
Implementation of a Dynamic Image-Based Rendering System
Niklas Bakos1, Claes Järvman2 and Mark Ollila3

Norrköping Visualization and Interaction Studio
Linköping University

Abstract
Work in dynamic image based rendering has been presented by Kanade et al. [4] and Matusik et al. [5]
previously. We present an alternative implementation that allows us to have a very inexpensive process of
creating dynamic image-based renderings of digitally recorded photo realistic, real-life objects. Together
with computer vision algorithms, the image-based objects are visualized using the Relief Texture
Mapping algorithm presented by Oliveira et al [6]. As the relief engine requires depth information for all
Texels representing the recorded object in an arbitrary view, a recording solution making depth extraction
possible is required. Our eyes use binocular vision to produce disparities in depth, which also is the most
effortless technique of producing stereovision. By using two digital video cameras, the dynamic object is
recorded in stereo in different views to cover its whole volume. As the depth information from all views
are generated, the different views from the image-based object are textured on a pre-defined bounding
box and relief textured into a three dimensional representation by applying the known depth disparities.

1 System Prototype
The first step in the process is to record a dynamic object in stereo,
which gives us the photo textures for the image-based object and the
possibility to derive depth information from the stereo image-pairs.
To be able to use the recorded video as a texture when rendering, it is
important that one camera (i.e. the left) is installed parallel to the
normal of the sides of the bounding box surrounding the object, and
the other (i.e. the right) next to, in a circular path so that both
cameras have the same radius to the object. As we are interested in
the recorded object only, the image background should be as simple
as possible. By using a blue or green screen, the object can easily be
extracted later on. A blue screen can easily be installed by using
cheap blue matte fabric on the walls. Depending on the amount of
cameras available, the dynamic object is recorded in stereo in up to
five views (front, back, left, right and top). In this project, only two
cameras were used, giving us only one view when filming the
dynamic object. As the recording is finished, the video streams are
sent via firewire to a PC, where the resolution is rescaled to 256x256
pixels, the background is removed and the depth maps are calculated,
enhanced, cropped and sent to the relief rendering engine. (Pipeline
in figure 1).

2 Depth approximation
When the stereo video have been recorded and streamed to the computer client, our algorithms start
processing the data to create useful video frames and information about the scene. As the objects are
extracted from the original video, the process of estimating the depth of the scene is initiated. When the
approximated depth map for a certain frame is generated, it is used together with the object image to
render unique views, using the relief-rendering engine. This session starts with a brief overview of the
depth algorithm, followed by complete descriptions about all the steps from using original video streams
to sending a finalized depth map and video frame to the rendering process of virtually viewing the object
from an arbitrary view.

1 nikba@itn.liu.se
2 claja622@student.liu.se
3 marol@itn.liu.se

Real Scene + BlueScreen
(Sony Digital Video Cameras)

Recorded stereo video
(DV-PAL 720x576)

Relief Texturing
(OpenGL)

Virtual Camera Video stream with
depth maps

Bounding Box
(1-6 polygons)

Relief Textured
Bounding box

Unique virtual
viewpoints

Recorded stereo video
(DV-PAL 720x576)

Removing background,
creating silhouettes

(256x256)

Correlation-Based
Stereo Depth Maps

(256x256)

Error removal, depth
map smoothing

Figure 1: Prototype overview. A
schematic view over the different
stages required in the process of
rendering new views of an image-
based object.

5

2.1 Algorithm overview
A summary of the algorithm pipeline is shown in figure 2.
From the N stereo video cameras, we have 2N video streams.
From the left camera (which sees the scene straight from the
front), the object-only video frames and silhouette will be
created. As the scene is recorded with a blue screen
background, both the silhouette and the object extraction are
created rapidly. Simultaneously, both the left and the right
video streams are segmented into frames and sent into our
filter-based depth algorithm. At this stage, the frames can be
downsized for optimization purpose, which will result in faster
depth map approximations with lower quality. For each frame,
each pixel from the left image is analyzed and compared with
a certain area of the right image to find the pixel
correspondence. With this known, the depth could be
estimated for each frame. Since this mathematical method
outputs a relatively distorted image, it needs to be retouched to
fit the relief engine better. First, the depth map is sent to an
algorithm for detecting edges, where an edge could be thought
of as noise, distorting the depth map, and removed by pasting the intensity value of neighboring pixels.
With the errors removed, the depth approximation of the image-based object will contain less noise and
unnecessary holes, but disparities between contiguous object regions might be rendered with too sharp
intensity variances, which will exaggerate the displacement of some object parts when applying the relief
mapping. To solve this, the depth map is smoothened and finally, the silhouette is added to remove
approximated background depth elements.

