
A Database Transaction Scheduling Tool in

Prolog

Steve Barker

King’s College, London, UK

steve@dcs.kcl.ac.uk

Paul Douglas

University of Westminster, London, UK

P.Douglas@wmin.ac.uk

Abstract

In this paper, we describe an item of “intelligent” educational software
that is intended to help students taking university computer science courses
to understand the fundamentals of transaction scheduling. The software,
implemented in PROLOG, empowers students to construct their own learn-
ing environment and is able to provide tailored forms of feedback to different
types of learner. We describe the development and evaluation of the soft-
ware, and we present details of the analysis of the results of our investigation
into the effectiveness of the software as a teaching and learning tool. Our
results suggest that our learning tool provides students with a different and
valuable type of learning experience, which traditional methods do not pro-
vide.

1 Introduction

In this paper, we describe an item of educational software that we have devel-
oped and used to help us to teach certain key notions from the realms of database
transaction processing to undergraduate computer science students. More specif-
ically, the software is an educational tool that is intended to “intelligently” assist
computer science students in developing their understanding of CRAS property
satisfaction [1]. In this context, “intelligently” may be interpreted as an ability
to respond to a student’s self-selected input by detecting and explaining his/her
errors to them or confirming that his/her understanding is correct.

Ours is one of the first pieces of courseware to provide students with help in
understanding the basic notions of database transaction processing and, to the
best of our knowledge, is the first piece of software that is specifically intended
for helping students to learn about the CRAS properties. The software provides
students with a tutorial aid that is able to respond to questions about CRAS

81



property satisfaction in the same way that an “expert tutor” might; it enables a
student to investigate the CRAS properties at his/her leisure and enables teaching
staff to use tutorial sessions to answer any “non-standard” questions that students
might have. This tool is also important because it provides students with a
learning experience that no textbook can provide. More specifically, the software
encourages students to learn about the CRAS properties by making and testing
hypotheses. This approach appears to be the most natural way for students
to learn about the CRAS properties (certainly it is the approach they naturally
adopt). The traditional, text-based method that we have previously used to teach
material on CRAS property satisfaction does not support learning by hypothesis
formulation.

The rest of the paper is organized in the following way. Section 2 provides a
brief introduction to the CRAS properties. In Section 3, some key features of the
software are outlined. In Section 4, the main results produced from the evaluation
of the software are described and discussed. In Section 5, some conclusions are
drawn, and suggestions are made for further work.

We assume that the reader has a basic knowledge of database transaction
processing; otherwise, we suggest [2] for introductory material.

2 The CRAS Properties

The CRAS properties are criteria that should be satisfied by a schedule.

Definition 2.1 A schedule σ over a set of transactions T = {t1, t2, . . . , tn} is
a strict partial order (T , <) (where < is an “earlier than” relation) with the
following properties (where oi is an operation performed by transaction ti and
the allowed operations are r (read) and w (write)):

1. ∀oi ∈ σ (where o ∈ {r, w}), ∃ti ∈ T such that oi ∈ ti;

2. If oi and oj are operations in ti ∈ T and oi < oj holds in ti then oi < oj

holds in σ;

3. For any two conflicting operations oi and oj in σ, oi < oj xor oj < oi.

Remark 2.1 Our definition of a schedule implies that no duplicate operations
on a data item are possible, and assumes that a single CPU is used in transaction
processing. If parallel processing is possible then < can be replaced by ≤ in
Definition 2.1.

82



Unfortunately, certain interleavings of the operations from different transac-
tions in a schedule can cause anomalous behaviours (which cause the integrity of
the data in a database to be compromised) and can raise a number of practical
difficulties. For instance, it is possible for the value of a data item which has
been updated by one transaction ti in a schedule to be overwritten by another
transaction tj before ti’s update is performed on the database (this phenomenon
is usually referred to as the lost update problem [2]). The principal sources of
problems that arise when concurrently processing transactions are conflicting op-
erations and read froms that involve reading uncommitted data.

