
Prolog as Description and Implementation

Language in Computer Science Teaching

Henning Christiansen
Roskilde University, Computer Science Dept.,
P.O.Box 260, DK-4000 Roskilde, Denmark

E-mail: henning@ruc.dk

Abstract

Prolog is a powerful pedagogical instrument for theoretical elements of com-
puter science when used as combined description language and experimen-
tation tool. A teaching methodology based on this principle has been devel-
oped and successfully applied in a context with a heterogeneous student pop-
ulation with uneven mathematical backgrounds. Definitional interpreters,
compilers, and other models of computation are defined in a systematic way
as Prolog programs, and as a result, formal descriptions become running
prototypes that can be tested and modified by the students. These pro-
grams can be extended in straightforward ways into tools such as analyzers,
tracers and debuggers. Experience shows a high learning curve, especially
when the principles are complemented with a learning-by-doing approach
having the students to develop such descriptions themselves from an infor-
mal introduction.

1 Introduction

Teaching of theoretical aspects of computer science to university students that
do not necessarily possess a solid mathematical background may sound like a
contradiction. The Advanced Studies in Computer Science at Roskilde University,
Denmark, is a part of long tradition of interdisciplinary studies in which the
same courses often are offered for classes of students with different backgrounds
such as Natural Science, Humanities, or Social Sciences. Certain issues that
are important for all sorts of teaching become extra critical in this context, and
furthermore stressed by the fact that a tradition of 50% student project work
throughout the studies leaves only very little time for regular courses. First of
all, the presentation needs to be appealing and fruitful for every single student
in this heterogeneous audience. Secondly, extreme care must be made in the
selection of topics in order to provide a coherent course with a reasonable covering,

43

considering that each course has few nominal hours. Finally, each course must be
designed as a component of a full education comparable with any other five-year
university education with computer science as a major subject.

This paper gives an overview of a teaching methodology developed under these
conditions in which Prolog plays the combined role of as a study object and, more
importantly, as a meta-language for describing and experimenting with different
models of computation, including programming language semantics and Turing
machines, and tools such as tracers and debuggers. The approach has been
developed and successfully applied during the 1990s and used in courses until
recently; a full account of the approach can be found in a journal paper [2] that
also gives a more comprehensive set of references to related approaches; a locally
printed textbook in Danish is available [1].

In the following, we analyze the qualities of Prolog that we have relied on
in this approach, and we show how definitional interpreters, compilers and other
models of computation can be defined in a systematic way as Prolog programs
based on a general model of abstract machines. In this way, formal descriptions
become running prototypes that are fairly easy to understand and appealing for
the students to test and modify. The approach has turned out to be highly
effective when combined with learning-by-doing which has been applied for type-
checking and implementation of recursive procedures. A brief listing is given of
other items treated in a course based on the these principles, and a sample course
schedule is shown.

2 Qualities of Prolog in relation to teaching

Prolog is a wonderful programming language for any teacher of computer science:
Students with or without previous programming experience can learn to write in-
teresting programs with only a few hours of introduction and guided experiments
in front of a computer. A substantial subset of Prolog exposes a mathematically
and intuitively simple semantics and makes a good point to emphasize the dis-
tinction between declarative and procedural semantics, and thus also to isolate
various pragmatic extensions from the core language.

Computer science as university subject contains many aspects where Prolog
can be interesting, independently of whether the students intend to use Prolog
in their future careers. First of all, Prolog is an obvious second programming
language that shows the diversity of the field for student brought up with a
language such as Java. Prolog is a type-less language in which any data structure
has a denotation and with no need for constructors and selection methods as
these are embedded in Prolog’s unification. Java, on the other hand, requires the

44

programmer to produce large collections of classes, interfaces, methods, and a test
main method before anything can be executed. The conflict between flexibility,
conciseness, and semantic clarity on the one hand, and security and robustness
on the other is so obviously exposed in this comparison. Prolog’s application as a
database language is well-known and we shall not go into details here; in section 5
we mention briefly how an introduction to databases has been incorporated in
our approach.

