
Splitting Methods for Dry Frictional

Contact Problems in Rigid

Multibody Systems: Preliminary

Performance Results

Claude Lacoursière ∗

VRlab/HPC2N and Computing Science
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Abstract

A splitting method for solving LCP based models of dry frictional
contact problems in rigid multibody systems based on box MLCP
solver is presented. Since such methods rely on fast and robust
box MLCP solvers, several methods are reviewed and their perfor-
mance is compared both on random problems and on simulation
data. We provide data illustrating the convergence rate of the split-
ting method which demonstrates that they present a viable alterna-
tive to currently available methods.
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1 Introduction

Rigid multibody dynamics with frictional contacts is a well estab-
lished topic in interactive graphics and in the engineering litera-
ture. There are several papers on the topics each year in the SIG-
GRAPH proceedings since the late 80s. The application domain in
the context of interactive 3D graphics covers operator training for
ground vehicles, robotics, gaming, and animation authoring tools,
especially for movies.

Several software packages are available on the market but few
can simulate rigid multibody systems with dry frictional contacts
satisfactorily, though many perform well on problems without dry
friction. The issues range from poor stability, lack of robustness
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in the case of degenerate or ill-posed problems, poor scalability,
to anomalous friction forces. Given that a consistent and solvable
mathematical model for dry frictional contacts was not published
until 1997[Anitescu and Potra 1997], this fact is not very surprising.

Alternative solution methods have been suggested for solving
dry frictional contact problems including spring and damper sys-
tems, pairwise impulse models[Mirtich and Canny 1995], and many
variants based on Linear or Nonlinear Complementarity Problems
(LCPs and NLCPs respectively). For the latter, we cite[Al-Fahed
et al. 1991][Pang and Trinkle 1996] [Stewart and Trinkle 1996][An-
itescu and Potra 1997][Anitescu et al. 1999]. Spring-damper mod-
els will not be discussed as they tend to be unstable. Pairwise im-
pulse based models amount to Gauss-Seidel iterative processes and
we will provide data on such methods below.

LCP models are split in acceleration based models [Al-Fahed
et al. 1991][Trinkle et al. 1997][Pang and Trinkle 1996][Pfeiffer
and Glocker 1996][Tzitzouris 2001], and velocity time stepping
models [Stewart 1997][Stewart and Trinkle 1996][Anitescu et al.
1999][Anitescu and Potra 1997]. The first type is not guaranteed
to be solvable except for very small friction coefficients[Pang and
Trinkle 1996]. There are discontinuities inherent in dry friction at
transitions from static to kinetic friction as explained in[Stewart and
Trinkle 1996]. These lead to impulses i.e., infinite instantaneous
accelerations, even when there is no collision. Therefore, a model
which requires the computation of accelerations is fundamentally
flawed, unless all impulses are detected and processed appropri-
ately. Integrating over the accelerations, it is possible to obtain
a solvable velocity time stepping model. This is the basis of the
present work.

There is no general solution method which is guaranteed to work
for any given LCP, except for total enumeration has complexity of
O(2n) for problems of size n. The most robust method is still that of
Lemke[Lemke 1965][Sargent 1978] [Júdice et al. 1992]. Only this
method can compute a solution of the solvable dry frictional contact
models[Stewart and Trinkle 1996][Anitescu and Potra 1997]. How-
ever, Lemke’s algorithm only solves these problems after reducing
the original mixed linear complementarity problem (MLCP) to an
LCP with Schur complements. This is expensive and cannot work
on degenerate or ill-conditioned problems. Additionally, Lemke’s
algorithm cannot reuse a previous solution as an advanced starting
point which leads to considerable inefficiency, especially near equi-
librium.

Computing dry frictional contact forces is hard because of the
coupling between the tangential (friction) and normal components.
In the Coulomb model for instance, a contact point is in static fric-
tion, with zero tangential contact velocity, until the magnitude of
the friction force reaches the product of the friction coefficient with
the normal force. Because of this coupling, the problem is no
longer a quadratic program (QP) but instead, it is an LCP which
does not correspond to a minimization or saddle point problem.
However, given the normal contact forces at a given point, find-
ing the tangential friction forces corresponds to solving a QP and
alternately, given the tangential friction forces at a contact point,
finding the normal contact forces corresponds to solving another
QP. This has been used [Šimunović and Saigal 1994][Dostál et al.
2002] to construct operator splitting methods which iteratively esti-
mate the two components. Since box QP solvers can use advanced
starting points, it is possible to quickly solve a sequence of QPs
which, hopefully, converges to a correct solution of the more ac-
curate LCP model. Operator splitting has already been used for
simulating rigid multibody systems; a two pass method was used
in[Milenkovic and Schmidl 2001] for instance. Splitting methods
are also used in commercial software libraries though the evidence
for that is circumstantial. The convergence rate of operator split-
ting doesn’t seem to have been investigated and as we show below,
two pass methods do not seem to yield very accurate results and is



sensitive on the starting point.
A performance and robustness review of existing box QP solvers

has not been published yet, especially with regards to degenerate
contacts. In the rigid body case, a single box resting on a plane
can lead to a degenerate problem and therefore, a solver which is
robust against degeneracy and ill-posed problems is badly needed.
The current paper offers such a review.

