Examination of the possibility to use OpenSceneGraph for real-time
graphics using Immersive Projection Technology

Linus Valtersson, M.Sc

Chalmers University of Technology
SE-412 96 Goteborg, Sweden
d98linva@dtek.chalmers.se

Abstract

This paper describes the examination of whether
OpenSceneGraph (OSG) [1] can be used to render real-time
graphics with Immersive Projection Technology (IPT). It starts
by describing the systems used for graphics today and motivates
why it is desirable to use OSG instead. After this, the
examination itself is described. The result from this examination
is that OSG can be used to render real-time graphics in a IPT-
environment, but the task is not trivial. OSG alone is not enough
to render graphics satisfactory, it requires an extra layer dealing
with all VR-features included in the environment. To solve this,
VR Juggler (VRJ) [2] was used on top of OSG. VR is not the
only option to use together with OSG, but it was the one that
proved to work most satisfactory. The combination of OSG and
VRIJ was used to implement an application displayed at the
International Science Festival in Gothenburg 2003.

1 Introduction

In the field of Virtual Reality (VR) many new and interesting
environments have been developed, this includes Head Mounted
Displays (HMD:s) and different IPT-environments, which are
the focus in this paper. An IPT-environment usually consists of
four to six walls displaying stereoscopic graphics and some kind
of tracking-device (FASTRAK, Flock-of-birds etc.) that keeps
track of the user’s and possible interaction devices’ positions in
space. An IPT-environment can be used for a number of
different purposes, it can display for instance buildings,
molecules and landscapes and it can also be used to create
different kinds of learning aids or even games. Whatever it is
used for, real-time graphics is essential.

Early applications mostly displayed a static scene like a building
or a molecule. The user could possibly rotate and translate this
scene but the scene itself stayed static. When the environment
was developed further the ability to create dynamic scenes arose.
For dynamic scenes some kind of programming is required to
update the scene according to user-interaction.

The IPT-environment that will be the focus in this paper is
located at Chalmers University of Technology in Sweden. At
present there are two different systems that are used to create
applications for this environment and these are DIVISION
Mockup [3] and CAVELIb [4].

DIVISION Mockup is a graphical user-interface used to create
interactive scenes. The scenes are usually created by using some
kind of modeling-tool, for instance Alias, and the scenes are
later exported to DIVISION Mockup. In DIVISION Mockup the
finished scene is composed and it is also possible to add some
amount of user-interaction.

CAVELIb is an OpenGL-based programming-interface. When
using CAVELIb the scene is created by using OpenGL-
commands to draw the different parts of the scene. It is also
possible to update the scene according to user-interaction for
each frame.

These two systems differ in a number of ways. With DIVISION
Mockup most of the work is modeling and than some
programming might be required, whereas with CAVELIib the
entire work is programming. In DIVISION Mockup the ability
to add dynamics is very limited, but in CAVELIb on the other
hand this is not a problem. The problem with CAVELIb is that it
uses OpenGL and standard C, which often requires an extreme
amount of code (and time) in order to create a scene. As
mentioned earlier, the ability to create dynamic scenes is very
desirable but the only means to do so at present is to use
CAVELIb, which often takes to much time to use. To solve this
problem a new system is needed. With the new system it should
be possible to create interactive dynamic scenes without having
to write an extreme amount of code.

OpenSceneGraph (OSG) is a newly developed graphics library
that encapsulates OpenGL. As the name suggests it uses scene-
graph-technique [5], which is much more smooth to use than
pure OpenGL. OSG is an open-source project still under
development but it already has a lot of users both in research and
industry. Due to its popularity it seems like a good choice for
application development, that is, if it can be used with IPT. The
rest of this paper describes the examination of if OSG can be
used in an IPT-environment.