A study of Prolog motivates also considerations about the notion of a meta-
language: assert and retract take arguments that represent program text, the
same goes for Prolog’s approximation to negation-as-failure which essentially is a
meta-linguistic device within the language. The problematic semantics of these
features gives rise to a discussion of what requirements should be made to a
meta-linguistic representation. Operator definitions in Prolog comprise syntactic
meta-language within the language, and are also a perfect point of departure for a
detailed treatment of priority and associativity in programming language syntax.

In general, we have relied on the following detailed properties of Prolog.

• Prolog terms with operator definitions provide an immediate representa-
tion of abstract syntax trees in a textually pleasing form; see the following
expression which with an operator definition for “:=” is a Prolog term:
a:= 221; b:= 493; while(a =\= b, if(a>b, a:= a-b, b:= b-a))

• Structurally inductive definitions are expressed straightforwardly in Prolog
by means of rules and unification, e.g.,
stmnt(while(C,S),· · ·):- condition(C,· · ·), stmnt(S,· · ·), · · ·.

• Data types for, say, symbol tables and variable bindings, are easily imple-
mented by Prolog structures and a few auxiliary predicates.

• Specifications are directly executable and can be monitored in detail using
a tracer; they can be developed and tested incrementally and interactively.
Students can easily modify or extend examples and test their solutions.

Prolog invites to an interactive and incremental style of program develop-
ment, not only for students but also for the teacher to do this during the
lecture using a computer attached to a projector.

• The characterization of various pragmatic issues can be developed in di-
rect relation to “ideal” formal descriptions. An interpreter, for example,
is easily extended into a tracer or debugger, and code optimization can be
incorporated in a small compiler written in Prolog.

45

• Last but no least: Prolog appears as an easily accessible framework com-
pared with, say, set and domain theory. Although basically representing
the same universal concepts, the combined logical and operational nature
of Prolog-based specifications gives an incomparable intuitive support.

3 A basic model of abstract machines

An unsophisticated model of abstract machines is a central element in our
methodology, used for the general characterization of computer languages and
computational models.

A particular abstract machine is characterized by its input language which is
a collection of phrases or sentences, a memory which at any given time contains
a value from some domain of values, and finally a semantic function mapping a
phrase of the input language and memory state into a new memory state. For
simplicity, output is not explicit part of the definition but considered as part of
the “transparent” memory whenever needed.

The framework includes a general notion of implementation of one machine
in terms of another, and three different modes are defined, interpretation, trans-
lation and use of abstraction mechanisms in standard programming languages.
Interpreters and translators themselves, as well as program modules, can be ex-
plained as particular abstract machines.

Abstract and concrete syntax are introduced and distinguished in an informal
way, and the representation of abstract syntax trees by Prolog terms (as above)
is emphasized. The abstract syntax of a context-free language is characterized
by a recursive Prolog program consisting of rules of the form

cat0(op(T1,. . . , Tn)):- cat1(T1),. . . ,catn(Tn).

where op names an operator combining phrases of syntactic categories cat1, . . . ,
catn into a phrase of category cat0.

Syntax-directed definitions can be specified by adding more arguments corre-
sponding to the synthesized as well as inherited attributes of an attribute gram-
mar [5]. Consistent with our abstract machine model, we introduce what we call
a defining interpreter which to each syntax tree associates its semantic relation
of tuples 〈s1, . . . , sk〉 by predicates of the form

cati(syntax-tree,s1,. . . ,sk)

As an example, a defining interpreter for an imperative language may associate
with each statement a relation between variable state before and after execution,
which for a statement such as “x:= x+1” contains among others the following
tuples: 〈[x=7],[x=8]〉, 〈[x=1,y=32]],[x=2,y=32]〉,

46

4 Imperative and procedural languages

In the following we show how standard programming languages are characterized
in our Prolog-based style, indicating the spirit in which it is communicated in
the teaching. We proceed by introducing a defining interpreter for a simple
machine-like language giving a continuation-style semantics for jumps and control
points. This serves the dual purposes of making the semantics of such languages
explicit and of introducing continuations as programming technique and semantic
principle. Next is shown a defining interpreter for while-programs and a compiler
of while-programs into machine language. Finally we describe an assignment
where the students developed type checker and interpreter for a simple Pascal-
like language from a brief, informal introduction.