Definition 2.2 Two operations oi and oj in a schedule σ are a conflicting pair
(or are in conflict) iff the following conditions hold:

• oi and oj are operations on a common data item;

• at least one of oi and oj is a write operation.

Definition 2.3 For each data item x, if (i) wi(x) < rj(x) holds in a schedule,
(ii) ti does not abort before rj(x), and (iii) every transaction (if any) that writes
x between wi(x) and rj(x) aborts before rj(x) then tj reads from ti.

The CRAS properties help to solve certain problems, that arise as a con-
sequence of interleaving of operations, by imposing certain constraints on the
order in which operations are performed in a schedule. By ensuring that these
constraints are satisfied, a database management system is guaranteed to pro-
duce schedules that are free of a class of potential problems that may violate
the integrity of the data contained in a database. Moreover, satisfaction of the
CRAS properties permits a DBMS to be configured to optimize the performance
of transaction management.

The CRAS properties are: conflict serializability, recoverability, avoids cas-
cading aborts and strictness. These properties are defined formally below. In
these definitions, ti and tj denote arbitrary transactions, T (σ) denotes an arbi-
trary schedule σ defined on a set of transactions T , ri, wi, ai and ci are respectively
read, write, abort and commit operations by transaction ti, → is “implication”,
∧ is ‘and’, ∨ is ‘or’, ¬ is negation, and < denotes the “earlier than” relationship
between operations.

Definition 2.4 A schedule σ on a set of transactions T is conflict serializable iff
the following holds:

∀ti, tj ∈ T (σ) conflict(ti, tj)→ ¬conflict(tj , ti)

83



where conflict is defined thus:

∀ti, tj ∈ T (σ) ri(x) < wj(x)→ conflict(ti, tj)

∀ti, tj ∈ T (σ) wj(x) < ri(x)→ conflict(tj , ti)

∀ti, tj ∈ T (σ) wi(x) < wj(x)→ conflict(ti, tj).

Definition 2.5 A schedule σ on a set of transactions T is recoverable iff the
following holds:

∀ti, tj ∈ T (σ) read from(ti, tj)→ cj ∈ σ ∧ cj < ci.

Definition 2.6 A schedule σ on a set of transactions T avoids cascading aborts
iff the following holds:

∀ti, tj ∈ T (σ) read from(ti, tj)→ cj < ri(x) ∨ aj < ri(x).

Definition 2.7 A schedule σ on a set of transactions T is strict iff the following
holds:

∀ti, tj ∈ T (σ) wj(x) < ri(x) ∨ wj(x) < wi(x)→
aj < ri(x) ∨ cj < ri(x)∨
aj < wi(x) ∨ cj < wi(x).

Definition 2.8 The auxiliary predicate read from is defined thus:

∀ti, tj ∈ T (σ) ∃x[read from(ti, tj)← wj(x) < ri(x) ∧ ¬(aj < ri(x))∧
[∀tk ∈ T (σ) wj(x) < wk(x) < ri(x)

→ ak < ri(x)]].

Conflict serializability is the principal schedule correctness criterion that is
used in practice by DBMS to avoid problems of inconsistent updating that arise
during concurrent transaction execution. The recoverability criterion must be
satisfied in order to preserve the semantics of commit operations in schedules.
The ACA condition is a practical criterion that, if satisfied, reduces the amount of
work that needs to be performed to recover from the effects of failed transactions.
As the name suggests, satisfying the avoiding cascading aborts condition ensures
that if a transaction aborts then it does not cause a chain (or cascade) of aborting

84



transactions to arise. That is, the failure of one transaction, t1 (say), does not
cause another transaction, t2 (say), to fail which causes another transaction t3
(say) to fail and so on. Strictness enables a particularly efficient method to be
employed to manage aborted transactions i.e., by reinstalling before images.

3 Some Key Features of the Software

Our teaching tool enables students to test any syntactically correct schedule that
they choose as input to the system. Students also have complete freedom to
choose to investigate the satisfaction of any of the CRAS properties by these
schedules.