In what follows, we will concentrate on numerical experiments
which demonstrate that good convergence can be obtained in prac-
tice, leaving the proof for future work. We will review the perfor-
mance of solvers for LCPs and QPs with box constraints on both
random problems and real data sets extracted from simulations.

2 Linear Complementarity

The LCP is defined for a square, n× n, matrix H and an n dimen-
sional vector q as the problem of finding n dimensional solution
vectors z and w such that:

0≤ z⊥ Hz+q = w≥ 0, (1)

where the perpendicularity is understood component wise i.e.,
zi,wi ≥ 0,ziwi = 0. The vector w is sometimes called the “slack”
variable. Extensive coverage of this is found in [Murty 1988]
and[Cottle et al. 1992].

A simple extension of the LCP is to impose lower and up-
per bounds on the solution vector z, l and u, respectively, which
may be finite or infinite. The residual vector, w, is now split
into positive and negative components thus: w = w+ −w− with
w+,w− ≥ 0,w+w− = 0. This leads to one form of the Mixed LCP
which we called the box LCP. The definition is as follows:

Hz+q = w+−w−,

0≤ z− l ⊥ w+ ≥ 0, 0≤ u− z⊥ w− ≥ 0.
(2)

A review of many algorithms for solving LCPs is found in
[Júdice 1994].

3 Multibody Dynamics

We consider a multibody system with generalized coordinates q ∈
R

n, generalized velocities v = q̇, and mass matrix M(q) ∈ R
n2

.
The generalized forces acting on the system are F ∈ R

n (including
the non-inertial forces). The system is subject to holonomic con-
straints, Φ(q, t) = 0, and inequality constraints, Ξ(q, t) ≥ 0. The
Jacobians for these are written as G and N, respectively, and the
Lagrange multiplier associated with them are written λ and ν , resp.
Velocity constraints are not covered to simplify the notation. De-
tailed description of constrained dynamical systems are found in
[Goldstein 1980][Layton 1998]. A more detailed description of the
notation used here for multibody systems is found in [Anitescu and
Potra 1997]. We are assuming descriptor form here but mixed rep-
resentations are possible[Trinkle et al. 1997].

Using this notation, we have the following equations of motion
for a multibody system with frictionless contacts:

Mv̇−Gtλ −Ntν−F = 0
Φ(q, t) = 0
0≤ ν ⊥ Ξ(q, t)≥ 0.

(3)

This system in Eq. (3) is a form of differential algebraic equation
(DAE) (see ref. [Hairer and Wanner 1996] for instance). However,
due to the inequality constraints, this is not a standard problem.
In[Stewart and Trinkle 1996], it is shown that these systems are dif-
ferential inclusions. We shall concentrate on the solution methods

for the static problem, common to all numerical integration proce-
dures.

Numerical integration of Eq. 3 requires solving the following
linear system:
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 =
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0
δ



 , 0≤ ν ⊥ δ ≥ 0. (4)

The vectors a,b,c depend on the discretization details. The system
of equations in Eq. 4 form a mixed linear complementarity model
(MLCP).

4 Dry Frictional Contact Models

For a pair of bodies with indicies i1, i2 which are in close prox-
imity, it is assumed there is at least one signed distance func-
tions: ξ ( j)(q(i1),q(i2)) such that ξ ( j) > 0 if the bodies are separated,
ξ ( j) = 0 if they are touching and ξ ( j) < 0 if they are penetrating.
This function ξ ( j) represents a potential point of contact. In prac-
tice, several of these signed distance functions are used for a given
pair of rigid bodies. To compute the normal force required to pre-
vent interpenetration, we impose the kinematic constraint ξ ( j) ≥ 0
with a Lagrange multiplier ν ( j) ≥ 0. Contacts are non adhesive and
therefore, ν ( j) ≥ 0 and is complementary to ξ ( j) ≥ 0.

