
Faces Everywhere:

Towards Ubiquitous Production and Delivery of Face Animation

Igor S. Pandzic1, Jörgen Ahlberg2, Mariusz Wzorek2, Piotr Rudol2 , Miran Mosmondor1

1Department of Telecommunications

Faculty of electrical engineering and computing

Zagreb University

Unska 3, HR-10000 Zagreb, Croatia

{Igor.Pandzic, Miran.Mosmondor}@fer.hr

2Visage Technologies AB

Tröskaregatan 90, SE-58334 Linköping, Sweden

www.visagetechnologies.com

{jorgen, mariusz, piotr}@visagetechnologies.com

Abstract

While face animation is still considered one of the toughest
tasks in computer animation, its potential application range is
rapidly moving from the classical field of film production into
games, communications, news delivery and commerce. To
support such novel applications, it is important to enable
production and delivery of face animation on a wide range of
platforms, from high-end animation systems to the web, game
consoles and mobile phones. Our goal is to offer a framework
of tools interconnected by standard formats and protocols and
capable of supporting any imaginable application involving
face animation with the desired level of animation quality,
automatic production wherever it is possible, and delivery on
a wide range of platforms. While this is clearly an ongoing
task, we present the current state of development along with
several case studies showing that a wide range of applications
is already enabled.

Keywords: face animation, virtual characters, embodied
conversational agents, visual text-to-speech, face tracking, lip
sync, MPEG-4 FBA

1 Introduction

The human face is one of the most expressive channels of
communication and appears in multimedia contents so
universally that we take it for granted. Researchers have been
fascinated with the possibility to recreate and animate human-
like faces on computers since decades [1]. Early face
animation research proposed various models for animating a
3D face model: procedural [8], pseudo-muscle [9] and muscle
simulation [10][11] were the main categories. More recently,
researchers worked on more realistic face models
[12][13][14][24]. In parallel, work progressed on face
animation production methods such as visual text-to-speech
[6], automatic lip-sync [17], and face feature tracking in video
[26][27][28].

Application areas for face animation are expanding from film
production and advertising into such diverse areas as games,
teleconferencing, messaging [25], news delivery [16],
education and commerce [7]. In particular, research on
Embodied Conversational Agents [15] is going towards the
notion of human-like user interface that we can simply talk to
– applications of such technology could be very wide in all
kinds of automated services, support, consulting and more.

After three decades of research on face animation, most
developed systems are still proprietary and do not talk to each
other. It is rare, for example, that a lip sync system from one
research group or company can directly drive a muscle-based
animated face from another group. Yet this kind of
compatibility, together with widespread support on various
platforms, is essential for widespread applications. The same
face animation content, regardless how it was produced,
should be playable on platforms and systems as diverse as
mainstream 3D animation tools, PCs, games consoles, set-top
boxes and mobile phones (Figure 1).

FACE ANIMATION
SOURCES

MANUAL EDIT

VISUAL
TEXT-TO-SPEECH

LIP SYNC

PUPETEERING

PERFORMANCE
ANIMATION

MPEG-4 FBA

TARGET PLATFORMS

3D SOFTWARE
(3ds max, Maya...)

WEB
(plugins, Java,...)

MOBILE
(Symbian, WinCE, ...)

GAME CONSOLES
(Play Station, Xbox,

Nintendo...)

SET_TOP BOXES

PC

Figure 1: Portability of face animation

This kind of widespread portability is essentially made
possible by the recent MPEG-4 Face and Body Animation
(FBA) standard [3][4]. In our work, we take this idea one step
forward and build a working set of tools that make this
promise a reality: the visage framework. It is a set of software

49

Mark Ollila
MUM2003

components interfaced through standards such as MPEG-4
and VRML. Subsets of these components are assembled
together, or with other 3rd party standard components, to
deliver a wide range of applications based on face animation
on various platforms. We believe that most currently
considered applications can be successfully delivered in this
way.

We present an overview of the visage framework in section 2,
and describe the various components in sections 1 - 5. Section
6 showcases several case studies that demonstrate the
versatility of the framework. The final section brings
conclusions and future work ideas.

2 Overview of the visage framework

The visage framework consists of three major categories of
modules: face model production, face animation production
and multi-platform delivery. Figure 2 shows all modules. In a
typical application only a selection of modules is used (see
case studies, section 6).