2.1.1 Filter-based stereo correspondence
The method implemented in our system prototype uses filter-based stereo correspondence developed by
Jones and Malik [2], a technique using a set of linear filters tuned in different rotations and scales to
enhance the features of the input image-pair for better correlation opportunities. A benefit of using spatial
filters is that they preserve the information between the edges inside an image. The bank of filters is
convolved with the left and the right image to create a response vector at a given point that characterizes
the local structure of the image patch. Using this information, the correspondence problem can be solved
by searching for pixels in the other image where the response vector is maximally similar. The reason for
using a set of linear filters at various orientations is to obtain rich and highly specific image features
suitable for stereo matching, with fewer chances of running into false matches. The set of filters Fi (fig. 3)
used to create the depth map consists of rotated copies of filters generated by

)()(),(00, vGuGyxG nn ³=q ; qq sincos yxu -= , qq cossin yxv -=

where n=1, 2, 3 and nG is the nth derivative of the Gaussian function, defined as

2
2

0

2

2

1)(
z

exG
-

=
ps

 ;
s
x

z = 01
1)(zGxG
s
-= ;

0
2

22)1(1)(GzxG -=
s

 ; 0
3

33)3(1)(GzzxG --=
s

.

The matching process was performed using different filter sizes to find the optimized filter settings,
resulting in an 11x11-sized matrix with a standard deviation value s of 2. The number of filters used
depends on the required output quality. Using all filters would result in a high detailed depth
approximation, but the processing time would be immense. Testing different filters to optimize speed and
output quality, the resulting filters consisted of nine linear filters at equal scale, with some of them
rotated, as shown below.

Video stream

Filter-based stereo
scene depth map

Object silhouette

Image-based object

Error Removal

Smoothing

Object depth map

Relief rendering

(Left camera)
Video stream
(Right camera)

Figure 2.

6

The disadvantage of using one scaling level only is the loss of accuracy when matching pixels near object
boundaries or at occluded regions. But again, using more scales, the rendering time will increase
proportionally. To search for pixel correspondence, an iterative process is created, scanning the left image
horizontally, pixel by pixel, left to right, and seeks for similar intensity values inside a defined region
surrounding the current pixel location. For each row, the set of linear filters are convolved with a region
of the right image determined by its width and the height of the filter size, to create a response vector that
characterizes the features of this row. At this row, a new response vector for each pixel is created by
convolving the filter bank with a filter-sized region from the left image. How the convolved response
vectors for a whole image would look like is illustrated in figure 4. (Note that the response vectors are
only representing a small region of the image for each iteration of the correspondence process).

rightiv , = Right image (r) * Fi = [] []ää --
' '

','','
x y

i yyxxFyxr

leftiv , = Left image (l) * Fi = [] []ää --
' '

','','
x y

i yyxxFyxl

The convolving returns only those parts of the convolution that are computed without the zero-padded
edges, which minimizes the response vectors and optimizes the whole process of finding the
correspondence. As soon as the images are convolved with the filters, the matching process for finding
the correlation is initiated. To restrict the searching area, a one-dimensional region needs to be
determined. By using a small region, the corresponding pixels may not be found, as the equivalent pixel
probably is located outside this region. On the other hand, if the region is too large, a pixel not related to
that area might be thought of as correct. When the region is established, this is used to crop the response
vector vi,right created from the right image. When the response vectors are defined at a given point, they
need to be compared in some way to be able to extract some information about how the pixels are related.
By calculating the length of their vector difference e, which will equal zero if the response vectors are
identical, this can be used to solve the correspondence problem. This is done by taking the sum of the
squared differences (SSD) of the response vectors,

()
ä

-
=

i

vv
e rightilefti

2
,,

where i is the amount of filters used and the pixel position (defined as k)
containing the value closest to zero is saved. When the correspondence
has been established, the disparity has to be defined to be able to create a
depth map. For each pixel in the left image, we know the position of the
matching pixel in the right image. To create a connection between this
data, the depth value),(jid for each pixel could be estimated by

where k is the horizontal position of the corresponding pixel and i is the current pixel position. The depth
map (fig. 5) is approximated with intensity levels depending on the size of the constant defining the size

Figure 3: Spatial filter bank.
Image plots of the nine filters
generated by copies of rotations of
Gaussians.

Figure 4: Response vectors. An
illustration of how the response
vectors will look like after being
convolved with different filters. In
reality, a response vector never
represents a whole image.

matching region

i k ikjid -=),(

Figure 5.

7

of the matching region and if a corresponding pixel is found to the left of current pixel i, the intensity is
set to a value pointed to white, and vice versa, depending on the rotation of the image-pair.

2.1.2 Locating errors and noise
The primary depth map image generated by the filter-based stereo algorithm is a general approximation of
the depth information regarding the objects in the video frames. As this algorithm has no knowledge in
form of estimating the structure of object connectivity or how the scene is designed, unpredicted outputs
might appear. They can be found by convolving the image with an edge detection filter [7]. The operator
best suited for our needs turned out to be the Robinson filters h1 and h3.