The gradient of ξ ( j) defines a vector n̄( j) normal to the tan-
gent contact plane. This is spanned by a set of basis vectors
{d( j,1),d( j,2), . . . ,d( j,nd)}. The simplest case, we use just two or-
thogonal vectors but some models require the use of a large number
of non-orthogonal vectors to reduce anisotropy[Anitescu and Po-
tra 1997]. Using these, we can compute the projection D( j) such
that the relative tangential velocity in the contact plane is given by
v̄( j) = D( j)v and the tangential contact force is given by D( j)T β ( j).

Static friction corresponds to zero contact velocity i.e., D( j)v =
0. For kinematic friction, the magnitude of the tangential contact
force is given by the product of the kinetic friction coefficient and
the magnitude of the normal force at the contact point, ‖β ( j)‖ =

µ( j)
k ν( j), and the direction is anti-parallel to the tangential contact

velocity. We only cover the case of isotropic friction here and we
use only one friction coefficient for both cases. Two simplifications
are possible.

First, one can linearize the norm operator. A vector in the tan-
gent plane can be written as: x( j) = ∑k αkd( j,k) with αk ≥ 0, with
only few non-zero αk. We introduce E(i) = (1,1, . . . ,1)T ) such

that ‖x( j)‖ ' E( j)T
x( j) = ∑k αk. A linearized approximation of the

Coulomb friction model consists of the following set of comple-
mentarity conditions:

0≤ D( j)v+E( j)σ ( j) ⊥ β ( j) ≥ 0

0≤ µ( j)ν( j)−E( j)T β ( j) ⊥ σ ( j) ≥ 0.
(5)

The second equation tells us that as long as the magnitude of
the friction force |β ( j)| is less than the product of the friction co-
efficient and the normal force, the sliding velocity σ ( j) vanishes
and the first equation imposes that constraint as D( j)v = 0. When
the magnitude of the tangential force reaches the maximum, we get
a non-zero sliding velocity and the first block of complementarity
conditions picks a direction for the tangential force which is nearly
anti-parallel to the sliding.

This model[Stewart and Trinkle 1996][Anitescu and Potra



1997], leads to the following MLCP:
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(6)

where a,b,c,d,e depend on the discretization of choice, the
matrix U is the agglomeration of the friction coefficients,
U = diag(µ(1),µ(2), . . .µ(nc)) for nc contact points, and E
is the agglomeration of the linearized norm operator: E =

diag(E(1),E(2), . . .E(nc)).
This MLCP can be solved using Lemke’s method but in order

to do this, we need to take two Schur complements. Details for
this are found in [Anitescu et al. 1999]. Computing this matrix is
far from trivial in terms of numerical work. However, though the
Lemke algorithm can process the reduced problem, no extension is
guaranteed to solve the original MLCP of Eq. (6).

The second option is to impose a fixed bound on the tangen-
tial forces based on an estimate of the normal force. Using two
perpendicular directions, d( j,1),d( j,2), we impose the box bounds
−µ( j)ν̄( j) ≤ β ( j,i) ≤ µ( j)ν̄( j) for i = 1,2, where ν̄( j) is an approx-
imation of the expected normal force for the given contact point.
The constraint equations expressing this model are as follows:

Dv− v̄+ + v̄− = 0,

0≤ β −β ⊥ v̄+ ≥ 0, 0≤ β −β ⊥ v̄− ≥ 0
(7)

where β ,β are the lower and upper bounds of β respectively, and
v̄+ and v̄− are the positive and negative components of the tangen-
tial contact velocity respectively. This model is dissipative and it
has most of the properties of the Coulomb model. However, it ex-
hibits anisotropy and has the wrong transition point if the estimate
is too far. This can be turned into an iterative scheme though, which
can converge to the correct answer. This is a form of operator split-
ting which requires fast solution of box constrained MCLPs and we
provide performance data on this below.

The box friction model leads to the MLCP:

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0≤ ν ⊥ ρ̃ ≥ 0, 0≤ β −β ⊥ δ̃ ≥ 0, 0≤ β −β ⊥ δ̃ ≤ 0.

(8)

If the estimates for β and β are accurate and if the directions
d( j,k) are well-chosen, a solution of the box MLCP will also solve
the MLCP of Eq. (6).

5 Solvers for Complementarity Problems

There are three types of LCP solvers: pivoting methods, Newton
methods, and iterative methods. An extensive review of these algo-
rithms is available in[Júdice 1994]. Except for special cases, LCPs
are NP hard problems. A statistical study of solver performance is
therefore appropriate.