Making a face model and preparing it for animation is
typically time consuming. In the visage framework, static face
models are imported in standard VRML format from
mainstream modelling tools and prepared for animation using
the semi-automatic Facial Motion Cloning method. This
method essentially copies all necessary morph targets from an
existing generic face model to the new face model. An

interesting feature is the possibility to make available morph
target sets with different animation styles for the generic
model, and simply choose which animation style to clone onto
the new model (e.g. standard, exaggerated, with wrinkles,…).

The visage framework contains tools for face animation
production based on most currently known methods: video
tracking, visual TTS, lip sync and manual editing. Each tool
will be described in more detail in section 4. All tools produce
standard MPEG-4 FBA bitstreams with face animation,
making the tools completely interchangeable. Thanks to the
standard format, the editing tool can be applied on the results
of all other tools, and 3rd party standard tools can easily be
incorporated. A particular advantage of the MPEG-4 FBA
format is its efficiency – bit rates can be as low as 0.5 kbit/sec
if only viseme-based speech animation is used, and typically
do not exceed 5 kbit/sec for full animation.

The delivery is based on the very small and portable visage
Face Animation Player core. This core exists in both Java and
C++ versions, and can easily be ported on top of any software
environment supporting 3D graphics, as illustrated in Figure
2.

By selecting appropriate tools, it is fairly straightforward to
build applications involving face animation in various
environments and platforms.

VIDEO

TEXT

AUDIO

STATIC FACE
MODEL (VRML)

FACE MODEL PRODUCTION

ANIMATABLE
FACE MODEL

(VRML)

FACE ANIMATION PRODUCTION

MPEG-4 FBA
GSM AUDIO

MULTI-PLATFORM DELIVERY

Video tracking
(visage|track)

VTTS
(visage|talk)

Lip sync*
(visage|lips)

Editing
(visage|edit)

FMC
(visage|life)

ANIMATION STYLES

Symbian*

visage FA Player core

Diesel3D Engine

Web player (applet)

visage FA Player core

Shout3D Applet

PC standalone player

visage FA Player core

OpenGL

Maya plugin*

visage FA Player core

Maya SDK

3ds max plugin

visage FA Player core

max SDK

Figure 2: Overview of the visage framework (*currently under development)

50

3 Face model production

In this section we describe our approach to the production of
face models that can be directly animated by all other tools in
the described framework. We believe that the most important
requirement for achieving high visual quality in an animated
face is the openness of the system for visual artists. It should
be convenient for them to design face models with the tools
they are used to. The concept of morph targets as key building
blocks of facial animation is already widely used in the
animation community. However, morph targets are commonly
used only for high level expressions (visemes, emotional
expressions). In our approach we follow the MPEG-4 FAT
concept and use morph targets not only for the high level
expressions, but also for low-level MPEG-4 FAPs. Once their
morph targets are defined, the face is capable of full animation
by limitless combinations of low-level FAPs.

Obviously, creating morph targets not only for high level
expressions, but also for low-level FAPs is a tedious task. We
therefore propose a method to copy the complete range of
morph targets, both low- and high-level, from one face to
another. The source face with a complete set of morph targets
is available, and different sets of morph targets defining
various animation styles are being developed, so that a user
can choose the animation style to be applied when copying the
morph targets to a new face. The method we propose for
copying the morph targets is called Facial Motion Cloning.
Our method is similar in goal to the Expression Cloning [2].
However, our method additionally preserves the MPEG-4
compatibility of cloned facial motion and it treats transforms
for eyes, teeth and tongue. It is also substantially different in
implementation.

Facial Motion Cloning can be schematically represented by
Figure 3. The inputs to the method are the source and target
face. The source face is available in neutral position (source
face) as well as in a position containing some motion we want
to copy (animated source face). The target face exists only as
neutral (target face). The goal is to obtain the target face with
the motion copied from the source face – the animated target
face.

Figure 3: Overview of Facial Motion Cloning

To reach this goal we first obtain facial motion as the
difference of 3D vertex positions between the animated source
face and the neutral source face. The facial motion is then
added to the vertex positions of the target face, resulting in the
animated target face. In order for this to work, the facial
motion must be normalized, which ensures that the scale of
the motion is correct. In the normalized facial space, we
compute facial motion by subtracting vertex positions of the
animated and the neutral face. To map the facial motion
correctly from one face to another, the faces need to be
aligned with respect to the facial features. This is done in the
alignment space. Once the faces have been aligned, we use
interpolation to obtain facial motion vectors for vertices of the
target face. The obtained facial motion vectors are applied by
adding them to vertex positions, which is possible because we
are working in the normalized facial space. Finally, the target
face is de-normalized. The procedure is repeated for all morph

targets we want to copy. The Facial Motion Cloning method is
described with more detail in [5].