2 Technical description of the environment

As mentioned in the introduction, the IPT-environment, which is
the focus in this paper, is located at Chalmers University of
Technology in Sweden. The IPT-environment at hand is a 3x3x3
meter TAN VR Cube with stereo projection on five sides (the
four walls and the floor). The VR Cube is run by a Silicon
Graphics Onyx2 Infinite Reality with 22 MIPS R10000
processors at 250 MHz, 2GB RAM and three graphics pipes.
Users of the Cube wear Crystal Eyes shutter glasses, which are
synchronized with the graphics. A Polhemus FASTRAK system
tracks the position of the user’s head and the position of the
interaction device used. The interaction device depends on the
system. With DIVISION Mockup a DIVISION 3D-mouse is
used and with CAVELIib a wand is used. The wand consists of
three buttons and a joystick. It is also equipped with a sensor, in
order for the tracking system to be able to locate it in space.
There are also a Polhemus Stylus and 3BALL available.

The main environment for the examination was the IPT-
environment described above. But for some early tests a
ordinary desktop computer was used. This was a Silicon
Graphics 02 with one MIPS R5000 processor at 200MHz and
256MB RAM.

The version of OSG used was OSG 0.93, which was the most
recent release at hand. It should be noted that some facts about
OSG mentioned in this paper are not true for newer releases.

3 The examination

OSG was first installed on a regular desktop computer. It was
shortly discovered that to use OSG on a desktop computer was
not very difficult. The distribution comes with a number of
example programs, which are all well documented. To use OSG
in the VR Cube on the other hand proved to be much more
difficult. The OSG has classes that can be used to create a
simple window to display a scene or the scene can be viewed in
full screen. The stereo-graphics is not a problem since OSG has
support for the stereo-technique used - quad-buffered stereo. The
five projection walls on the other hand were a big problem. It
was soon evident that OSG alone was not sufficient; some kind
of extra layer was needed to handle the complex environment.

There exist a number of different libraries that can be used to
deal with multi display systems and/or different interaction and
tracking devices. Most of these have support for a number of
different graphic libraries, such as OpenGL and OSG. Since
OSG is very new there are not many libraries that support it, but
two of them where found and these where OpenProducer [6] and
VR Juggler (VRJ).

OpenProducer is also an open-source project and like OSG it is
still under development. It was not very surprising that
OpenProducer would have support for OSG, because it is
developed by Don Burns, who has also developed OSG together
with Robert Osfield. OpenProducer can handle multiple displays
but one disadvantage is that it has no support for the tracking
system used.

VR Juggler is also an open-source project, but unlike OSG and
OpenProducer it has been around for a while and already exists
in a 1.0 version and a 2.0 is on the way. VR Juggler is designed

to be able to handle graphics and interaction in a number of
different VR-environments. It can handle both the hardware and
tracking system used.

The first combination to be tested was VRIJ together with OSG
because VRJ seemed a little more promising than
OpenProducer. The idea behind VRIJ is that it should be possible
to run the same application in different environments without
having to re-compile the application. This is possible due to the
use of configuration-files. When an application is started the
VRIJ kernel gets the current configuration-file(s) and sets up VRJ
accordingly. The VRIJ distribution comes with a number of
sample configuration-files. These include one file to run an
application in “simulator mode” on a regular desktop computer
and one for a four-sided Cube. The first goal was to create a
simple program and get it running in simulator mode and then
try to get it running in the Cube. To create a simple program was
not very difficult; VRJ comes with a detailed step-by-step
programmer’s guide [7]. The first program just draw a cube in
the VR Cube by using OSG and to run this in simulator mode
worked just fine. To get the program up and running in the
Cube, on the other hand, was not as easy. The sample
configuration for a Cube that was supplied with the distribution
was for a four-sided Cube using two graphics pipes and a Flock-
of-birds tracking system. This differs quite dramatically from the
system at Chalmers that has five walls, three graphics pipes and
a Polhemus FASTRAK tracking system. A new configuration-
file had to be created.

In order to be able to create a new configuration-file a deep
investigation of the system was conducted. When the test-
program was run it turned out that something was wrong in the
configuration. The drawing did not work at all as expected and it
did not follow the main shutter glasses, which is totally
necessary in order to get a satisfying result.