4.1 A defining interpreter for a machine language

The following Prolog list is an abstract syntax tree for a program in a simplified
machine language. Presenting this sample to the students is sufficient to indicate
the existence of an abstract machine, and it gives good sense to execute this
program by hand on the blackboard from the intuition provided by the instruction
names.

[push(2),
store(t),

7, fetch(x),
...
equal,
n_jump(7)]

The semantics of such programs assumes a stack (that we can represent as a Pro-
log list) and a storage of variable bindings (represented conveniently as lists of
“equations”, e.g., [a=17,x=1,y=32]). The central predicate in a defining inter-
preter is the following. The first argument represents a sequence of instructions
(a continuation) to be executed and the second one passes the entire program
around to all instructions to give the contextual meaning of labels.

sequence(Seq, Prog, Stackcurrent, Storecurrent, Stackfinal,
Storefinal)

The meaning of simple statements that transform the state is given by tail-
recursive rules such as the following: Do whatever state transition is indicated by
the first instruction and give the resulting state to the continuation. Example:

47

sequence([add|Cont], Prog, [X,Y|S0], L0, S1, L1):-
YplusX is Y + X,
sequence(Cont, Prog, [YplusX|S0], L0, S1, L1).

The unconditional jump instruction is defined as follows; it is assumed that
the diverse usages of the append predicate have been exercised thoroughly with
the students at an earlier stage.

sequence([jump(E)|_], P, S0, L0, S1, L1):-
append(_, [E|Cont], P),
sequence(Cont, P, S0, L0, S1, L1).

Executing a few examples, perhaps complemented by a drawing on the black-
board — and within a few minutes the students have grasped the principle of a
continuation and continuation semantics.

The remaining rules that complete the interpreter are straightforward.
A little aside can be made, turning the interpreter into a functioning tracer

by adding the following rule as the first one to the interpreter:

sequence([Inst|_],_,_,_,_,_):- write(Inst), write(’ ’), fail.

Students are given the following exercises that serve the twofold purpose of famil-
iarizing them with the material and introducing other important aspects: extend
language and interpreter with instructions for subroutines; write a Prolog pro-
gram checking that labels are used in a consistent way; write a Prolog predicate
that optimizes selected subsequences of instructions; design and implement an
extension of the tracer with debugging commands.

4.2 A defining interpreter for while-programs

As a next step up the ladder of languages moving away from the machine and
closer to “problem-oriented” languages, we consider while-programs whose se-
mantics also can be specified in terms of a defining interpreter. A defining inter-
preter consists of the following predicates.

program(program, final-storage)
statement(statement, storage-before, storage-after)
expression(expression, storage, integer)
condition(condition, storage, {true, false})

Most rules are straightforward, the most complicated one being the following
defining the meaning of a while statement.

48

statement(while(Cond, Stm), L1, L2):-
condition(Cond, L1, Value),
(Value = true -> statement((Stm ; while(Cond, Stm)),L1,L2)

; L1=L2).

The following exercises are given to the students: run a sample program including
a while loop with Prolog’s debugger switched on and record all primitive actions;
extend the language with expressions of the form result is(statement, vari-
able); extend the language with a for loop; extend the interpreter with a simple
tracing facility.

4.3 A compiler for while-programs

The structure of our defining interpreters can also be adapted to describe com-
pilers. Above, we considered a semantics for while-programs defined in terms
of state transformations and now we consider an alternate semantics capturing
meanings by means of sequences of machine instructions.

Two auxiliary predicates are introduces, one for creating unused machine
language labels and another one to facilitate the composition of sequences of
instructions; illustrated below. The following rule specifies the compilation of a
while statement.

statement(while(Cond, Stm), C):-
condition(Cond, CondC),
statement(Stm, C1),
new_label(Lstart), new_label(Lend),
C <- Lstart + CondC +

n_jump(Lend) +
C1 +
jump(Lstart) +

Lend.

