problem for (2), whose solution yields a lower bound on the
global minimum of our bilinear decision problem. In (9), the rectangles Ωi define
the bounds on pi and vi which are both readily available.

Since solving (9) yields a lower bound on the optimal objective value of (2), if
the algorithm cuts off a pseudo-global optimizer with a polar cut and proceeds to
search for another one in the smaller set, then we can solve the underestimating
problem with the convex and concave envelopes computed over the smaller region
to obtain a tighter bound on all global solutions in the reduced feasible set. If
the algorithm cuts off the global solution and the objective of the underestimating
problem is higher than the current best objective value, then we can stop and use
the current best solution as the global solution. If there are many global optimal
solution points, the objective of the underestimating problem will be smaller than
the global value until all global solution points have been cut off.

If the feasible region has not been exhausted and the underestimating problem
is still giving optimal values lower than the current best solution, then it is always
possible to stop the search procedure early with a known feasible point and a lower
bound on the global optimum. In that case, an error bound will be available to
show how far we are away from global optimality in the worst scenario.

Denote by X0 the original feasible region or its subset obtained after the intro-
duction of generated polar cuts. The global optimization algorithm for (2) can be
summarized as follows:

ALGORITHM 2:

1. Let the best objective value, obj, be a large positive number, and let an epsilon
tolerance, ε, be a prescribed small number.

2. Calculate the lower bound, bound, for Xi
0 by using (9).

3. If bound > obj or |bound− obj| ≤ ε, or the unexplored feasible region Xi
0 at

stage i is empty, terminate with obj as the global minimum.

4. Find a pseudo-global minimizer by using ALGORITHM 1, and update obj if
necessary.

5. If |bound− obj| ≤ ε, terminate with obj as the global minimum.

6. Solve m LP problems by using (6) to obtain λj , and generate the polar cut by
using (7), and introduce it into Xi

0.

7. increase i to i + 1, go back to 2.

30

We do not employ the extreme face finding routine and disjunctive face cuts as in
[22] because they are relatively expensive to calculate. Instead, we take advantage
of ALGORITHM 1 to locate a pseudo-global optimizer. As pointed out in the last
section, ALGORITHM 1 is also time-consuming if it proves necessary to frequently
locate a new local star minimizer. Therefore, it is difficult to determine which
procedure is more efficient from a computational viewpoint. ALGORITHM 2 simply
adds the lower bound computation in order to more quickly identify when a global
optimizer has been found.

5 Numerical Example
In this section, a numerical example will be used to illustrate ALGORITHM 2. The
data for this experiment is randomly generated by Matlab to simulate a real-life
decision situation, [9].

Suppose now we have a decision situation consisting of two alternatives with six
consequences in each alternative. Correspondingly, P = (p11, . . . , p16, p21, . . . , p26)t

and V = (v11, . . . , v16, v21, . . . , v26)t. The matrices CP and CV are given below:

CP =




1 1 1 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 0 −1 0
0 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 0 0 0
0 0 1 1 0 0 0 −1 0 0 0 −1
0 1 1 1 1 1 1 1 1 0 0 1




CV =




0 0 −1 0 0 0 0 0 0 1 0 0
1 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 0 1 1
0 1 0 0 0 −1 0 −1 0 0 1 0

−1 0 1 0 0 −1 0 0 1 0 0 0




In CP , each entry represents the coefficient of each variable. For example, the
first and second lines are normalization requirements,

∑
i∈I pi and

∑
j∈J pj , with

respect to each alternative, whereas the third line means p21 − p25, and etc. The
contents in CV are explained analogously. In practice, the value base does not
contain compound value statements since they lack semantic content.

The bounds LP , LV , UP and UV are listed in Table 1. In addition, each variable
in the P-base is restricted within the interval [0, 1], and each variable in the V-base
is in:

31




0.151
0.210
0.080
0.277
0.740
0.340



≤




v11

v12

v13

v14

v15

v16



≤




0.866
0.592
0.174
0.541
0.791
0.593




,




0.083
0.018
0.780
0.156
0.020
0.057



≤




v21

v22

v23

v24

v25

v26



≤




0.480
0.303
0.848
0.354
0.152
0.637




.

CP : Rows LP UP CV : Rows LV UV

1 1.000 1.000 1 -1.692 1.692
2 1.000 1.000 2 -0.576 0.061
3 -0.437 0.182 3 -0.141 0.510
4 -0.296 0.394 4 -1.182 -0.302
5 -0.131 0.313 5 -0.576 0.297
6 -0.543 0.376 6 -0.523 0.456
7 0.773 1.692

Table 1: Data

If we simply use the cutting plane method, the feasible region of the P-base will
be exhausted in four cuts. Nevertheless, the second lower bound information in
Table 2 is enough to guarantee the global optimum; i.e., the stopping rule, bound >
obj, is satisfied in ALGORITHM 2, step 3. Therefore, ALGORITHM 2 terminates
in one iteration; thus, saving the additional computational effort of performing three
more iterations.