With the vertical and the horizontal Robinson filters defined, they are convolved with the depth map to
find obvious edges in it, using the convolution formula for two dimensions. We now have two temporary
depth map images, with the edges defined vertically and horizontally, shown in figure 6. From this, the
edge magnitude of each pixel could be derived as

),(),(),(),(),(2
2

2
121 yxdyxdyxdyxdyxd +=+=

The result is shown in figure 7a and gives a better analysis of how the errors are structured. To be able to
use this information cleverly, the pixels convolved and defined as positions of eventual errors need to be
saved. Also, these pixels need to be easily accessed. By using a threshold value, we can decide which of
the convolved ‘edge’-pixels that will belong to the error pixels in the original depth map, shown in figure
7b. With the positions of the erroneous pixels known, they are replaced by neighboring pixel values,
which creates a smoother depth map, although not mathematically perfect, since it is only assumed that
these pixels have the same properties as the invalid and replaced ones. On the other hand, the noiseless
depth maps, shown in figure 8, will generate tremendously enhanced renderings when applied by the
relief engine.

ù
ù
ù

ú

ø

é
é
é

ê

è

-=

111
121
111

1h

ù
ù
ù

ú

ø

é
é
é

ê

è

-
--

-
=

111
121
111

3h

Figure 6.

Figure 7a & b.
Figure 8.

8

2.1.3 Smoothing the depth map
The output from the edge detection process is a
more or less error free depth map, regarding the
hole filling and the depth intensity interpretation.
On the subject of intensity, it can fluctuate
significantly over connected and contiguous
surfaces over the object. As some intensity
values diverges in areas were they actually
would be similar, the solution would be to decrease the higher values and increase the lower to create
more similar intensities over that specific area, in other words, smoothing the image. This might generate
an intensity value incorrect for the true depth of that part of the object, but applying this solution to the
whole image, the displacement would act as an intensity threshold only. The Gauss function is used to
generate a smooth depth map, defined as the well-known Gaussian blur filter [1]. We defined a Gaussian
operator and convolved it with the depth map to obtain the smooth result, seen in figure 9.

2.1.4 Rendering
A fully functional application for the relief rendering of the image-
based object and its depth maps was written in C++ using
OpenGL, created in parallel to this project [3] and modified to
fulfill the criterion of our system prototype. The number of
polygons required for rendering equals the amount of stereo
cameras used. Because of the good depth information
approximated with the filter-based stereo algorithm, the viewing
angle was set to AN45° from the center of the origin of the
textured polygon box, illustrated in figure 10.

3 Results
The resulting application consists of two demos (screenshots
available on the last page):
¶ Static demo (yellow pullover) - Requires two input

textures and with two depth maps, textured on two polygons. From two original views, with 90
degrees separation, new unique views can be created within 180 degrees. The polygons are
mapped with textures of size 256x256 pixels and the frame rate is ~15 frames/sec.

¶ Dynamic demo (pink pullover) - Representing a person walking around. Textured on only one
polygon, which restricts the viewing angle to 90 degrees. The amount of input data required
depends on the frame rate. We used a frame rate of 20 frames/sec, with a video buffer of 40
images and 40 depth maps. The relief engine had no problems with rendering a constantly
updating image buffer and the animated sequence showed no indications of flickering.

References
[1] BOGACHEV, V. 1998. Guassian measures. Mathematical Surveys and Monographs 62.
[2] JONES, D., AND MALIK, J. 1992. ”A computational framework for determining stereo
correspondence from a set of linear spatial features”. In EECV, 395–410.
[3] JÄRVMAN, C., “Static and Dynamic Image-Based Applications using Relief Texture Mapping”,
Linköping University, LITH-ITN-MT-20-SE. May 2002.
[4] KANADE, T., NARAYAN, P., AND RANDER, P. W. 1997. Virtualized reality: Constructing virtual
worlds from real scenes. IEEE Multimedia 4, 1, 34–47.
[5] MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S. J., AND MCMILLAN, L. 2000.
Image-based visual hulls. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, ACM Press/Addison-Wesley Publishing Co., 369–374.
[6] OLIVEIRA, M. M., BISHOP, G., AND MCALLISTER, D. 2000. Relief texture mapping. In
Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 359–368.
[7] SONKA, M., HLAVAC, V., AND BOYLE, R. 1996. Image Processing, Analysis, and Machine
Vision, second ed. Brooks/Cole Publishing Company.

0

90

180

o

o

o

N=1

N=2

Stereo camera

Stereo camera

Viewing angles

polygon

polygon

-45 +45
oo

-45
o

+45
o

Figure 9.

Figure 10.

9

10