The software that implements the system is written in PROLOG [3]. PRO-
LOG has been widely used for implementing items of educational software (see,
for example, [4] and [5]) and is appropriate for developing applications, like ours,
which require that some form of “intelligence” be captured. The fact that the
rules that define the CRAS properties can be directly translated into PROLOG’s
rule-based language was another reason for choosing the latter for the implemen-
tation of the software.

Our design of the software has been influenced by Gagne’s work [6]. Gagne’s
event-based model of instruction helped us to decide what an individual learner
ought to be offered and the order in which information ought to be presented to
them. Following Gagne’s suggestions, when students use the software they are
reminded what the learning task to be performed is, and what it is they are sup-
posed to be able to do once the learning task has been completed. Prominence is
given to the distinctive features that need to be learned, different levels of learn-
ing guidance are supported for different types of learners, informative feedback
is given, and learning takes place in a student-centred, interactive way, but with
support available to students as and when they need it.

When engaging with the software, a user enters a schedule and selects a CRAS
property to evaluate with respect to the schedule. The schedule is displayed to
the user who may then pose queries on the schedule to test it for satisfaction of
CRAS properties with respect to the set of axioms A that defines these properties
and the auxiliary predicates in terms of which the CRAS properties are defined
(see Definitions 2.4-2.8). The axioms in A are converted into PROLOG code for
implementation.

Each operation in a schedule may be represented by a 4-tuple, (o,tj,i,ts). Here,
o denotes an operation (i.e. read or write), tj denotes a transaction performing
the operation, i denotes the data item read or written by tj , and ts is the time at
which o is performed i.e., the timestamp for o. In the case where o is a commit

85



or an abort, the data item is null since these operations are not performed on
a data item. In our PROLOG implementation, each 4-tuple that describes an
operation is represented as a fact of the form o(a, tj , i, ts) where a ∈ {r, w}. In
this context, a schedule σ is a finite set of o operations, and a PROLOG program
is a pair (AP , σ) where AP is the PROLOG form of A.

Example 3.1 The representation of a conflicting pair (N,M) of transactions
may be expressed in PROLOG, thus (cf. Definition 2.2):

conflict(N,M) : −o(r, N, Y, T1),

o(w,M, Y, T2),

T1 < T2, N = \ = M.

conflict(M,N) : −o(r, N, Y, T1),

o(w,M, Y, T2),

T2 < T1, N = \ = M.

conflict(N,M) : −o(w,N, Y, T1),

o(w,M, Y, T2),

T1 < T2, N = \ = M.

An example of the output for a schedule σ produced in a user session and an
example of engaging with the system follows next.

Example 3.2 Suppose that a user’s choice of schedule is as follows:

〈w1(x), w1(y), r2(u), w1(z), w2(z), c1, w2(x), r2(y), w2(y), c2〉

Then, the software displays the user schedule, thus:

Your chosen schedule was:

w,1,x,90
w,1,y,95
r,2,u,100
w,1,z,105
w,2,z,110

86



c,1,null,115
w,2,x,120
r,2,y,125
w,2,y,130

c,2,null,135

Thereafter, the user may evaluate CRAS properties with respect to the sched-
ule. For example, the user may ask “is this schedule an ACA schedule?” i.e.,
?-aca.. In this case the output is “yes”. A user can ask for an explanation of this
result by posing the following query: ?-explainaca. To which the software will
respond:

Transactions in this schedule only read data items AFTER they have
been written by transactions that have committed.

Similarly, the query ?-st. for the schedule above (i.e. “is this schedule strict?”)
is answered “no” by the software. If the user then poses the query ?-explainnonst.
(i.e. why is this schedule not strict?) then the software will respond with the
following explanation:

Transaction 2 overwrites the data item z written by transaction 1 but
BEFORE transaction 1 reaches its commit point.

All CRAS property satisfaction questions are evaluated as described in the
previous example, and several levels of explanation are provided by the software.1

4 Evaluation of the Software

We have performed a formative evaluation and a summative evaluation of our
teaching tool.