Iteration Objective Value Lower Bound
1 -0.60742032702968 -0.61148735388339
2 -0.54069572061830 -0.54476274747200
3 -0.51501142176621 -0.51907844861991
4 -0.46983913868983 -0.47390616554353

Table 2: An Numerical Example

6 Computational Experience
We launched a number of simulated instances to test ALGORITHM 2. The ex-
periment is performed on a personal computer with Windows 2000, Matlab 6.5 &
Tomlab [24], Pentium-III 1000 MHz CPU and 512MB memory. The commercial LP

32

solver is SQOPT [14] from Systems Optimization Laboratory, Stanford University.
In total, we tested 400 instances consisting of 10 groups, each of them including 40
data sets with the consequences from 11 to 50. If an instance has N consequences,
the corresponding BLP problem contains 4N variables and around 2N constraints.
Consequently, this experiment is trying to solve disjoint BLP problems sized up to
200 variables. Detailed numerical results are shown in Table 3.

C PV VV PC VC Time C PV VV PC VC Time
11 22 22 11 10 2.0901 31 62 62 31 30 7.7427
12 24 24 14 12 2.5595 32 64 64 34 32 13.3900
13 26 26 14 12 3.8995 33 66 66 34 32 8.8322
14 28 28 15 14 2.0418 34 68 68 35 34 11.1826
15 30 30 15 14 2.3370 35 70 70 35 34 12.1919
16 32 32 18 16 5.4044 36 72 72 38 36 12.6346
17 34 34 18 16 3.8734 37 74 74 38 36 15.7232
18 36 36 19 18 4.6272 38 76 76 39 38 12.4650
19 38 38 19 18 4.0508 39 78 78 39 38 18.9598
20 40 40 22 20 7.9871 40 80 80 42 40 20.8625
21 42 42 22 20 5.0642 41 82 82 42 40 16.7570
22 44 44 23 22 5.9443 42 84 84 43 42 12.0811
23 46 46 23 22 7.1294 43 86 86 43 42 19.5244
24 48 48 26 24 5.5255 44 88 88 46 44 17.6758
25 50 50 26 24 5.9522 45 90 90 46 44 25.3698
26 52 52 27 26 6.8825 46 92 92 47 46 22.2200
27 54 54 27 26 8.1232 47 94 94 47 46 30.8439
28 56 56 30 28 10.9514 48 96 96 50 48 19.9436
29 58 58 30 28 7.5786 49 98 98 50 48 20.9942
30 60 60 31 30 9.8275 50 100 100 51 50 19.3494

• C represents the number of consequences;
• PV = VV represent the number of variables in P-base and V-base;
• PC = VC represent the number of constraints in P-base and V-base;
• Time is the average CPU time in seconds.

Table 3: Detailed Results

As for the worst case, the global optimum might not be found until we cut off all
pseudo-global optimizers, and the lower bound information becomes useless. This
will make ALGORITHM 2 no different from a pure cutting plane approach. The
indefinite QP is a type of very difficult problem because it was demonstrated that
the indefinite QP is NP-hard even with only one negative eigenvalue, [17]. However,

33

according to the computational results obtained, we observed that they overall are
quite encouraging. Most of the problems are solved within the first three iterations
and the lower bound information obtained from (9) actually takes effects.

7 Further Research
For ALGORITHM 2 presented in this paper, some additional research directions are
suggested. In calculating a tight lower bound, other approaches exist. For example,
LINGO can generate a very tight lower bound (often it is the global optimum)
even though its best objective value always remains far from the lower bound for
a very long period. The Reformulation Linearization Technique (RLT) in [20, 21]
is also a promising method in the sense that RLT can generate feasible points as
well as lower bounds for BLP problems. Moreover, it has been proved that its
lower bounds are at least as good as those generated by [1, 2]. However, the main
drawback is that the amount of work required to construct the necessary matrix
increases very rapidly as the number of variables and constraints grow due to the
combinatorial number of cross products that must be considered. Therefore, RLT is
not particularly attractive for our BLP problem which contains so many lower and
upper bounds, although it would be interesting to test its relative merits for different
problem sizes. A worthwhile direction would be to search for a tighter lower bound,
than the one proposed herein, that is relatively inexpensive to compute.

The BLP problem in DELTA is very special; i.e., it only includes xiyi, which
makes the matrix C in (3) simply possess diagonal entries with +1 and−1. However,
as shown in [2], it is also possible to handle the case where the diagonal entries are
arbitrary real numbers, thus creating weighted utility objective functions.

Suppose b ∈ Rn and let B = diag(b). Then the convex envelope of B is:

V exΩi [bixiyi] = max{biϕ
1
i (xiyi), biϕ

2
i (xiyi)},

where

ϕ1
i (xiyi) =

{
mixi + liyi − limi if bi > 0
Mixi + liyi − liMi if bi ≤ 0

,

ϕ2
i (xiyi) =

{
Mixi + Liyi − LiMi if bi > 0
mixi + Liyi − Limi if bi ≤ 0

(10)

Moreover, the convex envelope of xiyi can also be extended to xiyj where i 6= j,
and thereby underestimate arbitrary bilinear objective functions.