The pivoting methods include Lemke’s almost complementary
pivot method (see [Murty 1988], ch. 2), Cottle-Datzig’s principal
pivot method[Cottle 1968], Keller’s principal pivot method[Keller
1973], and Murty’s principal pivot method[Murty 1974] among
many others. The amount of work done per iteration amounts to

a Gauss-Jordan pivot operation[Golub and Van Loan 1996] which
is of O(n2) where n is the size of the problem.

Lemke’s method solves the largest class of problems namely,
those defined with copositive plus matrices i.e., matrices H for
which y ∈ R

n,y ≥ 0 ← Hy ≥ 0 and such that for y ≥∈ R
n, if

yT My = 0 then, (H + HT )y = 0. This class includes positive
semidefinite matrices. Keller’s and Cottle-Dantzig’s principal pivot
methods are guaranteed to work on P0 matrices which are those
for which all principal minors are non-negative. This class also in-
cludes positive semi-definite matrices. Murty’s method only works
on P matrices, those for which all principal minors are positive
which includes positive definite matrices. With the exception of
Murty’s principal pivot methods, none of the pivot methods can be
started at an advanced point. As we show below, both Lemke’s and
Keller’s method exhibit good performance, performing roughly n
pivot operations on average, at least on the class of problems we
tested. Murty’s and Cottle-Dantzig’s methods seem to perform er-
ratically, executing many times more than n pivot operations on
problems of size n. All these methods can be extended to cover
MLCP with box constraints.

Newton’s method can be applied to MLCPs[Kelley 1995] and in
particular, we have used[Zhang and Gao 2003][Li and Fukushima
2000]. A block pivot method[Kostreva 1978][Júdice and Pires
1994] can be shown to be equivalent to a Newton method without
smoothing and without line search. This has been used extensively.
The methods with smoothing and line search are more recent and
haven’t been used extensively yet but are presumed to be more ro-
bust but are more complicated to tune with roughly a dozen free pa-
rameters. Newton methods require solving a linear system of size
n at each step and therefore, each iteration has approximate cost
O(n3). All Newton-type methods can start from an advanced point
i.e., a point which is hoped to be near the solution. All Newton
methods can solve P0 problems but work better on P problems.

For iterative methods, the matrix H is decomposed as H = D +
L +U where D is a block diagonal matrix, L is a strictly lower
triangular matrix and U is a strictly upper triangular matrix. We
then solve LCPs corresponding to one block of equations, keeping
the other ones fixed:

0≤ D j jz
(k+1)
j +q j +L j j′z

(k+1)
j′ +U j j′z

(k)
j′ ⊥ z(k+1)

j ≥ 0. (9)

Here, j is the set of indicies corresponding to a block and j′ is the
set of all other indicies. This is a block Gauss-Seidel scheme.

The Gauss-Seidel method is very attractive for its simplicity.
However, the convergence rate is ρm where ρ is the condition num-
ber of the matrix D−1(L+U). Though ρ < 1 when H positive def-
inite, it is often very near 1. When working on random problems,
condition numbers exceeding 1E7 made the method unusably slow.
On simulation data extracted from a piling problem, the method
stagnated for thousands of iterations.

All pairwise methods such as[Mirtich and Canny 1995] and the
many variants thereof e.g., [Guendelman et al. 2003], are essen-
tially Gauss Seidel processes and are expected to suffer from low
accuracy, especially when they are limited to one or two sweeps
through the constraints.

6 Implementation Details

The principal pivot methods of Keller and Lemke, as well as the
smoothed Newton method were implemented in Octave. The other
methods were implemented in C/C++, linking to BLAS, LAPACK,
and GSL, the GNU Scientific Library. Wrappers where then written
in C++ to link these in Octave.

The framework used for simulating rigid multibody sys-
tems was the Vortex library from CMLabs Simulations (see
http://www.cm-labs.com).
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Figure 1: Histogram data for pivot methods on box LCP. Iteration
count is in units of the problem size.

We did not perform timing analysis for this report but concen-
trated on overall iteration count. This provides worse case analysis
to select a viable method which will eventually be optimized.

7 Experimental Results

We tested box LCP solvers on a set of random problems generated
using the method described in[Alefeld et al. 1999]. All matrices
have full rank in these tests. For the few methods which can be
started at an advanced point near the solution, we concentrated on
the worse case scenario, starting with a z vector at the lower bounds.

Data is presented using histogram because no LCP solver is guar-
anteed to process a given problem in less than 2n operations. His-
tograms give an idea of the expected operation count for a given
family of problems. Sharp peaks indicate that the given solver is
nearly deterministic in terms of operation count. Broad distribu-
tion indicate that a given solver can take wildly different amounts
of computation time to process different problems. These graphs
represent the frequency of problems solved against iteration count.
For pivot method, we used relative iteration counts, normalized to
problem size. For Newton methods, the iteration counts are nearly
independent of problem size and we use absolute iteration counts.