In brief, the aim of the formative evaluation of the software was to provide
information that would enable us to develop the software to a point at which it
could be summatively evaluated. The summative evaluation was intended to help
us to decide whether the software was of value in helping students to understand
the details of CRAS property satisfaction; how the software compared in this
respect to the standard text on CRAS property satisfaction [7]; and the extent
to which each means of instruction was perceived by students to be motivating
to use (or otherwise), and of value in helping them to learn about the CRAS
properties.

1Several levels of explanation are offered in the sense that users are able to check the cor-
rectness of a query in respect of any of the CRAS properties. If the query is not correct they
can attempt to correct it; alternatively, they can ask the software why it is not correct.

87



Although our study was primarily concerned with comparing the software
with [7], it should be noted that we do not envisage that the two modes of
instruction should be used in a mutually exclusive way. The comparison of the
software and [7] in our evaluation was chosen merely to attempt to decide whether
there was any evidence to suggest that the former might have some “educational
value” when compared to the latter.

For the formative evaluation, comments on the software were sought from:
two members of the teaching staff at the University of Westminster (the “expert
reviewers”); a volunteer student from the university’s MSc course in Database
Systems (the one-to-one study); and a group of four volunteer students from the
same course (the small-group testing). The volunteer students were randomly
allocated to either the one-to-one or small-group testing (but not both). These
students were learning about the CRAS properties at the time at which the
formative evaluation of the software was being conducted.

In response to the feedback received from the users of the software, a number
of changes were made to the software over time. For example, the software
was changed from its initial form to display a user’s schedule together with the
explanations of the CRAS property satisfaction or violation by a schedule, and a
variety of modifications were made to the front-end to enhance its appeal. The
power to investigate any schedule and CRAS property was reported to be an
attraction of the software, and a major advantage it had over Bernstein et al’s
text. The students commented that they particularly liked the fact that they
could “interact” with the software, and that it “lets you decide what to learn”.

The software was summatively evaluated with the cohort of 27 students at the
University of Westminster who were taking the Database Administration (DBA)
module as part of their BSc Computer Science degree programme in the Second
Semester of the 2002/03 academic year.

A 5-point Likert scale, with 22 statements, was used to collect data about the
perceptions the students had of the software and [7] as methods for facilitating
understanding of the CRAS properties, and their attractiveness as learning in-
struments. To analyse the data produced from the Likert scale, we chose to use
a t-test; the idea was to compare the matched pairs of scores produced by each
respondent for the software and [7].

To analyze the information produced from the Likert scale, t-statistics were
computed to compare the mean scores for the perceptions students had of the
software and [7], overall and for three specific measures: perceived helpfulness
as a teaching aid, motivational appeal, and the value of the on-line exercises,
examples, and explanations.

The results produced from the Likert scale were very clear. In the overall
measure of the two methods, the average difference in the ratings of the software

88



and [7] was 17.24 in favour of the software, and only one student reported that
[7] was “better” than the software. The t-statistic for the comparison of average
differences was 7.75. This is statistically significant at the 1% level.

Not surprisingly, given the overall results, the software was also perceived to
be “better” than [7] in all three of the sub-categories of Likert scale items.

In terms of helping students to understand the CRAS properties, the aver-
age difference in scores between the software and [7] was 2.18, in favour of the
software, and all but two of the students reported that the software had been of
more value than [7] for helping them to learn about the CRAS properties. In the
t-test comparison of the average difference in the ratings of the software and [7],
the t-statistic was 3.48. This value is significant at the 2% level.

Our software was also perceived to have more motivational appeal than [7].
The average difference in the rating of the software and [7] in this case was 10.65
and every student reported that the software had been more motivating to use
than [7]. The t-value of 7.53 for the comparison of average differences in ratings
between the software and Bernstein et al. is significant at the 1% level.

