
Teaching Prolog Programming at the Eötvös

Loránd University, Budapest

Tibor Ásványi
Faculty of Informatics, Eötvös Loránd Univ.
Budapest, Pázmány Péter sétány 1/c, H-1117

asvanyi@inf.elte.hu

Abstract

At the Eötvös Loránd University (Budapest) we have two courses on Prolog
programming, especially for program designer (MsC) students.

Our main objective is to help the students find the subproblems in their
projects to be solved with Prolog, and enable them to write the necessary
code. At first our main concern is to give clear notions. Next we focus on
the technical details of writing small programs. Then we incorporate the
questions raised by developing big applications.

In our first course we give an overview of the history of logic programming
(LP). We introduce the basic notions of this area, and we discuss the widely
used LP language, Prolog, emphasizing a kind of pragmatic programming
methodology which helps us to develop correct and effective programs. We
talk many short examples over, in order to make the students feel the taste
of LP in small.

In our second course we focus on writing bigger programs and using ad-
vanced Prolog programming techniques like generate and test techniques,
exception handling, writing and using second-order predicates, splitting our
programs into modules, using partial data structures, d-lists, and logic gram-
mars. We discuss many typical problems to be solved with logic programs.

1 Introduction

Logic programming is taught at our university from the early eighties.
In the beginning the legendary MProlog system of Péter Szeredi and his col-

leagues was used.
Later some of the author’s colleagues changed to Turbo Prolog, because of

its effectivity, good development environment and graphics. It is still used in the
teacher-training courses, although it is considered obsolete now.

35

The program designers’ Prolog courses are in the competence of the author, who
changed to SICStus Prolog in 1994, because it seemed to be the best implemen-
tation with affordable costs, available for many platforms.

However, during the semesters these questions are not in the centre. We focus
on the following aspects:

1. We present many problems which can be solved elegantly and effectively
with Prolog.

2. We show how to split the program into modules, taking advantage of exist-
ing code, especially of libraries.

3. We discuss how to refine the predicates while maintaining the finiteness of
the search tree, controlling the data flow, and organizing the deterministic
and nondeterministic parts.

On the language issues, first we concentrate on the standard features of SICStus,
but later we take into consideration the implementation specific details, like its
module system and libraries.

The Prolog courses are based on semesters about algorithms and data struc-
tures, about first order logic and resolution, and about artificial intelligence. It
is also supposed that the students have practice in developing structured, pro-
cedure based programs, they have written some programs consisting of many
components, they are familiar with some assembly language, and they have basic
knowledge on formal languages and compilers.

During the Prolog courses we use SICStus with Emacs interface. In such a
way we have a complete development evironment. First we constrain ourselves
to using the ISO standard [1] subset of this implementation, in order to help
the students write portable programs. But later we take into consideration the
implementation specific details, that is, the module system, the libraries, the DCG
rules, and the hook predicates of SICStus, in order to help the students write large
applications.

There are yet other two courses on logic programming at our university. The first
one is about the theoretical foundations of LP, the second is a comparative study
of LP languages.

2 Motivation: Why Prolog?

Given a set of logic statements defining a model, we can formulate queries on (un-
known) objects satisfying known relations. A constructive answering process can
be considered a computation: This is a fundemantal idea of logic programming.

36

Therefore a logic program is similar to a theorem proving system. It is a
set of axioms together with a control component. But its control component
is much simpler. The computation process can be followed and guided by the
programmer, its termination can be guaranteed, and its costs are predictable.

Prolog is a simple and old, but successful LP language. It offers the neces-
sary simplifications and additions compared to a pure LP system, so that the
programmer have an effective and flexible tool.

3 Beginner’s Course

We roughly follow the first two parts of The Art of Prolog [4], but we give less
theory, because we have a special theoretical course on this topic. Other main
sources are [1, 3, 5, 2].

Our own textbook is [6]. We concentrate on a practical Prolog programming
methodology, in order to help the students develop their own applications.

1. First – with a historical background – we introduce the notions of the logic
and control components of the logic programs. The logic component is
detailed first, because of the students’ theoretical background: It is shown
how a relation is refined.

2. The run of the program is a constructive proof of the query, and query-
driven (top-down) proof, that is, goal-reduction is to be preferred in general:
It corresponds to the refining of relations and it is usually more effective
than other strategies. In order to illustrate the run of the program we
introduce the search-trees and mention that there are the same solutions in
the different search-trees.