References
[1] Al-Khayyal, F.A. and Falk J.E. “Jointly Constrained Biconvex Programming”,

Mathematics of Operations Research, 8:273-286, 1983.

34

[2] Al-Khayyal, F.A. “Jointly Constrained Bilinear Programs and Related Prob-
lems: An Overview”, Computers & Mathematics with Application, Vol.19,
No.11:53-62, 1990.

[3] Balas, E. “Intersection Cuts - a New Type of Cutting Planes for Integer Pro-
gramming”, Operations Research 19:19-39, 1971.

[4] Danielson, M. Computational Decision Analysis, Doctoral Thesis, Department
of Computer and Systems Sciences, Stockholm University and Royal Institute
of Technology, 1997.

[5] Danielson, M. “Generalized Evaluation in Decision Analysis”, in press, to ap-
pear in European Journal of Operational Research, 2004.

[6] Danielson, M. and Ekenberg, L. “A Framework for Analysing Decisions under
Risk”, European Journal of Operational Research, Vol.104(3):474-484, 1998.

[7] Danielson, M. and Ekenberg, L. “Multi-criteria Evaluation of Decision Trees”,
Proceedings of the 5th International Conference of the Decision Sciences Insti-
tute, 1999.

[8] Danielson, M. Ekenberg, L. Johansson, J. and Larsson, A. “The DecideIT De-
cision Tool”, Proceedings of ISIPTA-2003, 2003.

[9] Ding, X.S. Danielson, M. and Ekenberg, L. “Non-linear Programming Solvers
for Decision Analysis Support Systems”, Proceedings of International Confer-
ence on Operations Research (OR 2003), pp.475-482, Springer-Verlag, 2004.

[10] Ding, X.S. Ekenberg, L. and Danielson, M. “A Fast Bilinear Optimization
Algorithm”, submitted, 2003.

[11] Ekenberg, L. Boman, M. and Linneroth-Bayer, J. “General Risk Constraints”,
Journal of Risk Research, 4(1):31-47, 2001.

[12] Ekenberg, L. Brouwers, L. Danielson, M. Hansson, K. Johansson, J. Riabacke,
A. and Vári A. “Simulation and Analysis of Three Flood Management Strate-
gies”, IIASA Interim Report, IR-03-003, Laxenburg, Austria, 2003.

[13] Gallo, G. and Ülkücü, A. “Bilinear Programming: an Exact Algorithm”, Math-
ematical Programming 12:173-194, 1977.

[14] Gill, P.E. Murray, W. and Saunders, M.A. “User’s Guide for SQOPT 5.3: A
Fortran Package for Large-scale Linear and Quadratic Programming”, Report
NA 97-4, Department of Mathematics, University of California, San Diego,
USA, 1997.

[15] Horst, R. and Pardalos, P.M. Handbook of Global Optimization, Kluwer, Dor-
drecht, 1995.

[16] Konno, H. “Bilinear Programming”, Parts I and II, Technical Report No. 71-9
and 71-10, Operations Research House, Stanford University, USA, 1971.

[17] Pardalos, P.M. and Vavasis, S.A. “Quadratic Programming with One Negative
Eigenvalue Is NP-hard”, Journal of Global Optimization, 1:15-23, 1991.

35

[18] Pardalos, P.M. and Romeijn, H.E. Handbook of Global Optimization Volume 2,
Kluwer Academic Publishers, the Netherlands, 2002.

[19] Ritter, K. “A Method for Solving Maximum-Problems with a Nonconcave
Quadratic Objective Function”, Z. Wahrscheinlichkeitstheorie verw. Geb. 4:340-
351, 1966.

[20] Sherali, H.D. and Adams, W.P. A Reformulation-Linearization Technique for
Solving Discrete and Continuous Nonconvex Problems, Kluwer Academic Pub-
lishers, Dordrecht/Boston/London, 1999.

[21] Sherali, H.D. and Alameddine, A. “A New Reformulation Linearization Algo-
rithm for Bilinear Programming Problems”, Journal of Global Optimization,
Vol.2:379-410, 1992.

[22] Sherali, H.D. and Shetty, C.M. “A Finitely Convergent Algorithm for Bilinear
Programming Problems Using Polar Cuts and Disjunctive Face Cuts”, Mathe-
matical Programming, Vol.19:14-31, 1980.

[23] Shetty, C.M. and Sherali, H.D. “Rectilinear Distance Location-Allocation Prob-
lem: A Simplex Based Algorithm”, Proceedings of the International Symposium
on Extremal Methods and Systems Analyses, Springer-Verlag, Vol.174:442-464,
1980.

[24] http://www.tomlab.biz/

[25] Tuy, H. “Concave Programming under Linear Constraints”, Dokl. Akad. Naul
SSR 159:32-35; English translation in Soviet Math. Dokl. 5:1437-1440, 1964.

[26] Vaish, H. and Shetty, C.M. “A Cutting Plane Algorithm for the Bilinear Pro-
gramming Problem”, Naval Reaearch Logistics Quarterly 24:83-94, 1977.

36

	cover.pdf
	Abstract