The exercises, explanations and examples that are included in the software
were almost unanimously perceived by the students to be of more value than those
in [7] for helping them to understand the CRAS properties (for one student, how-
ever, the difference in their scores for the software and [7] was zero). The average
difference in scores on the value of the exercises, explanations and examples was
4.41 in favour of the software. The t-statistic for the average difference was 8.45
which is (again) significant at the 1% level.

5 Conclusions and Further Work

Our software shows that a suitable tool can be developed to help computer science
students to learn about the CRAS properties. The package enables students to
construct their own learning environments by using a piece of courseware that is
able to interpret and immediately explain a student’s mistakes as well as being
able to confirm it when his/her understanding is correct. As such, the software
provides students with “intelligent” tutorial support for learning about the CRAS
properties. The software is also based on sound principles of learning [7], is
able to deal with any syntactically correct schedule, and it can be extended to
accommodate any number of examples or exercises without requiring changes to
the core set of rules on which the software is based.

Using the software enables students to: choose to investigate any of the CRAS
properties using schedules of their own choice; make hypotheses about schedules
satisfying the CRAS properties; test these hypotheses; and explore the conse-

89



quences of CRAS property satisfaction by manipulating the operations included
in a schedule. As such, the software empowers students to take control of their
own learning, they can learn at their own preferred pace, they can investigate
their own misunderstandings and reinforce their own understanding of the CRAS
properties. The fact that the software encourages students to “learn by hypothe-
sizing” is particularly important because this is the approach students naturally
adopt to learn about the CRAS properties. Using textbooks does not enable this
type of learning to be supported, and can only offer students a limited number of
schedules and examples of CRAS property satisfaction; textbooks cannot provide
interactive feedback to students investigating schedules and schedule properties
of their own choosing. Unlike their human tutors, the software has the additional
attraction of providing students with tutorial support in their learning of the
CRAS properties whenever they require it.

The results produced by our summative assessment of the software indicate
that it was perceived by our students to be superior to [7] in a number of re-
spects. However, more work will be required on the issue of student perceptions
of the software and [7] before any definite conclusions may be drawn about their
relative value. Our experience of conducting this study has also revealed that
some students have a tendency to believe that a piece of educational software has
to invariably be better than a text; these students regard the former as being
“the future” whilst the latter is viewed as being distinctly passé. We intend to
investigate the implications of this attitude in the near future. Moreover, while
the Likert scale test revealed that the software was perceived to be helpful to
students learning about the CRAS properties, further research is required to try
to establish why this is the case.

A number of extensions to the software are possible. For example, it could be
extended to permit the investigation of other types of schedule properties (e.g.
rigour [8]) and with minor modifications the software can be used as a tutorial
aid for learning about optimistic concurrency control [9]. We would also like to
investigate the addition of a more “friendly” user environment.

6 References

[1] Barker, S., Proving Properties of Schedules, Proc. IEEE Workshop on
Knowledge and Data Engineering, 174-180, 1998.

[2] Gray, J. and Reuter, A. (1993) Transaction Processing: Concepts and
Techniques, San Mateo, CA: Morgan Kaufmann.

90



[3] Bratko, I. (1986) PROLOG Programming for Artificial Intelligence, Reading,
MA: Addison-Wesley.

[4] Yazdani, M. (1983) New Horizons in Educational Computing, Chichester:
Ellis Horwood.

[5] Nichol, J., Briggs, J., and Dean, J. (1988) Prolog, Children and Students,
London: Kogan-Page.

[6] Gagne, R. M. (1970) The Conditions of Learning, NY: Holt, Reinhart and
Winston.

[7] Bernstein, P., Goodman, N., and Hadzilacos, V. (1987) Concurrency Control
and Recovery in Database Systems, Menlo Park, CA: Addison Wesley.

[8] Briebart, Y., Georgakopoulos, D., Rusinkiewicz, M., and Silbershatz, A.
(1991) On Rigorous Transaction Scheduling, IEEE Transactions on Software
Engineering, 17, 954-960.

[9] El-Masri, R. and Navathe, S. (2003) Fundamentals of Database Systems,
Redwood City, CA: Benjamin Cummings.

91