4 Face animation production

4.1 Video tracking

Tracking a face, and facial features like lip movements etc, in
video is a simple task for the human visual system, but has
shown to be a very complex problem for machine vision.
There are numerous proposed methods, but quite few have so
far reached the market. Our method is based on the Active
Appearance Models [29], and offers 3D tracking of the face
and important facial features (currently lip and eyebrow
motion) in real-time or near real-time. The method is based on
a statistical model of facial appearance, finding the most
probable pose and deformation (i.e. facial feature motion) of
the face in each frame. Technical details can be found in [26].
The current version of the tracking module typically needs to
be trained for the person to be tracked, but this step is
expected to be removed.

An illustration of the tracking is given in Figure 4. As can be
seen, the simple face model used here is automatically adapted
to the face in each frame. From the pose and deformation of
the model, MPEG-4 FAPs can be computed.

The tracking module inputs a sequence of images and outputs
animation parameters in an MPEG-4 FBA bitstream
describing the head, lip and eyebrow motion. The animation
parameters can then be applied to a model of the recorded
face, potentially enabling very-low bitrate video telephony, or
any other face model. Another usage is to record head motion
to be used as “background motion”, to which lip motion from
the VTTS could be added, giving the final animation a
realistic look.

Figure 4: Automatic face and facial feature tracking. The
simple face model adapts to each frame in the sequence (every
tenth frame shown), and MPEG-4 FAPs can then be extracted

from the model.

4.2 Visual text-to-speech

The visual text-to-speech tool is based on the SAPI standard
(SAPI-4 and SAPI-5 versions exist). The SAPI TTS generates
events when phonemes are generated and provides timing of
the phonemes. Tables are used to convert phonemes into
MPEG-4 visemes, and these are encoded into an MPEG-4

51

FBA bitstream. In the current version co-articulation model is
a simple one, using linear interpolation to blend visemes on
the boundaries. Non-SAPI TTS systems can be integrated
through a simple interface. Any TTS system that can generate
phoneme/viseme timing can be connected, and the output is
the standard MPEG-4 FBA bitstream.

4.3 Lip sync

A module for automatic lip sync is currently under
development. The module inputs digitized speech and, like the
VTTS module described above, outputs visemes in an MPEG-
4 FBA bitstream. It is based on a method that extracts Mel
Frequency Cepstral Coefficients from the audio, and then uses
a set of neural networks to classify each audio frame as a
certain phoneme. The module can operate in two modes: real-
time and batch. In real-time mode, received audio can be
played and animated in real-time with a delay of less than 80
ms. In batch mode, the delay is significantly higher, but offers
a somewhat higher quality of the lip sync. Technical details
will be published in the near future.

4.4 Animation editing

MPEG-4 Facial Animations can be easily manipulated using
the visage|edit application. Using this program, animations
can be merged or created from scratch. The user interface
consists of four panels shown in Figure 5.

The first from the left is the Project Tree panel used for
hierarchical selection. The first node of the tree is a virtual
track. This track constitutes a reference for the project being
edited. Additional nodes represent tracks included in the
project. Next is the High-Level Editing panel which shows
information in rows according to items visible in the Tree
View. Each track in a project is represented by a bar, which
can be moved (changes offset) and resized (changes scale in
time) using mouse. Additional controls for choosing track
manipulations are supplied. The Low-Level Editing panel
consists of a plot area for displaying FAP values.

 This plot can be scrolled using scroll bars or by “dragging”
the plot area with Shift key pressed. There are two directions
of zooming. Vertical zoom allows setting the range of FAP
values to be shown. Horizontal zoom allows setting the range
of frames to be displayed. The last panel is the Preview panel
which shows a face model at all time for a user to see changes
being done to the project animation.

Figure 5: visage|edit application.

In order to enable users to manage projects consisting of
several animations, the idea of a tree view was introduced. It
makes it possible to display information about several tracks
on different levels of detail at the same time. Additionally, the
tree is a common reference for both high- and low-level
panels – information shown in the two latter views
corresponds to options chosen in the former.

