Göm menyn
Files: Description Format
Fulltext PDF (requires Acrobat Reader)
Abstract PostScript (requires a PostScript Reader)
   
Authors: Rui Da Silva Neves, Jean-François Bonnefon, and Eric Raufaste
Article title: Rationality in human nonmonotonic inference
Publ. type: Article
Volume: 5
Article No: 26
Language: English
Abstract [en]: This article tests human inference rationality when dealing with default rules. To study human rationality, psychologists currently use classical models of logic or probability theory as normative models for evaluating human ability to reason rationally. Our position is that this approach is convincing, but only manages to capture a specific case of inferential ability with little regard to conditions of everyday reasoning. We propose that the most general case to be considered is inference with imperfect knowledge - in the present case restricted to uncertain knowledge - and that a natural framework for testing the rationality of plausible reasoning is System P. This system provides rational postulates for nonmonotonic inference.

The semantic of the nonmonotonic inference is given by a possibilistic constraint introduced by Dubois and Prade (1991). This constraint states that a rule p ( q is a plausible rule if "the degree to which p ( q is possible" is greater than "the degree to which p ( (q is possible". Given the choice of this constraint, we study two supplementary postulates of rationality. Eighty-eight subjects participated in an experiment whose results confirm - provided that reflexivity and left logical equivalence would be tested in a further experiment - the rationality of human nonmonotonic inference according to the rational postulates of System P.

Publisher: LINKÖPING University Electronic Press
Year: 2000
Available: 2000-12-30
No. of pages: 9
Series: LINKÖPING Electronic Articles in Computer and Information Science
ISSN: 1401-9841


Responsible for this page: Peter Berkesand
Last updated: 2017-02-21