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Abstract 
Work in dynamic image based rendering has been presented by Kanade et al. [4] and Matusik et al. [5] 
previously. We present an alternative implementation that allows us to have a very inexpensive process of 
creating dynamic image-based renderings of digitally recorded photo realistic, real-life objects. Together 
with computer vision algorithms, the image-based objects are visualized using the Relief Texture 
Mapping algorithm presented by Oliveira et al [6]. As the relief engine requires depth information for all 
Texels representing the recorded object in an arbitrary view, a recording solution making depth extraction 
possible is required. Our eyes use binocular vision to produce disparities in depth, which also is the most 
effortless technique of producing stereovision. By using two digital video cameras, the dynamic object is 
recorded in stereo in different views to cover its whole volume. As the depth information from all views 
are generated, the different views from the image-based object are textured on a pre-defined bounding 
box and relief textured into a three dimensional representation by applying the known depth disparities. 

1 System Prototype 
The first step in the process is to record a dynamic object in stereo, 
which gives us the photo textures for the image-based object and the 
possibility to derive depth information from the stereo image-pairs. 
To be able to use the recorded video as a texture when rendering, it is 
important that one camera (i.e. the left) is installed parallel to the 
normal of the sides of the bounding box surrounding the object, and 
the other (i.e. the right) next to, in a circular path so that both 
cameras have the same radius to the object. As we are interested in 
the recorded object only, the image background should be as simple 
as possible. By using a blue or green screen, the object can easily be 
extracted later on. A blue screen can easily be installed by using 
cheap blue matte fabric on the walls. Depending on the amount of 
cameras available, the dynamic object is recorded in stereo in up to 
five views (front, back, left, right and top). In this project, only two 
cameras were used, giving us only one view when filming the 
dynamic object. As the recording is finished, the video streams are 
sent via firewire to a PC, where the resolution is rescaled to 256x256 
pixels, the background is removed and the depth maps are calculated, 
enhanced, cropped and sent to the relief rendering engine. (Pipeline 
in figure 1). 

2   Depth approximation 
When the stereo video have been recorded and streamed to the computer client, our algorithms start 
processing the data to create useful video frames and information about the scene. As the objects are 
extracted from the original video, the process of estimating the depth of the scene is initiated. When the 
approximated depth map for a certain frame is generated, it is used together with the object image to 
render unique views, using the relief-rendering engine. This session starts with a brief overview of the 
depth algorithm, followed by complete descriptions about all the steps from using original video streams 
to sending a finalized depth map and video frame to the rendering process of virtually viewing the object 
from an arbitrary view.  

                                                           
1 nikba@itn.liu.se 
2 claja622@student.liu.se 
3 marol@itn.liu.se

Real Scene + BlueScreen
(Sony Digital Video Cameras)

Recorded stereo video
(DV-PAL 720x576)

Relief Texturing
(OpenGL)

Virtual Camera Video stream with 
depth maps

Bounding Box
(1-6 polygons)

Relief Textured 
Bounding box

Unique virtual 
viewpoints

Recorded stereo video
(DV-PAL 720x576)

Removing background, 
creating silhouettes

(256x256)

Correlation-Based
Stereo Depth Maps

(256x256)

Error removal, depth 
map smoothing

Figure 1: Prototype overview. A
schematic view over the different 
stages required in the process of 
rendering new views of an image-
based object. 
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2.1 Algorithm overview 
A summary of the algorithm pipeline is shown in figure 2. 
From the N stereo video cameras, we have 2N video streams. 
From the left camera (which sees the scene straight from the 
front), the object-only video frames and silhouette will be 
created. As the scene is recorded with a blue screen 
background, both the silhouette and the object extraction are 
created rapidly. Simultaneously, both the left and the right 
video streams are segmented into frames and sent into our 
filter-based depth algorithm. At this stage, the frames can be 
downsized for optimization purpose, which will result in faster 
depth map approximations with lower quality. For each frame, 
each pixel from the left image is analyzed and compared with 
a certain area of the right image to find the pixel 
correspondence. With this known, the depth could be 
estimated for each frame. Since this mathematical method 
outputs a relatively distorted image, it needs to be retouched to 
fit the relief engine better. First, the depth map is sent to an 
algorithm for detecting edges, where an edge could be thought 
of as noise, distorting the depth map, and removed by pasting the intensity value of neighboring pixels. 
With the errors removed, the depth approximation of the image-based object will contain less noise and 
unnecessary holes, but disparities between contiguous object regions might be rendered with too sharp 
intensity variances, which will exaggerate the displacement of some object parts when applying the relief 
mapping. To solve this, the depth map is smoothened and finally, the silhouette is added to remove 
approximated background depth elements. 