Data for random box LCPs of size 100 is shown in Fig. 1. We
found sharp peaks for both Lemke’s and Keller’s method near n
pivot steps. The Cottle-Dantzig method shows a broad peak near 2n
pivot steps and Murty’s method is slightly worse. The sharp peaks
remain for Lemke’s and Keller’s method for larger systems but the
distribution for Murty’s and the Cottle Dantzig methods stretch out
further to higher iteration counts and become much broader as well.
This suggests that Lemke’s and Keller’s method are near determin-
istic in performance. For bigger problems, Murty’s and Cottle-
Dantzig’s methods are not usable. Murty’s method can be started
at an advanced point near the solution in which case it might offer
better performance but the worse case scenario is not promising.

For Newton-type methods, we present two solvers: a block
principal pivot method [Kostreva 1978] and a globally convergent
smoothed Newton method[Zhang and Gao 2003]. For these the it-
eration count is expected to be independent of problem size and
the distribution should be sharp. Results for box LCPs of size 100
are show in Fig. 2. The block pivot distribution is slightly skewed
towards higher iteration count because it can actually cycle. Our
implementation includes cycle detection and restart as described
in[Júdice and Pires 1994].

Next we turn to the iterative block Gauss Seidel solver. On ran-
dom problems, this behaved just as per the theory so we omit the
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results. Essentially, for condition numbers greater than 1E7, this is
not usable. Scaling both the rows and the columns did not improve
the results much. Surprisingly, when this is used to simulate stacks
of rigid bodies, the anomalies are not immediately apparent despite
large residual norms. This is appealing since one can quit early af-
ter a fixed number of iteration. Nevertheless, the convergence rate
is too low for this to be a good alternative and the method often
stagnates as is seen in Fig 3.

We used the Vortex Toolkit from CMLabs and modified the en-
gine to use the Keller method. Using both box friction and scaled
box friction model, we simulated stacking problems with 40 iden-
tical cylindrical logs falling on each other. This leads to degenerate
systems. The prototype solvers were then tested on data extracted
from the simulations. A still frame from the simulation is shown in
Fig. 4. Results a are shown below in Fig. 5 for pivot methods and
Fig. 6 for Newton methods.

Finally, we tested the convergence of the operator splitting
scheme. First, for the case of a box sliding down an inclined plane,
we found that a two pass scheme starting with zero friction yields
the correct Coulomb relation. However, a two pass scheme starting
with infinite friction doesn’t behave correctly: it needs about 5 iter-
ations to converge to the correct answer. This demonstrates that in
general, a multi-pass method is necessary. Results are summarized
in Fig. 7.

On a more complicated problem with a stack of 40 cylinders, we



Figure 4: A stack of 40 indentical cylindrical logs falling under
gravity.
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found the splitting scheme could converge to a fixed point within
less than 10 iterations as shown on Fig. 8, but not in all cases. The
convergence rate of the splitting scheme is linear which is not the
best news. Also, there appears to be stagnation after an error of
10E-8 is reached. This should be investigated further.

8 Conclusion and Future Work

We have shown that an operator splitting method based on box
MLCP solvers is a viable alternative for solving dry frictional con-
tact problems in rigid multibody systems. For this to work, we need
a fast and robust solver for box MLCPs. Some classical pivot meth-
ods are robust and relatively efficient but not appropriate to solve
really large systems as they cannot use advanced starting points or
iterative techniques. Newton methods appear to be robust but more
work is required to make them efficient. In particular, more research
is needed to speed up the computation of the search direction. The
performance results also indicate that popular solvers such as the
Cottle-Dantzig principal pivot method and the block Gauss Seidel
iterative method adapted for solving MLCP are far from optimal
choices when it comes to efficiency or accuracy.

The relevance to interactive graphics is that a robust method



which is guaranteed to work with a more or less guaranteed bound
on the amount of work to update a system with a given number of
bodies and constraints is essential for the context of real-time inter-
active applications. We have identified solvers for MLCP with box
constraints which meet these requirements though at this time, the
expected complexity is still too high at O(n3), where n is the total
number of constraints.

More work is also needed to improve the convergence rate of the
splitting method. It might be possible to include extra equations in
a smoothed Newton scheme to make the convergence rate quadratic
instead of linear as is reported here. Box friction models are noto-
riously anisotropic, a problem which was not presented above but
which we intend to address as well.
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