The high-level mode allows editing tracks without going into
details of FAP values. This mode can be used to manipulate

already existing tracks. The obvious example of this mode is
merging two animations in order to add eye blinks to a track
obtained from the Visage|track application. Operations that
can be performed in the high-level mode include adding
offset, scaling, looping and reversing the track and
additionally this mode allows applying multiplication factors
on all FAPs, groups of FAPs and, on separate FAPs. The final
value of the multiplication factor for a separate FAP is the
product of the three multiplication factors and a corresponding
factor from the “virtual track”.

52

The low-level mode allows direct manipulation of FAP
values. This mode is useful for fine-tuning the parameters of
an animation and when “producing” new animation tracks, for
example creating an eye blink track from scratch. Such an
eye-blink can be looped to produce the eyelids’ movement for
the whole animation.

5 Multi-platform delivery

Multi-platform delivery, and the capability to implement
support for virtually any platform in a very short time, is one
of the strongest points of the visage framework. The strategy
to achieve this is to use a bare-minimum face animation player
core. This core can be easily ported to any platform that
supports 3D graphics.

The player is essentially an MPEG-4 FBA decoder. When the
MPEG-4 Face Animation Parameters (FAPs) are decoded, the
player needs to apply them to a face model. Our choice for the
facial animation method is interpolation from key positions,
essentially the same as the morph target approach widely used
in computer animation and the MPEG-4 FAT approach.
Interpolation was probably the earliest approach to facial
animation and it has been used extensively. We prefer it to
procedural approaches and the more complex muscle-based
models because it is very simple to implement, and therefore
easy to port to various platforms; it is modest in CPU time
consumption; and the usage of key positions (morph targets)
is close to the methodology used by computer animators and
should be easily adopted by this community.

The way the player works is the following. Each FAP (both
low- and high-level) is defined as a key position of the face, or
morph target. Each morph target is described by the relative
position of each vertex with respect to its position in the
neutral face, as well as the relative rotation and translation of
each transform node in the scene graph of the face. The morph
target is defined for a particular value of the FAP. The
position of vertices and transforms for other values of the FAP
are then interpolated from the neutral face and the morph
target. This can easily be extended to include several morph
targets for each FAP and use a piecewise linear interpolation
function, like the FAT approach defines. However, current
implementations show simple linear interpolation to be
sufficient in all situations encountered so far. The vertex and
transform movements of the low-level FAPs are added
together to produce final facial animation frames. In case of
high-level FAPs, the movements are blended by averaging,
rather than added together.

Due to its simplicity and low requirements, the face animation
player is easy to implement on a variety of platforms using

various programming languages (Figure 2). For example, the
Java applet implementation, based on the Shout3D rendering
engine [18], shows performance of 15-40 fps with textured
and non-textured face models of up to 3700 polygons on a
PIII/600MHz, growing to 24-60 fps on PIII/1000, while the
required bandwidth is approx 0.3 kbit/s for face animation 13
kbit/s for speech, 150K download for the applet and approx.
50K download for an average face model. This performance is
satisfactory for today’s mobile PC user connecting to the
Internet with, for example, GPRS. More details on this
implementation and performances can be found in [19]. Other
implementations include a PC standalone version based on
OpenGL, 3ds max and Maya plugins and an implementation
on a Symbian platform for mobile devices (last two currently
in development).

Implementation of the face animation player on Symbian
platform for mobile devices is written as C++ application and
based on DieselEngine [31]. Because of low CPU time
consumption and low memory requirements, MPEG-4 FBA
decoder can be used almost unaltered on mobile device. Most
differences were concerning rendering 3D graphics on mobile
device. For that purpose DieselEngine was used. It is
collection of C++ libraries that helps building applications
with 3D content on various devices. DieselEngine has a low
level API (Application Program Interface) that is similar to
Microsoft DirectX and high level modules had to be
implemented. The most important is the VRML parser that is
used to convert 3D animatable face model from VRML
format to Diesel3D scene format (DSC). Other modules
enable interaction with face model like navigation, picking
and centering. We have tested this implementation on Sony
Ericsson P800 mobile device with various static face models.
Interactive frame rates were achieved with models containing
up to 3700 polygons.

6 Case studies

The classical usage of the presented framework would be the
film/video production. In this scenario, the face model is
prepared using the FMC module, one or more animation
production modules are used to prepare the face animation,
and then the model and the animation are imported into a
mainstream 3D animation package (e.g. 3ds max or Maya),
incorporated into a scene and rendered. However, this is just
one application scenario and there are many other potential
applications that can be built based on the visage framework.
In the next sections we will briefly describe several
experimental applications that have been implemented.