2.1.1 Filter-based stereo correspondence 
The method implemented in our system prototype uses filter-based stereo correspondence developed by 
Jones and Malik [2], a technique using a set of linear filters tuned in different rotations and scales to 
enhance the features of the input image-pair for better correlation opportunities. A benefit of using spatial 
filters is that they preserve the information between the edges inside an image. The bank of filters is 
convolved with the left and the right image to create a response vector at a given point that characterizes 
the local structure of the image patch. Using this information, the correspondence problem can be solved 
by searching for pixels in the other image where the response vector is maximally similar. The reason for 
using a set of linear filters at various orientations is to obtain rich and highly specific image features 
suitable for stereo matching, with fewer chances of running into false matches. The set of filters Fi (fig. 3) 
used to create the depth map consists of rotated copies of filters generated by 
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The matching process was performed using different filter sizes to find the optimized filter settings, 
resulting in an 11x11-sized matrix with a standard deviation value s  of 2. The number of filters used 
depends on the required output quality. Using all filters would result in a high detailed depth 
approximation, but the processing time would be immense. Testing different filters to optimize speed and 
output quality, the resulting filters consisted of nine linear filters at equal scale, with some of them 
rotated, as shown below. 
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Figure 2.
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The disadvantage of using one scaling level only is the loss of accuracy when matching pixels near object 
boundaries or at occluded regions. But again, using more scales, the rendering time will increase 
proportionally. To search for pixel correspondence, an iterative process is created, scanning the left image 
horizontally, pixel by pixel, left to right, and seeks for similar intensity values inside a defined region 
surrounding the current pixel location. For each row, the set of linear filters are convolved with a region 
of the right image determined by its width and the height of the filter size, to create a response vector that 
characterizes the features of this row. At this row, a new response vector for each pixel is created by 
convolving the filter bank with a filter-sized region from the left image. How the convolved response 
vectors for a whole image would look like is illustrated in figure 4. (Note that the response vectors are 
only representing a small region of the image for each iteration of the correspondence process). 
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The convolving returns only those parts of the convolution that are computed without the zero-padded 
edges, which minimizes the response vectors and optimizes the whole process of finding the 
correspondence. As soon as the images are convolved with the filters, the matching process for finding 
the correlation is initiated. To restrict the searching area, a one-dimensional region needs to be 
determined. By using a small region, the corresponding pixels may not be found, as the equivalent pixel 
probably is located outside this region. On the other hand, if the region is too large, a pixel not related to 
that area might be thought of as correct. When the region is established, this is used to crop the response 
vector vi,right created from the right image. When the response vectors are defined at a given point, they 
need to be compared in some way to be able to extract some information about how the pixels are related. 
By calculating the length of their vector difference e, which will equal zero if the response vectors are 
identical, this can be used to solve the correspondence problem. This is done by taking the sum of the 
squared differences (SSD) of the response vectors, 
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where i is the amount of filters used and the pixel position (defined as k)
containing the value closest to zero is saved. When the correspondence 
has been established, the disparity has to be defined to be able to create a 
depth map. For each pixel in the left image, we know the position of the 
matching pixel in the right image. To create a connection between this 
data, the depth value ),( jid  for each pixel could be estimated by 

where k is the horizontal position of the corresponding pixel and i is the current pixel position. The depth 
map (fig. 5) is approximated with intensity levels depending on the size of the constant defining the size 

Figure 3: Spatial filter bank. 
Image plots of the nine filters 
generated by copies of rotations of 
Gaussians.  