3. We introduce recursive programs and compound terms, especially lists. We
emphasize that usually the search tree of the queries must be finite, and
give examples how to prove this.

4. Next we go on to pure Prolog, define the Prolog machine, detail the occurs
check problem (explain why to omit this check), discuss how to turn STO
(subject to occurs check) programs into NSTO (not STO) programs, so
that the possible occurs checks are restricted to the calls to the predefined
predicate unify_with_occurs_check/2 [1].

5. Then we discuss two usual optimizations of the Prolog machine: first argu-
ment indexing and last call optimization. We write some simple programs
taking advantage of these. We emphasize that these optimizations are not
parts of the ISO standard.

37

6. Next we introduce disjunctions, conditionals ((If->Then;Else) and
(If->Then)), negation, green and red cuts, and discuss the safe use of
cuts, comparing it with conditionals, and used together with indexing. We
argue that the run of a deterministic predicate should never leave choice
point.

7. Then we discuss the meta-logical (arithmetic, type-checking, term compar-
ing, term manipulating) predicates (with many examples), and the meta-
variable facility, especially with findall/3. We show that considering the
data flow of the program becomes especially important, if we use meta-
logical predicates.

8. We finish the beginner’s course with the extra-logical predicates. First we
consider the I/O predicates needed in real applications. Second we dis-
tinguish the static and the dynamic predicates together with the standard
built-ins accessing and manipulating our programs. We emphasize that the
use of the modifications of the programs should be restricted to generating
lemmas and negative lemmas, and passing information among the branches
of the search-tree.

4 Advanced Course

We roughly follow the third and fourth parts of The Art of Prolog [4]. Other
main sources are [1, 3, 6, 5, 2]. Still we do not have our own textbook.

1. At the advanced course we start with some classical problems to be solved
with nondeterministic programming: the eight queens problem, map colour-
ing, and some logic puzzles. These problems are in the heart of LP, therefore
this chapter seems to be a good start at the advanced course.

Here we introduce exception handling in order to protect our programs
against incorrect input.

2. Then we consider the second-order predicates of Prolog, especially those
collecting the solutions of a goal. These are useful in collecting the solutions
of a nondeterministic search, and will be needed in the advanced search
tecniques to be introduced soon.

3. At this point our programs are going to become complex enough to be
divided into components. Therefore, next we discuss the different module
systems used in the Prolog implementations, and the problems with the
second-order predicates, while using the module system of SICStus [3].

38

4. Then we use partial data structures to define dictionaries, d-lists, and es-
pecially queues. Here we reconsider the problem of writing optimal Prolog
code in general, and especially in SICStus.

The use of partial data structures is not easy for the students, therefore it is
delayed until this point. However it is necessary for the subsequent themes,
which are illustrations of some widely used algorithms from the fields of
artificial intelligence, and of compiler writing.

5. Next we go on to different state-space problems. We introduce a set
of graph-searching techniques, especially backtracking, depth-first and
breadth-first search (with stacks and queues). We apply algoritm A and
algoritm A∗ to solve some problems like the classical fifteen puzzle, because
these algorithms provide safe heuristic search methods.

At this stage we split the programs into modules, and we define the graph-
searching modules independently from the actual problem.

6. Then we discuss some two-player games and apply the classical alpha-beta
pruning.

7. Last we introduce logic grammars, especially DCG rules. We discuss the
whole compiler (consisting of six modules) of a simplified Pascal-like lan-
guage. The parser is defined with a DCG grammar generating the syntax
tree of the program (except if there are syntax errors: then these are han-
dled). The code generator is another DCG grammar. It takes the syntax
tree and generates an abstract assembly code, and a dictionary. Its result is
taken by the assembler (a third DCG grammar) which generates the object
code.

It may be unusual that we emphasize the module system of SICStus, although
there is no module system in the ISO standard [1]. But modularization and
writing generic purpose modules is a general trend in software development. For
example, let us see, how to define and use a generic graph-search module. In order
to concentrate on the organization of the program we can choose the simplest one,
the backtracking graph-search strategy.

:- module(bts, [init_graph_search/1, graph_search/1]).