53

Figure 6: The virtual newscaster system architecture

6.1 Virtual newscaster

We have built a prototype of an interactive multimedia news
system featuring a talking virtual character to present the news
on the Web [16]. The virtual character is used as a newscaster,
reading the news on the Web while at the same time
presenting images and graphics. The users choose the news
topics they want to hear. The content of the news is defined in
an XML file, which is automatically processed to create the
complete interactive web site featuring the virtual newscaster
reading out the news. This allows for very frequent automatic
updates of the news. The virtual character is animated on the
client using a Java applet implementation of the visage face
animation player, requiring no plug-ins. The bandwidth and
CPU requirements are very low and this application is
accessible to a majority of today’s Internet users without any
installation on the end-user computer. We believe that the
presented news system combines qualities of other current
news delivery systems (TV, radio, web sites) and therefore
presents an attractive new alternative for delivering the news.

Figure 6 illustrates how components of the visage framework
(Facial Motion Cloning, VTTS, Face Animation Player) are
used together with application-specific components to deliver
this application.

6.2 Talking email/SMS

Talking email combines a VTTS module on the server with
the web version of the face animation player. It is a web
application that allows the visitors of a web site to compose
and send talking email straight from the web site, offering a
great entertainment value. A talking email is a web page
containing an interactive virtual person that talks, i.e.
pronounces the email message. The sender inputs the message
text and chooses the virtual person to deliver it. The speech
and animation are generated on the server and the sender can
immediately preview the talking email message, then simply
input the email address and send it. The receiving party sees
the talking virtual character in a web page delivered by email.

The SMS interface allows sending talking email messages
from a mobile phone by SMS. Current development is going
towards the delivery of the talking email directly on mobile

phones, either through MMS or through full face animation
player application running on the mobile phone.

6.3 Embodied Conversational Agents

Embodied Conversational Agents are virtual characters
coupled with artificial intelligence (AI) techniques to deliver
the impression of a live person that can lead a meaningful
conversation. Such virtual characters are expected to represent
the ultimate abstraction of a human-computer interface, the
one where the computer looks, talks and acts like a human.

This would include audio/video analysis and synthesis
techniques coupled with AI, dialogue management and a vast
knowledge base in order to be able to respond quasi-
intelligently to the user – by speech, gesture and even mood
[22]. While this goal lies further on in the future, we present
an architecture that reaches towards it, at the same time
aiming for a possibility of practical applications in nearer
future. Our architecture is aimed specifically at the Web.

Our system uses A.L.I.C.E. [20] as the AI server. It is based
on Case-Based Reasoning or CBR, first used by ELIZA [21].
The AI server takes text as input, and outputs reasonable
answers in form of text based on the A.L.I.C.E. knowledge
base. The user interface is a web page with an integrated
virtual character and text input field (Figure 7). When the user
enters some text, it is sent to the server where it is first
processed by the AI server in order to obtain an answer from
the AI engine. The answer is then sent to the VTTS module
which generates the speech and appropriate face animation;
these are returned to the client and played.

54

Figure 7: Embodied Conversational Agent

7 Conclusions and future work

We have introduced a framework for ubiquitous production
and delivery of face animation and presented case studies
showing how this framework can be configured into various
applications. Work is ongoing on the development of new
modules of the framework, specifically to support new
platforms and improve the existing modules. In particular, the
VTTS module is being extended with an automatic gesturing
function that should produce natural-looking facial gestures
based on lexical analysis of the text and a statistical model
based on analysis of a training data set, similar to [23]. In
parallel, new applications are being developed, in particular
on mobile phones where we expect such innovative
applications to have a great entertainment value.

8 References

[1] F.I. Parke, K. Waters: “Computer Facial animation”, A.K.Peters
Ltd, 1996., ISBN 1-56881-014-8

[2] Jun-yong Noh, Ulrich Neumann: “Expression Cloning”,
Proceedings of SIGGRAPH 2001, Los Angeles, USA.

[3] ISO/IEC 14496 - MPEG-4 International Standard, Moving Picture
Experts Group, www.cselt.it/mpeg

[4] Igor S. Pandzic, Robert Forschheimer (editors): “MPEG-4 Facial
Animation - The standard, implementations and applications",
John Wiley & Sons, 2002, ISBN 0-470-84465-5.

[5] Igor S. Pandzic: “Facial Motion Cloning”, accepted for publication
in the Graphical Models journal.