The compiled code for the while statement is composed by the code for its
constituents, two new labels created by new label and specific instructions; the
predicate denoted by “<-” puts together the sequence indicated by “+” in its
second argument and unifies it with the first argument. Notice that n jump is a
conditional jump to the specified label whenever the previous computation has
placed a value representing false on top of the stack. The code produced can be
executed by the interpreter shown in section 4.1. As before, exercises are given
that involve testing and extending this compiler in various ways.

49

4.4 A learning-by-doing approach to recursive procedures and
type-checking

The detailed semantics and implementation of recursive procedures and type-
checking are usually consider very difficult by students. We have had good success
with these topics by means of a larger learning-by-doing assignment continuing
the material presented so far.

The students were presented for a simple Pascal-like language by means of
example programs with a recursive quicksort program as a prototypical represen-
tative. Type requirements and a standard stack-based implementation principle
for recursive procedures were described informally, and the assignment was to
implement both type-checker and compiler in Prolog.

The prescribed time for the work was one week on half time, including writing
a small report documenting the solutions. The most experienced students had
type checker and interpreter running after four or five hours, and all students in a
class of some 30 students solved the task within the prescribed time. All solutions
were acceptable and there was no obvious difference between those produced by
students with a mathematical background and by those without.

5 Other course elements

Here we list other topics integrated with the previous material in different versions
of our course; more details including program samples can be found in [2].

Logic circuits modeled in Prolog is a standard example used in many Prolog
text books. This is obvious to apply in our context due to the meta-linguistic
character (modeling the language of logic circuits).

LISP modeled with assert-retract. Function definitions and variable bind-
ings are implemented using Prolog’s assert-retract. Illustrates dynamic binding
and different levels of binding times plus introduces functional programming. The
use of assert-retract as opposed to explicit state arguments makes it possible to
model an interactive Lisp environment with few lines of codes.

Turing machines. An introduction to computability theory is given, based on
Turing machines and Turing completeness. An interpreter made up by a few
lines of Prolog is an excellent way to illustrate a Turing-machine and to provide
a truly dynamic model, especially when a tracing facility is added. The existence
of the interpreter shows that Prolog is Turing-complete, and having played with
it makes it easier for the students to understand the proof of undecidability of
the halting problem.

50

Vanilla and Prolog source-to-source compilation. The familiar Vanilla
self-interpreter for Prolog [7] is a perfect example to illustrate the notion of a
self-interpreter.

Appearing a bit absurd and useless to the students in the first place, they
begin to see the point of a self-interpreter when a few lines of additional code
makes it into a tracer and debugger. Source-to-source compilation is illustrated
in terms of a profiling tool that inserts additional code to record the number of
entrances, successes and failures of each clause in a Prolog program.

Relational algebra in Prolog. The course described here has in some years
been integrated with a standard database course. As an introduction to relational
database technology, students were given the assignment of implementing an
interpreter for relational algebra. The conditions were the same as for the task
on type-checking and recursive procedures described above, one week on half time,
including writing a small report documenting the solutions. This task has been
given to several classes of students and all students usually succeed in producing
an acceptable solution, although join often causes problems.

Syntax analysis. Traditional methods for lexical analysis and parsing are in-
tegral components of our course. Prolog is used as a ready-at-hand tool for the
students to implement finite state machines, deterministic as well as nondeter-
ministic. Top-down parsing is illustrated perfectly by Prolog’s built-in Definite
Clause Grammars [6], and bottom up-parsers by an analogous grammar formal-
ism CHRG [3] developed on top of Constraint Handling Rules [4] which is a recent
extension to some Prolog versions that provides a natural paradigm for bottom-
up evaluation. Now quick and effective introductions can be given to standard
implementation principles for finite state machines and parsing.

Dissecting a Prolog implementation in Java. As a conclusion of the course,
the students are shown a full implementation in Java of a subset of Prolog, in-
cluding lexical analysis, parsing, representation of abstract syntax trees in an
object-oriented language, and an interpreter which exposes a detailed implemen-
tation of Prolog’s unification procedure.

6 A sample course schedule

The following table shows the schedule for a version of a course designed according
to our methodology as it was given in spring 2001. The actual course has changed
slightly from semester to semester so not all items mentioned above are included.
The course corresponds to 25% of a student’s work in one semester (7.5 ECTS)
and is concentrated on 10 full course days. Each course day consists of lectures

51

and practical problem solving related to the day’s lecture. A considerable amount
of homework is expected from the students.