Since the initial testing of VRJ was not exactly satisfactory,
some time was spent testing OpenProducer. OpenProducer has
been developed with a movie producer in mind. The idea is that
a scene is created, by using for instance OSG, and then the
number of cameras (viewports) desirable are set up (position,
direction etc.). Whatever is caught on “film” is seen in the
different viewports corresponding to the cameras. To test the
combination of OpenProducer and OSG, the same approach as
with VRJ was used. The first problem was known from the start,
that OpenProducer had no support for input-devices or tracking-
systems. Separate libraries would have to be created for this.
Another problem was that there appeared to be a bug in
OpenProducer regarding stereo-graphics, at least regarding
quad-buffered stereo, which is used in the VR Cube. Due to all
these drawbacks with OpenProducer, VRJ was given all the
attention.

The initial testing of VRJ was not at all satisfactory. After some
further tests it seemed like VRJ had problems with the tracking
system used, Polhemus FASTRAK. To solve this, an alternative
approach was used. When CAVELID is used, the values from the
tracking system are read from a tracking-daemon called trackd.
VRIJ has support to use this as well and the configuration-file
was changed accordingly. When this was tested the result was
much better than the first time, but it was not satisfactory. This
time, the drawing reacted when the user moved, but it was still
not possible to see what was being drawn. The coordinate
system appeared to the rotated and possibly translated.



After getting the drawing to react to user movements, it was time
to make sure that the drawing got right. Something was
obviously wrong with the coordinates, so the first step was to
print out the coordinates for different positions in the Cube and
compare these with the expected values. The expected value-
ranges for the x-, y- and z-coordinates are —5...5, 0...10 and —
5...5 respectively. Unfortunately, these were not the ranges that
were read. The width of the ranges appeared to be correct, that
is, all coordinates had ranges with a width of about 10, but the
ranges themselves where not the expected. The x-coordinate
seemed correct, but the y- and z-coordinates seemed to be
shifted by about 7.8 and 1.6 respectively. After a deeper
investigation of the configuration for the environment, these
values turned out to be the transmitter offset, which was set to (-
0.01,8.0,1.65).

The trackd daemon uses shared memory keys to store its data
and these keys have to be known in order for VRJ to be able to
find the correct data. These keys where easy to find in the old
configurations and when they had been entered in the
configuration for VRJ it was no problem to get the correct data.

When the data for the wand could be read correctly, the only
problem that remained was the translated coordinate system. In
the VRIJ configuration files it is possible to add offset values for
the different sensors, so it appeared as if the problem would be
solved easily. However, the VRJ kernel did not interpret the
values at all as expected and therefore the offsets were removed
and the problem remained. The solution was to let the
coordinates have the ranges they had and set the coordinates for
the walls of the Cube accordingly. In other words, instead of
adjusting the coordinate system after the Cube, the Cube was
adjusted to fit the coordinate system. When the coordinates for
the walls of the Cube had been set to fit the coordinate system
the drawing appeared to work satisfactory.

After a lot more tests and a thorough investigation of the VRJ
source-code the cause of most remaining problems where found.
The cause was a bug in the VRJ 1.0 source-code that causes the
matrix representing the sensor-data to be created in the wrong
way. VRJ creates the matrix by applying the rotation angles in
XYZ-order whereas it is supposed to be in ZXY -order to fit
Polhemus FASTRAK. After correcting this, a re-compile of VRJ
was attempted. But as it turned out, none of the machines
available could understand the makefiles supplied with the VRJ
distribution. Instead the solution became to create a new class
that handles all contact with the trackd daemon and use this
instead of the VRJ-classes. After this fix, everything appeared to
work satisfactory.

4 Result

The goal was to examine if OSG could be used to render real-
time graphics in an [IPT-environment. As stated in the last part of
the examination, a working configuration could be created in
which OSG is used to render graphics. The task was not trivial
however. Since OSG is “merely” a graphics-library and has no
support for multiple displays, it alone can not be used with IPT.
This is due to the fact that an [PT-environment uses multiple
displays and furthermore the environment has a tracking system
and several input-devises that OSG has no support for. The
solution became to use an extra layer on top of OSG that handles

the advanced features of the environment. This layer is at
present VRJ, which can handle all advanced VR-features
needed. Together they form a working platform, which has been
used to create several sample applications and a larger
application displayed at the International Science Festival in
Gothenburg 2003 in collaboration with Swedish Television
(SVT).