Figure 4: Response vectors. An 
illustration of how the response 
vectors will look like after being 
convolved with different filters. In 
reality, a response vector never 
represents a whole image. 
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Figure 5.
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of the matching region and if a corresponding pixel is found to the left of current pixel i, the intensity is 
set to a value pointed to white, and vice versa, depending on the rotation of the image-pair.  

2.1.2 Locating errors and noise 
The primary depth map image generated by the filter-based stereo algorithm is a general approximation of 
the depth information regarding the objects in the video frames. As this algorithm has no knowledge in 
form of estimating the structure of object connectivity or how the scene is designed, unpredicted outputs 
might appear. They can be found by convolving the image with an edge detection filter [7]. The operator 
best suited for our needs turned out to be the Robinson filters h1 and h3.

With the vertical and the horizontal Robinson filters defined, they are convolved with the depth map to 
find obvious edges in it, using the convolution formula for two dimensions. We now have two temporary 
depth map images, with the edges defined vertically and horizontally, shown in figure 6. From this, the 
edge magnitude of each pixel could be derived as 
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The result is shown in figure 7a and gives a better analysis of how the errors are structured. To be able to 
use this information cleverly, the pixels convolved and defined as positions of eventual errors need to be 
saved. Also, these pixels need to be easily accessed. By using a threshold value, we can decide which of 
the convolved ‘edge’-pixels that will belong to the error pixels in the original depth map, shown in figure 
7b. With the positions of the erroneous pixels known, they are replaced by neighboring pixel values, 
which creates a smoother depth map, although not mathematically perfect, since it is only assumed that 
these pixels have the same properties as the invalid and replaced ones. On the other hand, the noiseless 
depth maps, shown in figure 8, will generate tremendously enhanced renderings when applied by the 
relief engine. 
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8



2.1.3 Smoothing the depth map 
The output from the edge detection process is a 
more or less error free depth map, regarding the 
hole filling and the depth intensity interpretation. 
On the subject of intensity, it can fluctuate 
significantly over connected and contiguous 
surfaces over the object. As some intensity 
values diverges in areas were they actually 
would be similar, the solution would be to decrease the higher values and increase the lower to create 
more similar intensities over that specific area, in other words, smoothing the image. This might generate 
an intensity value incorrect for the true depth of that part of the object, but applying this solution to the 
whole image, the displacement would act as an intensity threshold only. The Gauss function is used to 
generate a smooth depth map, defined as the well-known Gaussian blur filter [1]. We defined a Gaussian 
operator and convolved it with the depth map to obtain the smooth result, seen in figure 9. 

2.1.4 Rendering 
A fully functional application for the relief rendering of the image-
based object and its depth maps was written in C++ using 
OpenGL, created in parallel to this project [3] and modified to 
fulfill the criterion of our system prototype. The number of 
polygons required for rendering equals the amount of stereo 
cameras used. Because of the good depth information 
approximated with the filter-based stereo algorithm, the viewing 
angle was set to AN45° from the center of the origin of the 
textured polygon box, illustrated in figure 10.  

3 Results 
The resulting application consists of two demos (screenshots 
available on the last page): 
¶ Static demo (yellow pullover) - Requires two input 

textures and with two depth maps, textured on two polygons. From two original views, with 90 
degrees separation, new unique views can be created within 180 degrees. The polygons are 
mapped with textures of size 256x256 pixels and the frame rate is ~15 frames/sec. 

¶ Dynamic demo (pink pullover) - Representing a person walking around. Textured on only one 
polygon, which restricts the viewing angle to 90 degrees. The amount of input data required 
depends on the frame rate. We used a frame rate of 20 frames/sec, with a video buffer of 40 
images and 40 depth maps. The relief engine had no problems with rendering a constantly 
updating image buffer and the animated sequence showed no indications of flickering. 
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