1
Introduction: Abstract and concrete syntax, semantics, pragmatics, lan-
guage and meta-language. Prolog workshop I: The core language, incl.
structures.

2
Prolog workshop II: Lists, operators, assert/retract, cut, negation-as-
failure.

3
Abstract machines: Definitions of a.m., interpreter, translator, etc.
Prolog workshop II contd.

4
Language and meta-language, Prolog as meta-language. Semantics of
sequential and imperative languages; defining interpreters and a small
compiler.

5
Declarations, types, type checking, context-dependencies,
recursive procedures.

6
Introduction to and practical work with large exercise: do-it-your-self
recursive procedures, interpreter and type checker.

7
Conclusion and comments to large exercise. Turing-machines, decidabil-
ity and computability, Turing universality, the halting problem, Turing
machines in Prolog.

8
Constraint logic programming: Introduction to CLP(R) and CHR; CHR
Grammars for bottom-up parsing.

9 Syntax analysis: Lexical analysis and parsing; recursive-descent parsing

10
Overview of phases in a traditional compiler. Dissection of an imple-
mentation of Prolog in Java. Evaluation of the course.

7 Conclusion

We have explained a methodology based on a combination of a simple, underlying
model of abstract machines and the use of Prolog as general definition and imple-
mentation language. Prolog is well suited for this purpose: Conceptual simplicity
and high expressibility with a core language consistent with a subset of first-order
logic; syntactic extensibility that allows a direct notation for abstract syntax trees
in a textually acceptable form; a rule-based structure that fits perfectly with an
inductive style of definition. Last but not least: Prolog is an interactive language
that appeals to incremental development, testing, and experimentation with an
extremely short turn-around time from idea → implementation → observation
→ revision or extension of idea.

Our experience have shown that theoretical issues of computer science can be
taught in this way in an entertaining and concrete way which, unlike traditional

52

approaches, appeals to a wide range of students for which a uniform mathematical
background cannot be taken for granted.

A critical remark may be that this form of learning is very compact, with
many important aspects covered by one minimalist and seemingly innocent ex-
ample as was the case with the interpreter for machine language. One might fear
that students tend to remember only the example and not the points that the
teacher had in mind. We have not applied any scientifically based evaluation prin-
ciple, but it is our clear impression that the practical work in exercises and larger
assignments serves fully to avoid this potential danger. Informal evaluations with
the students have indicated a high degree of satisfaction with the teaching prin-
ciple. Especially the larger learning-by-doing assignments (type-checking plus
recursion; relational algebra in Prolog) were characterized as difficult and chal-
lenging, but also some of the most interesting ones from which the students had
learned quite a lot.

Acknowledgment: This research is supported in part by the IT-University of Copen-
hagen.

References

[1] Henning Christiansen. Sprog og abstrakte maskiner, 3. rev. udgave [in Danish;
eqv. “Languages and abstract machines”]. Datalogiske noter 18, Roskilde
University, Roskilde, Denmark, 2000.

[2] Henning Christiansen. Teaching computer languages and elementary theory
for mixed audiences at university level. Computer Science Education Journal,
14, 2004. To appear.

[3] Henning Christiansen. CHR Grammars. Int’l Journal on Theory and Practice
of Logic Programming, 2005. To appear.

[4] Thom Frühwirth. Theory and Practice of Constraint Handling Rules, Special
Issue on Constraint Logic Programming. Journal of Logic Programming, 37(1–
3):95–138, October 1998.

[5] Donald Knuth. Semantics for Context-Free Languages. Mathematical Systems
Theory, 2:127–145, 1968.

[6] F. C. N. Pereira and D. H. D. Warren. Definite clause grammars for language
analysis — a survey of the formalism and a comparison with augmented tran-
sition networks. Artificial Intelligence, 13:231–278, 1980.

53

[7] D. H. D. Warren. Implementing Prolog - Compiling Predicate Logic Programs
– Volumes 1 & 2. D.A.I. Research Report 39, 40, University of Edinburgh,
May 1977.

54