5 Future work

Even though a working platform has been configured, the
examination is not complete. There are still questions that need
to be answered. The current platform uses the wand for user-
interaction. But as mentioned in the technical description,
several other interaction devices exist. One question that needs
to be answered is if it is possible to use any of these other
devises.

When the basic examinations have been completed, it is time to
look into how the platform can be improved to simplify
application-development and fit the needs of the users of the
system. Most users are not programmers but are more used to
modeling. This implies that some kind of platform where the
programming is minimized might be desirable. On the other
hand, users who want to program their application from the
bottom up should of course have the possibility to do so. With
this in mind, a platform where the users can choose the level of
abstraction depending on their needs and knowledge could be a
good solution.

To develop applications using the current platform one needs to
gain knowledge about both OSG and VRJ even though VRJ is
mostly used just for getting tracking-information and to set the
drawing-routine. Having to gain knowledge about both of these
seems unnecessary even for the skilled programmer. To gain
knowledge about OSG should be enough. This can be
accomplished by developing a basic platform, which hides VRJ
from the user. A skilled programmer can then use this basic
platform to develop applications, while this platform can be
developed further to get a higher level of abstraction for the not
so advanced users. For the users who do not wish to program at
all this can be further developed to create a graphical-user-
interface similar to DIVISION Mockup.

Another approach is to perform further testing of the
OSG+OpenProducer combination when OpenProducer becomes
more stable. When the original testing was performed
OpenProducer was in early alpha stage but now it has evolved to
beta and the ambition is of course to be able to release a 1.0
version in a near future. It still has no support for tracking
devices, but the data for these can be obtained by using the class
that had to be written to deal with the bug in VRIJ, and the
displays can then be updated manually. This might improve
performance because since OSG 0.94 OSG and OpenProducer
are tightly integrated. The disadvantage is that the applications
will be system-dependent since the code that handles the readout
from trackd is system-dependent.

The same approach as for the OSG+VRJ combination could then
be used. That is, to develop a platform with increasing steps of
abstraction up to a GUI-interface.



So far the discussion has only been about graphics. But in
DIVISION Mockup it is possible to use sound in the
applications by using the Lake-system [8] available at Chalmers.
With the Lake-system it is possible to get 3D-sound which can
be "positioned" in space. To be able to use sound is a powerful
tool, which makes applications more "alive" and therefore it is
desirable to be able to use sound when using the new platform as
well. No investigation at all has been made in this area so this is
a big step to take.

Acknowledgements

This examination was carried out at CKK during the spring of
2003 and it would not have been possible for me to get this
useful experience if Sven Andersson and Josef Widestrom at
CKK had not believed in me.

Finally I would like to thank Josef Widestrom for his support
during this examination and valuable help in writing this paper.

References

[1] OSFIELD, R. Introduction to the OpenSceneGraph;
http://openscenegraph.sourceforge.net/introduction/index.html.
2003-09-14

[2] About the Juggler Suite of Tools.
http://www.vrjuggler.org/about.php; 2003-09-14

[3] Division MOCKUP. http://www.division.com. 2003-09-14

[4] CAVELID overview;
http://www.vrco.com/products/cavelib/cavelib.html. 2003-09-14

[51 BAR-ZEEV, A. Scenegraphs: Past, Present and Future.
http://www.realityprime.com/scenegraph-php. 2003-09-14

[6] Introducing OpenProducer.
http://www.andesengineering.com/Producer/index.html. 2003-09-14

[7] VR Juggler: The Programmer’s Guide.
http://www.vrjuggler.org/vrjuggler/docs.php. 2003-09-14

[8] Lake Technology Limited. http://www.lake.com.au. 2003-09-14