:- use_module(library(lists), [member/2, reverse/2]).

init_graph_search(File) :-
use_module(File, [arc/2, start/1, goal/1]).

39

graph_search(Path) :- start(A), gs(A,[],Path).

gs(A,Ancestors,Path) :- goal(A), reverse([A|Ancestors],Path).
gs(A,Ancestors,Path) :-

arc(A,B),
B \= A, \+ member(B,Ancestors), % no loop
gs(B,[A|Ancestors],Path).

Module bts is a generic one. This means that it does not know the graph it
searches on. Somebody must call init_graph_search(File). Its run will import
the necessary predicates (arc/2,start/1,goal/1) into module bts.

Module graph contains the necessary predicates, that is, the description
of the graph. Again, it is independent from the graph-searching method
used. Somebody must call init_graph(File). Its run will import predicate
graph_search/1 into module graph.

:- module(graph, [init_graph/1, arc/2, start/1, goal/1,
graph_search/3]).

init_graph(File) :-
use_module(File, [graph_search/1]).

:- dynamic(start/1). start(a).
:- dynamic(goal/1). goal(e).

graph_search(Start,Goal,Path) :-
retractall(start(_)), retractall(goal(_)),
asserta(start(Start)), asserta(goal(Goal)),
graph_search(Path).

arc(a,b). arc(b,c). arc(b,d).
arc(c,a). arc(c,e). arc(d,e).

40

% __________
% / \
% V \
% a----->b----->c
% | |
% | |
% V V
% d----->e

The main module just loads the components of the program, and makes them
known to each other.

:- module(main, [graph_search/1, graph_search/3]).

:- use_module(bts, [init_graph_search/1, graph_search/1]).
:- use_module(graph, [init_graph/1, graph_search/3]).

:- init_graph_search(graph), init_graph(bts).

Having loaded the main module, the program can be used as follows.

| ?- graph_search(Path).
Path = [a,b,c,e] ? ;
Path = [a,b,d,e] ? ;
no
| ?- graph_search(c,e,Path).
Path = [c,a,b,d,e] ? ;
Path = [c,e] ? ;
no

5 Final Remarks

We have two semesters on Prolog programming for program designer students
at our university. These cover the standard material of such courses with some
modification: There is an emphasis on how to develop effective, big programs
with Prolog.

Our semesters are special lectures. The students can choose them as parts of
their MsC program. Both of the courses take 20 hours of teaching, and are worth
2 ECTS credits. (There are 30 credits per semester in our system.) In a year,
approximately 80 students finishes the first, and 30 students finishes the second

41

course. In a year, 80-100 students receives MsC. This means that most of them
have some knowledge on LP. About the same number of students stop at BsC.
Unfortunately they do not hear about LP, and we do not see how to change this
situation.

We do not teach writing expert systems at the Prolog courses, because there
is a special course on expert systems, and (among other shells) we teach the
Prolog extension flex there. The theoretical foundations and the comparison of
LP languages are covered by other two semesters. Still we would like to start
a new course on constraint programming, with high emphasis on CLP. Another
possibility is to include Péter Szeredi’s special courses on LP (from the Technical
University of Budapest) in our selection.

References

[1] Deransart P., Ed-Dbali A.A., Cervoni L., Prolog: The Standard (Reference
Manual), Springer-Verlag, 1996.

[2] O’Keefe R. A., The Craft of Prolog, The MIT Press, Cambridge, Mas-
sachusetts, 1990.

[3] SICStus Prolog 3.11 User’s Manual, Swedish Institute of Computer Science,
PO Box 1263, S-164 28 Kista, Sweden, 2003.
(http://www.sics.se/isl/sicstuswww/site/documentation.html)

[4] Sterling L., Shapiro E., The Art of Prolog (Second Edition), The MIT Press,
London, England, 1994.

[5] Szeredi P., Benkő T., Deklarat́ıv programozás: Bevezetés a logikai pro-
gramozásba (Declarative Programming: Introduction into Logic Program-
ming), BME, Budapest, 2000.

[6] Ásványi T., Logikai programozás (Logic Programming), in: “Programozási
nyelvek (Programming Languages)”, (editor: Nyékyné Dr. Gaizler Judit),
pp. 637-684. Kiskapu Kft. Budapest, 2003.

42