[6] C. Pelachaud, “Visual Text-to-Speech”, in “MPEG-4 Facial
Animation - The standard, implementations and applications”,
I.S. Pandzic, R. Forchheimer (eds.), John Wiley & Sons, 2002.

[7] J. Ostermann, D. Millen, “Talking heads and synthetic speech: An
architecture for supporting electronic commerce”, Proc. ICME
2000

[8] F.I. Parke: “A Parametric Model for Human Faces”, PhD Thesis,
University of Utah, Salt Lake City, USA, 1974. UTEC-CSc-75-
047.

[9] Kalra P., Mangili A., Magnenat-Thalmann N., Thalmann D.:
“Simulation of Facial Muscle Actions based on Rational Free
Form Deformation”, Proceedings Eurographics 92, pp. 65-69.

[10] S.M. Platt, N.I. Badler: “Animating Facial Expressions”,
Computer Graphics, 1981, 15(3):245-252.

[11] K. Waters: “A muscle model for animating three-dimensional
facial expressions”, Computer Graphics (SIGGRAPH’87),
1987, 21(4):17-24.

[12] Y. Lee, K. Waters, D. Terzopoulos: “Realistic modeling for facial
animation”, in Computer Graphics (SIGGRAPH ’95
Proceedings), 55-62

[13] B. Guenter, C. Grimm, D. Wood: “Making Faces”, in Computer
Graphics (SIGGRAPH ’98 Proceedings), 55-66

[14] V. Blanz, T. Vetter: “A morphable model for the synthesis of 3D
faces” , in Computer Graphics (SIGGRAPH ’99 Proceedings),
75-84

[15] Embodied Conversational Agents, edited by Cassell J., Sullivan
J., Prevost S., Churchill E., The MIT Press Cambridge,
Massachusetts London, England, 2000.

[16] "An XML Based Interactive Multimedia News System", Igor S.
Pandzic, 10th International Conference on Human - Computer
Interaction HCI International 2003, Crete, Greece

[17] M. Brand, “Voice Puppetry”, Proceedings of SIGGRAPH’99,
1999.

[18] Shout 3D, Eyemat ic In te r faces Incorpora ted ,
http://www.shout3d.com/

[19] Igor S. Pandzic: “Facial Animation Framework for the Web and
Mobile Platforms”, Proc. Web3D Symposium 2002, Tempe,
A Z , U S A , d e m o n s t r a t i o n a t
www.tel.fer.hr/users/ipandzic/MpegWeb/index.html

[20] Artif ic ial Linguist ic Internet Computer Enti ty ,
http://www.alicebot.org

[21] Weizenbaum, J., "ELIZA - A computer program for the study of
natural language communication between man and machine",
Communications of the ACM 9(1): 36-45, 1966.

[22] The InterFace project, IST-1999-10036, www.ist-interface.org

[23] S. P. Lee, J. B. Badler, N. I. Badler, “Eyes Alive”, Proceedings of
the 29th annual conference on Computer graphics and
interactive techniques 2002 , San Antonio, Texas, USA, ACM
Press New York, NY, USA, Pages: 637 – 644

[24] Eric Cosatto, Hans Peter Graf: Photo-Realistic Talking-Heads
from Image Samples. IEEE Transactions on Multimedia 2 (3):
152-163 (2000)

[25] J. Ostermann, "PlayMail: The Talking Email", in “MPEG-4
Facial Animation - The standard, implementations and
applications”, I.S. Pandzic, R. Forchheimer (eds.), John Wiley
& Sons, 2002.

[26] J. Ahlberg and R. Forchheimer, “Face Tracking for Model-based
Coding and Face Animation,” Int Journal of Imaging Systems
and Technology, 13(1):8-22, 2003.

[27] M. La Cascia, S. Sclaroff, and V. Athitsos, “Fast, reliable head
tracking under varying illumination: An approach based on
registration of texture-mapped 3D models,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22(4):322-336,
2000.

[28] C. S. Wiles, A. Maki, and N. Matsuda, “Hyperpatches for 3D
Model Acquisition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23(12):1391-1403, 2001.

[29] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance
models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(6):681-685, 2001.

[30] V. Mäkinen, Front-end feature extraction with mel-scaled cepstral
coefficients, technical report, Laboratory of Computational
Engineering, Helsinki University of Technology, September
2000.

[31] http://www.inmarsoftware.com/diesel.htm

55

56

